Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Recent Advances in Nitrogen-Containing Heterocyclic Scaffolds as Antiviral Agents

Author(s): Kanupriya, Ravi Kumar Mittal*, Vikram Sharma, Tanya Biswas and Isha Mishra

Volume 20, Issue 5, 2024

Published on: 24 January, 2024

Page: [487 - 502] Pages: 16

DOI: 10.2174/0115734064280150231212113012

Price: $65

Abstract

This study aims to provide a thorough analysis of nitrogen-containing heterocycles, focusing on their therapeutic implications for the development of targeted and effective antiviral drugs.

To better understand how nitrogen-containing heterocycles can be used to create antiviral drugs, this review adopts a systematic literature review strategy to compile and analyze pertinent research studies. It combines information from various fields to understand better the compounds' mode of action and their therapeutic potential.

This review paper summarizes data from multiple sources to highlight the promising potential of heterocycles containing nitrogen as promising possibilities for future antiviral treatments. The capacity to engage selectively and modulate critical pathways bodes well for their use in developing new viral therapies.

In conclusion, nitrogen-containing heterocycles are shown to be of utmost importance in the field of medicinal chemistry, as emphasized by the review paper. It emphasizes the central importance of chemical insights and pharmacological potential in developing novel and effective antiviral medicines by bringing them together.

Graphical Abstract

[1]
De, A.; Sarkar, S.; Majee, A. Recent advances on heterocyclic compounds with antiviral properties. Chem. Heterocycl. Compd., 2021, 57(4), 410-416.
[http://dx.doi.org/10.1007/s10593-021-02917-3] [PMID: 33994556]
[2]
Furuyama, W.; Marzi, A. Ebola virus: Pathogenesis and countermeasure development. Annu. Rev. Virol., 2019, 6(1), 435-458.
[http://dx.doi.org/10.1146/annurev-virology-092818-015708] [PMID: 31567063]
[3]
Musso, D.; Ko, A.I.; Baud, D. Zika virus infection—after the pandemic. N. Engl. J. Med., 2019, 381(15), 1444-1457.
[http://dx.doi.org/10.1056/NEJMra1808246] [PMID: 31597021]
[4]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[5]
Gilbert, C.; Bestman-Smith, J.; Boivin, G. Resistance of herpesviruses to antiviral drugs: Clinical impacts and molecular mechanisms. Drug Resist. Updat., 2002, 5(2), 88-114.
[http://dx.doi.org/10.1016/S1368-7646(02)00021-3] [PMID: 12135584]
[6]
Ormrod, D.; Scott, L.J.; Perry, C.M. Valaciclovir. Drugs, 2000, 59(4), 839-863.
[http://dx.doi.org/10.2165/00003495-200059040-00013] [PMID: 10804039]
[7]
Wang, X.; Zou, P.; Wu, F.; Lu, L.; Jiang, S. Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses. Front. Med., 2017, 11(4), 449-461.
[http://dx.doi.org/10.1007/s11684-017-0589-5] [PMID: 29170916]
[8]
Arankalle, V.A.; Shrivastava, S.; Cherian, S.; Gunjikar, R.S.; Walimbe, A.M.; Jadhav, S.M.; Sudeep, A.B.; Mishra, A.C. Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J. Gen. Virol., 2007, 88(7), 1967-1976.
[http://dx.doi.org/10.1099/vir.0.82714-0] [PMID: 17554030]
[9]
Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem., 2016, 59(11), 5172-5208.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01697] [PMID: 26799988]
[10]
Krammer, F.; Palese, P. Advances in the development of influenza virus vaccines. Nat. Rev. Drug Discov., 2015, 14(3), 167-182.
[http://dx.doi.org/10.1038/nrd4529] [PMID: 25722244]
[11]
Mittal, R.K.; Aggarwal, M.; Khatana, K.; Purohit, P. Quinoline: Synthesis to application. Med. Chem., 2022, 19(1), 31-46.
[PMID: 35240965]
[12]
Mittal, R.K.; Purohit, P. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent. Anticancer. Agents Med. Chem., 2020, 20(16), 1981-1991.
[http://dx.doi.org/10.2174/1871520620666200619175906] [PMID: 32560612]
[13]
Mittal, R.K.; Purohit, P. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent. Anticancer. Agents Med. Chem., 2021, 21(13), 1708-1716.
[http://dx.doi.org/10.2174/1871520620999201124214112] [PMID: 33238852]
[14]
Purohit, P.; Mittal, R.K.; Khatana, K. Quinoline-3-carboxylic acids “DNA minor groove-binding agent”. Anticancer. Agents Med. Chem., 2022, 22(2), 344-348.
[http://dx.doi.org/10.2174/1871520621666210513160714] [PMID: 33992065]
[15]
Korkmaz, A.; Bursal, E. An in vitro and in silico study on the synthesis and characterization of novel bis(sulfonate) derivatives as tyrosinase and pancreatic lipase inhibitors. J. Mol. Struct., 2022, 1259, 132734.
[http://dx.doi.org/10.1016/j.molstruc.2022.132734]
[16]
Cetin, A.; Bursal, E.; Türkan, F. 2-methylindole analogs as cholinesterases and glutathione S-transferase inhibitors: Synthesis, biological evaluation, molecular docking, and pharmacokinetic studies. Arab. J. Chem., 2021, 14(12), 103449.
[http://dx.doi.org/10.1016/j.arabjc.2021.103449]
[17]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[18]
Mohana Roopan, S.; Sompalle, R. Synthetic chemistry of pyrimidines and fused pyrimidines: A review. Synth. Commun., 2016, 46(8), 645-672.
[http://dx.doi.org/10.1080/00397911.2016.1165254]
[19]
Slagman, S.; Fessner, W.D. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem. Soc. Rev., 2021, 50(3), 1968-2009.
[http://dx.doi.org/10.1039/D0CS00763C] [PMID: 33325938]
[20]
Purohit, P.; Mittal, R.K.; Bhatt, A. Implication of drug repurposing in the identification of drugs as antiviral agents. Drug Repurposing, 2023, 101.
[21]
Athina, G.; Tratrat, C.; Petrou, A.; Fesatidou, M.; Haroun, M.; Venugopala, K.; Sreeharsha, N.; Chemali, J. 5-Membered heterocyclic compounds as antiviral agents. Curr. Top. Med. Chem., 2023, 23(7), 520-538.
[http://dx.doi.org/10.2174/1568026623666230325153927] [PMID: 37254567]
[22]
Walayat, K.; ul Amin Mohsin, N.; Aslam, S.; Rasool, N.; Ahmad, M.; Rafiq, A.; Al-Hussain, S.A.; Zaki, M.E.A. Recent advances in the piperazine based antiviral agents: A remarkable heterocycle for antiviral research. Arab. J. Chem., 2023, 16(12), 105292.
[http://dx.doi.org/10.1016/j.arabjc.2023.105292]
[23]
Zala, A.R.; Kumari, P. Versatile therapeutic values of N‐containing heterocycles benzimidazole, piperazine and piperidine hybrids. ChemistrySelect, 2023, 8(37), e202301304.
[http://dx.doi.org/10.1002/slct.202301304]
[24]
Chaudhry, F.; Munir, R.; Malik, N. N-Heterocycles as privileged scaffolds in FDA approved different NMEs of 2021: A review. Lett. Org. Chem., 2023, 20(4), 287-299.
[http://dx.doi.org/10.2174/1570178620666221026095145]
[25]
Stefanik, M.; Valdes, J.J.; Ezebuo, F.C.; Haviernik, J.; Uzochukwu, I.C.; Fojtikova, M.; Salat, J.; Eyer, L.; Ruzek, D. FDA-approved drugs efavirenz, tipranavir, and dasabuvir inhibit replication of multiple flaviviruses in vero cells. Microorganisms, 2020, 8(4), 599.
[http://dx.doi.org/10.3390/microorganisms8040599] [PMID: 32326119]
[26]
Vatner, D.E.; Bravo, C.; Pachon, R.; Zhang, J.; Vatner, S.F. An FDA approved anti-viral agent which inhibits adenylyl cyclase type 5 protects the ischemic heart even when administered after reperfusion. J. Pharmacol. Exp. Ther., 2016, 357(2), 331-336.
[27]
Bravo, C.A.; Vatner, D.E.; Pachon, R.; Zhang, J.; Vatner, S.F. A food and drug administration–approved antiviral agent that inhibits adenylyl cyclase type 5 protects the ischemic heart even when administered after reperfusion. J. Pharmacol. Exp. Ther., 2016, 357(2), 331-336.
[http://dx.doi.org/10.1124/jpet.116.232538] [PMID: 26941173]
[28]
Palumbo, E. Lamivudine for chronic hepatitis B: A brief review. Braz. J. Infect. Dis., 2008, 12(5), 355-357.
[PMID: 19219271]
[29]
Singh, I.P.; Gupta, S.; Kumar, S. Thiazole compounds as antiviral agents: An update. Med. Chem., 2020, 16(1), 4-23.
[http://dx.doi.org/10.2174/1573406415666190614101253] [PMID: 31203807]
[30]
Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol., 2021, 172, 524-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.076] [PMID: 33454328]
[31]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4), a007161.
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[32]
Bhatti, L.; Gladstein, J. Once-daily nevirapine XR. J. Int. Assoc. Physicians AIDS Care, 2012, 11(6), 369-373.
[http://dx.doi.org/10.1177/1545109712456427] [PMID: 22930796]
[33]
Becker, S. Atazanavir: Improving the HIV protease inhibitor class. Expert Rev. Anti Infect. Ther., 2003, 1(3), 403-413.
[http://dx.doi.org/10.1586/14787210.1.3.403] [PMID: 15482137]
[34]
Shytaj, I.L.; Fares, M.; Gallucci, L.; Lucic, B.; Tolba, M.M.; Zimmermann, L.; Adler, J.M.; Xing, N.; Bushe, J.; Gruber, A.D.; Ambiel, I.; Taha Ayoub, A.; Cortese, M.; Neufeldt, C.J.; Stolp, B.; Sobhy, M.H.; Fathy, M.; Zhao, M.; Laketa, V.; Diaz, R.S.; Sutton, R.E.; Chlanda, P.; Boulant, S.; Bartenschlager, R.; Stanifer, M.L.; Fackler, O.T.; Trimpert, J.; Savarino, A.; Lusic, M. The FDA-approved drug cobicistat synergizes with remdesivir to inhibit SARS-CoV-2 replication in vitro and decreases viral titers and disease progression in Syrian hamsters. MBio, 2022, 13(2), e03705-e03721.
[http://dx.doi.org/10.1128/mbio.03705-21] [PMID: 35229634]
[35]
Sayana, S.; Khanlou, H. Maraviroc: A new CCR5 antagonist. Expert Rev. Anti Infect. Ther., 2009, 7(1), 9-19.
[http://dx.doi.org/10.1586/14787210.7.1.9] [PMID: 19622053]
[36]
Merz, S.F.; Bengtson, C.P.; Tepohl, C.; Hagenston, A.M.; Bading, H.; Bas-Orth, C. A microscopy-based small molecule screen in primary neurons reveals neuroprotective properties of the FDA-approved anti-viral drug Elvitegravir. Mol. Brain, 2020, 13(1), 124.
[http://dx.doi.org/10.1186/s13041-020-00641-1] [PMID: 32928261]
[37]
Liu, W.S.; Li, H.G.; Ding, C.H.; Zhang, H.X.; Wang, R.R.; Li, J.Q. Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CLpro through high-throughput virtual screening and molecular dynamics simulation. Aging, 2021, 13(5), 6258-6272.
[http://dx.doi.org/10.18632/aging.202703] [PMID: 33678621]
[38]
Hammer, K.D.; Dietz, J.; Lo, T.S.; Johnson, E.M. A systematic review on the efficacy of topical acyclovir, penciclovir, and docosanol for the treatment of herpes simplex labialis. Dermatology, 2018, 6(1), 118-123.
[39]
Hassam, M.; Basson, A.E.; Liotta, D.C.; Morris, L.; van Otterlo, W.A.L.; Pelly, S.C. Novel cyclopropyl-indole derivatives as hiv non-nucleoside reverse transcriptase inhibitors. ACS Med. Chem. Lett., 2012, 3(6), 470-475.
[http://dx.doi.org/10.1021/ml3000462] [PMID: 24900496]
[40]
Tran, T.N.; Henary, M. Synthesis and applications of nitrogen-containing heterocycles as antiviral agents. Molecules, 2022, 27(9), 2700.
[http://dx.doi.org/10.3390/molecules27092700] [PMID: 35566055]
[41]
Meng, F.J.; Sun, T.; Dong, W.Z.; Li, M.H.; Tuo, Z.Z. Discovery of novel pyrazole derivatives as potent neuraminidase inhibitors against influenza H1N1 virus. Arch. Pharm., 2016, 349(3), 168-174.
[http://dx.doi.org/10.1002/ardp.201500342] [PMID: 26797880]
[42]
La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Famiglini, V.; Cosconati, S.; Maga, G.; Samuele, A.; Gonzalez, E.; Clotet, B.; Schols, D.; Esté, J.A.; Novellino, E.; Silvestri, R. New nitrogen containing substituents at the indole-2-carboxamide yield high potent and broad spectrum indolylarylsulfone HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Med. Chem., 2012, 55(14), 6634-6638.
[http://dx.doi.org/10.1021/jm300477h] [PMID: 22712652]
[43]
Wang, M.; Zhang, G.; Zhao, J.; Cheng, N.; Wang, Y.; Fu, Y.; Zheng, Y.; Wang, J.; Zhu, M.; Cen, S.; He, J.; Wang, Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem., 2021, 214, 113208.
[http://dx.doi.org/10.1016/j.ejmech.2021.113208] [PMID: 33571829]
[44]
Zhao, T.; Meng, Q.; Kang, D.; Ji, J.; De Clercq, E.; Pannecouque, C.; Liu, X.; Zhan, P. Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing. Eur. J. Med. Chem., 2019, 182, 111619.
[http://dx.doi.org/10.1016/j.ejmech.2019.111619] [PMID: 31434039]
[45]
Zhang, X.; Zhang, G.N.; Wang, Y.; Zhu, M.; Wang, J.; Li, Z.; Li, D.; Cen, S.; Wang, Y. Synthesis and biological evaluation of substituted indole and its analogs as influenza A virus inhibitors. Chem. Biodivers., 2019, 16(2), e1800577.
[http://dx.doi.org/10.1002/cbdv.201800577] [PMID: 30536577]
[46]
Zhang, G.N.; Zhao, J.; Li, Q.; Wang, M.; Zhu, M.; Wang, J.; Cen, S.; Wang, Y. Discovery and optimization of 2-((1H-indol-3-yl)thio)-N-benzyl-acetamides as novel SARS-CoV-2 RdRp inhibitors. Eur. J. Med. Chem., 2021, 223, 113622.
[http://dx.doi.org/10.1016/j.ejmech.2021.113622] [PMID: 34147744]
[47]
Zhao, J.; Zhang, G.; Zhang, Y.; Yi, D.; Li, Q.; Ma, L.; Guo, S.; Li, X.; Guo, F.; Lin, R.; Luu, G.; Liu, Z.; Wang, Y.; Cen, S. 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides: SARS-CoV-2 RNA-dependent RNA polymerase inhibitors. Antiviral Res., 2021, 196, 105209.
[http://dx.doi.org/10.1016/j.antiviral.2021.105209] [PMID: 34801588]
[48]
Zhang, G.N.; Li, Q.; Zhao, J.; Zhang, X.; Xu, Z.; Wang, Y.; Fu, Y.; Shan, Q.; Zheng, Y.; Wang, J.; Zhu, M.; Li, Z.; Cen, S.; He, J.; Wang, Y. Design and synthesis of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides as novel dual inhibitors of respiratory syncytial virus and influenza virus A. Eur. J. Med. Chem., 2020, 186, 111861.
[http://dx.doi.org/10.1016/j.ejmech.2019.111861] [PMID: 31734025]
[49]
Sanna, G.; Madeddu, S.; Giliberti, G.; Piras, S.; Struga, M.; Wrzosek, M.; Kubiak-Tomaszewska, G.; Koziol, A.; Savchenko, O.; Lis, T.; Stefanska, J.; Tomaszewski, P.; Skrzycki, M.; Szulczyk, D. Synthesis and biological evaluation of novel indole-derived thioureas. Molecules, 2018, 23(10), 2554.
[http://dx.doi.org/10.3390/molecules23102554] [PMID: 30301264]
[50]
El-Hussieny, M.; El-Sayed, N.F.; Ewies, E.F.; Ibrahim, N.M.; Mahran, M.R.H.; Fouad, M.A. Synthesis, molecular docking and biological evaluation of 2-(thiophen-2-yl)-1H-indoles as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Chem., 2020, 95, 103521.
[http://dx.doi.org/10.1016/j.bioorg.2019.103521] [PMID: 31884145]
[51]
Nalli, M.; Armijos Rivera, J.I.; Masci, D.; Coluccia, A.; Badia, R.; Riveira-Muñoz, E.; Brambilla, A.; Cinquina, E.; Turriziani, O.; Falasca, F.; Catalano, M.; Limatola, C.; Esté, J.A.; Maga, G.; Silvestri, R.; Crespan, E.; La Regina, G. New indolylarylsulfone non-nucleoside reverse transcriptase inhibitors show low nanomolar inhibition of single and double HIV-1 mutant strains. Eur. J. Med. Chem., 2020, 208, 112696.
[http://dx.doi.org/10.1016/j.ejmech.2020.112696] [PMID: 32883642]
[52]
Chander, S.; Tang, C.R.; Penta, A.; Wang, P.; Bhagwat, D.P.; Vanthuyne, N.; Albalat, M.; Patel, P.; Sankpal, S.; Zheng, Y.T.; Sankaranarayanan, M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg. Chem., 2018, 79, 212-222.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.027] [PMID: 29775947]
[53]
Kasralikar, H.M.; Jadhavar, S.C.; Goswami, S.V.; Kaminwar, N.S.; Bhusare, S.R. Design, synthesis and molecular docking of pyrazolo[3,4d]thiazole hybrids as potential anti-HIV-1 NNRT inhibitors. Bioorg. Chem., 2019, 86, 437-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.006] [PMID: 30771690]
[54]
Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in–vitro anti–HIV–1 evaluation of novel pyrazolo[4,3–c]pyridin–4–one derivatives. Eur. J. Med. Chem., 2019, 183, 111714.
[http://dx.doi.org/10.1016/j.ejmech.2019.111714] [PMID: 31557609]
[55]
Messore, A.; Corona, A.; Madia, V.N.; Saccoliti, F.; Tudino, V.; De Leo, A.; Scipione, L.; De Vita, D.; Amendola, G.; Di Maro, S.; Novellino, E.; Cosconati, S.; Métifiot, M.; Andreola, M.L.; Valenti, P.; Esposito, F.; Grandi, N.; Tramontano, E.; Costi, R.; Di Santo, R. Pyrrolyl pyrazoles as non-diketo acid inhibitors of the HIV-1 ribonuclease H function of reverse transcriptase. ACS Med. Chem. Lett., 2020, 11(5), 798-805.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00617] [PMID: 32435387]
[56]
Jilloju, P.C.; Persoons, L.; Kurapati, S.K.; Schols, D.; De Jonghe, S.; Daelemans, D.; Vedula, R.R. Discovery of (±)-3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine derivatives with promising in vitro anticoronavirus and antitumoral activity. Mol. Divers., 2022, 26(3), 1357-1371.
[http://dx.doi.org/10.1007/s11030-021-10258-8] [PMID: 34165689]
[57]
Roney, M.; Singh, G.; Huq, A.K.M.M.; Forid, M.S.; Ishak, W.M.B.W.; Rullah, K.; Aluwi, M.F.F.M.; Tajuddin, S.N. Identification of pyrazole derivatives of usnic acid as novel inhibitor of SARS-CoV-2 main protease through virtual screening approaches. Mol. Biotechnol., 2023, 1-11.
[http://dx.doi.org/10.1007/s12033-023-00667-5] [PMID: 36752937]
[58]
Wu, Y.; Tang, C.; Rui, R.; Yang, L.; Ding, W.; Wang, J.; Li, Y.; Lai, C.C.; Wang, Y.; Luo, R.; Xiao, W.; Zhang, H.; Zheng, Y.; He, Y. Synthesis and biological evaluation of a series of 2-(((5-akly/aryl-1H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3H)-ones as potential HIV-1 inhibitors. Acta Pharm. Sin. B, 2020, 10(3), 512-528.
[http://dx.doi.org/10.1016/j.apsb.2019.08.009] [PMID: 32140396]
[59]
Fichez, J; Soulie, C; Le Corre, L; Sayon, S; Priet, S; Alvarez, K; Delelis, O; Gizzi, P; Prestat, G; Gravier-Pelletier, C; Marcelin, AG Discovery, SAR study and ADME properties of methyl 4-amino-3-cyano-1-(2-benzyloxyphenyl)-1 H-pyrazole-5-carboxylate as an HIV-1 replication inhibitor. RSC med chem, 2020, 11(5), 577-588.
[60]
Abu-Zaied, M.A.; Hammad, S.F.; Halaweish, F.T.; Elgemeie, G.H. Sofosbuvir thio-analogues: Synthesis and antiviral evaluation of the first novel pyridine-and pyrimidine-based thioglycoside phosphoramidates. ACS Omega, 2020, 5(24), 14645-14655.
[http://dx.doi.org/10.1021/acsomega.0c01364] [PMID: 32596602]
[61]
Yang, J.; Du, J.; Huang, C.; Wang, T.; Huang, L.; Yang, S.; Li, L. Discovery of 5-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrazin-2(1H)-one derivatives as new potent PB2 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(13), 1609-1613.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.042] [PMID: 31053507]
[62]
Stalinskaya, A.L.; Martynenko, N.V.; Shulgau, Z.T.; Shustov, A.V.; Keyer, V.V.; Kulakov, I.V. Synthesis and antiviral properties against SARS-CoV-2 of epoxybenzooxocino[4,3-b]pyridine derivatives. Molecules, 2022, 27(12), 3701.
[http://dx.doi.org/10.3390/molecules27123701] [PMID: 35744830]
[63]
Ghaleb, A.; Aouidate, A.; Ayouchia, H.B.E.; Aarjane, M.; Anane, H.; Stiriba, S.E. In silico molecular investigations of pyridine N-Oxide compounds as potential inhibitors of SARS-CoV-2: 3D QSAR, molecular docking modeling, and ADMET screening. J. Biomol. Struct. Dyn., 2022, 40(1), 143-153.
[http://dx.doi.org/10.1080/07391102.2020.1808530] [PMID: 32799761]
[64]
Shafique, M.; Hameed, S.; Naseer, M.M.; Al-Masoudi, N.A. Synthesis of new chiral 1,3,4-thiadiazole-based di- and tri-arylsulfonamide residues and evaluation of in vitro anti-HIV activity and cytotoxicity. Mol. Divers., 2018, 22(4), 957-968.
[http://dx.doi.org/10.1007/s11030-018-9851-2] [PMID: 29968121]
[65]
Brai, A.; Ronzini, S.; Riva, V.; Botta, L.; Zamperini, C.; Borgini, M.; Trivisani, C.I.; Garbelli, A.; Pennisi, C.; Boccuto, A.; Saladini, F.; Zazzi, M.; Maga, G.; Botta, M. Synthesis and antiviral activity of novel 1, 3, 4-thiadiazole inhibitors of DDX3X. Molecules, 2019, 24(21), 3988.
[http://dx.doi.org/10.3390/molecules24213988] [PMID: 31690062]
[66]
Rabie, A.M.; Eltayb, W.A. Potent dual polymerase/exonuclease inhibitory activities of antioxidant aminothiadiazoles against the COVID-19 omicron virus: A promising in silico/in vitro repositioning research study. Mol. Biotechnol., 2023, 1-20.
[http://dx.doi.org/10.1007/s12033-022-00551-8] [PMID: 36690820]
[67]
Francesconi, V.; Cichero, E.; Schenone, S.; Naesens, L.; Tonelli, M. Synthesis and biological evaluation of novel (thio) semicarbazone-based benzimidazoles as antiviral agents against human respiratory viruses. Molecules, 2020, 25(7), 1487.
[http://dx.doi.org/10.3390/molecules25071487] [PMID: 32218301]
[68]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Sen Gupta, P.S.; Yadav, M.; Singh, V.K.; Singh, A.; Rana, M.K.; Gupta, S.K.; Schols, D.; Singh, R.K. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput. Biol. Chem., 2020, 89, 107400.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107400] [PMID: 33068917]
[69]
Mudi, P.K.; Mahato, R.K.; Verma, H.; Panda, S.J.; Purohit, C.S.; Silakari, O.; Biswas, B. In silico anti-SARS-CoV-2 activities of five-membered heterocycle-substituted benzimidazoles. J. Mol. Struct., 2022, 1261, 132869.
[http://dx.doi.org/10.1016/j.molstruc.2022.132869] [PMID: 35340531]
[70]
Huo, X.; Hou, D.; Wang, H.; He, B.; Fang, J.; Meng, Y.; Liu, L.; Wei, Z.; Wang, Z.; Liu, F.W. Design, synthesis, in vitro and in vivo anti-respiratory syncytial virus (RSV) activity of novel oxizine fused benzimidazole derivatives. Eur. J. Med. Chem., 2021, 224, 113684.
[http://dx.doi.org/10.1016/j.ejmech.2021.113684] [PMID: 34256126]
[71]
Ibba, R.; Carta, A.; Madeddu, S.; Caria, P.; Serreli, G.; Piras, S.; Sestito, S.; Loddo, R.; Sanna, G. Inhibition of enterovirus A71 by a novel 2-phenyl-benzimidazole derivative. Viruses, 2021, 13(1), 58.
[http://dx.doi.org/10.3390/v13010058] [PMID: 33406781]
[72]
Rashamuse, T.J.; Njengele, Z.; Coyanis, E.M.; Sayed, Y.; Mosebi, S.; Bode, M.L. Design, synthesis and biological evaluation of novel 2-(5-aryl-1H-imidazol-1-yl) derivatives as potential inhibitors of the HIV-1 Vpu and host BST-2 protein interaction. Eur. J. Med. Chem., 2020, 190, 112111.
[http://dx.doi.org/10.1016/j.ejmech.2020.112111] [PMID: 32058240]
[73]
Galochkina, A.V.; Bollikanda, R.K.; Zarubaev, V.V.; Tentler, D.G.; Lavrenteva, I.N.; Slita, A.V.; Chirra, N.; Kantevari, S. Synthesis of novel derivatives of 7,8‐dihydro‐6 H ‐imidazo[2,1‐ b][1,3]benzothiazol‐5‐one and their virus‐inhibiting activity against influenza A virus. Arch. Pharm., 2019, 352(2), 1800225.
[http://dx.doi.org/10.1002/ardp.201800225] [PMID: 30520524]
[74]
Shan, L.; Wang, H.; Hu, Y. A preliminary investigation on the mechanism of action of 4-(8-(2-ethylimidazole)octyloxy)-arctigenin against IHNV. Virus Res., 2021, 294, 198287.
[http://dx.doi.org/10.1016/j.virusres.2020.198287] [PMID: 33418024]
[75]
Gerasi, M.; Frakolaki, E.; Papadakis, G.; Chalari, A.; Lougiakis, N.; Marakos, P.; Pouli, N.; Vassilaki, N. Design, synthesis and anti-HBV activity evaluation of new substituted imidazo[4,5-b]pyridines. Bioorg. Chem., 2020, 98, 103580.
[http://dx.doi.org/10.1016/j.bioorg.2020.103580] [PMID: 32005482]
[76]
Xu, B.; Lee, E.M.; Medina, A.; Sun, X.; Wang, D.; Tang, H.; Zhou, G.C. Inhibition of zika virus infection by fused tricyclic derivatives of 1,2,4,5-tetrahydroimidazo[1,5-a]quinolin-3(3aH)-one. Bioorg. Chem., 2020, 104, 104205.
[http://dx.doi.org/10.1016/j.bioorg.2020.104205] [PMID: 32916389]
[77]
Okano, Y.; Saito-Tarashima, N.; Kurosawa, M.; Iwabu, A.; Ota, M.; Watanabe, T.; Kato, F.; Hishiki, T.; Fujimuro, M.; Minakawa, N. Synthesis and biological evaluation of novel imidazole nucleosides as potential anti-dengue virus agents. Bioorg. Med. Chem., 2019, 27(11), 2181-2186.
[http://dx.doi.org/10.1016/j.bmc.2019.04.015] [PMID: 31003866]
[78]
Makarasen, A.; Patnin, S.; Vijitphan, P.; Reukngam, N.; Khlaychan, P.; Kuno, M.; Intachote, P.; Saimanee, B.; Sengsai, S.; Techasakul, S. Structural basis of 2-phenylamino-4-phenoxyquinoline derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Molecules, 2022, 27(2), 461.
[http://dx.doi.org/10.3390/molecules27020461] [PMID: 35056776]
[79]
Singh, V.K.; Chaurasia, H.; Kumari, P.; Som, A.; Mishra, R.; Srivastava, R.; Naaz, F.; Singh, A.; Singh, R.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J. Biomol. Struct. Dyn., 2022, 40(21), 10519-10542.
[http://dx.doi.org/10.1080/07391102.2021.1946716] [PMID: 34253149]
[80]
Abdollahi, O.; Mahboubi, A.; Hajimahdi, Z.; Zarghi, A. Design, synthesis, docking study, and biological evaluation of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbohydrazide derivatives as Anti-HIV-1 and antibacterial agents. Iran. J. Pharm. Res., 2022, 21(1), e126562.
[http://dx.doi.org/10.5812/ijpr-126562] [PMID: 36060913]
[81]
Zhang, C.; Tang, Y.S.; Meng, C.R.; Xu, J.; Zhang, D.L.; Wang, J.; Huang, E.F.; Shaw, P.C.; Hu, C. Design, synthesis, molecular docking analysis and biological evaluations of 4-[(quinolin-4-yl)amino]benzamide derivatives as novel anti-influenza virus agents. Int. J. Mol. Sci., 2022, 23(11), 6307.
[http://dx.doi.org/10.3390/ijms23116307] [PMID: 35682986]
[82]
Shah, P.; Naik, D.; Jariwala, N.; Bhadane, D.; Kumar, S.; Kulkarni, S.; Bhutani, K.K.; Singh, I.P. Synthesis of C-2 and C-3 substituted quinolines and their evaluation as anti-HIV-1 agents. Bioorg. Chem., 2018, 80, 591-601.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.016] [PMID: 30036815]
[83]
Mittal, R.K.; Purohit, P.; Sankaranarayanan, M.; Muzaffar-Ur-Rehman, M.; Taramelli, D.; Signorini, L.; Dolci, M.; Basilico, N. In vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate. Mol. Divers., 2023, 1-5.
[http://dx.doi.org/10.1007/s11030-023-10703-w] [PMID: 37480422]
[84]
Mittal, R.K.; Purohit, P.; Aggarwal, M. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors. Biointerface Res. Appl. Chem., 2023, 13(2), 69.
[85]
Purohit, P.; Mittal, R.K.; Sharma, V. A synergistic broad-spectrum viral entry blocker: In-silico approach. Biointerface Res. Appl. Chem., 2023, 13(1)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy