Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

A Review of Antidiabetic Medicinal Plants as a Novel Source of Phosphodiesterase Inhibitors: Future Perspective of New Challenges Against Diabetes Mellitus

Author(s): Hayat Ouassou, Nour Elhouda Daoudi, Saliha Bouknana, Rhizlan Abdnim and Mohamed Bnouham*

Volume 20, Issue 5, 2024

Published on: 23 January, 2024

Page: [467 - 486] Pages: 20

DOI: 10.2174/0115734064255060231116192839

Price: $65

conference banner
Abstract

Intracellular glucose concentration plays a crucial role in initiating the molecular secretory process of pancreatic β-cells through multiple messengers and signaling pathways. Cyclic nucleotides are key physiological regulators that modulate pathway interactions in β -cells. An increase of cyclic nucleotides is controled by hydrolysed phosphodiesterases (PDEs), which degrades cyclic nucleotides into inactive metabolites. Despite the undeniable therapeutic potential of PDE inhibitors, they are associated with several side effects. The treatment strategy for diabetes based on PDE inhibitors has been proposed for a long time. Hence, the world of natural antidiabetic medicinal plants represents an ideal source of phosphodiesterase inhibitors as a new strategy for developing novel agents to treat diabetes mellitus. This review highlights medicinal plants traditionally used in the treatment of diabetes mellitus that have been proven to have inhibitory effects on PDE activity. The contents of this review were sourced from electronic databases, including Science Direct, PubMed, Springer Link, Web of Science, Scopus, Wiley Online, Scifinder and Google Scholar. These databases were consulted to collect information without any limitation date. After comprehensive literature screening, this paper identified 27 medicinal plants that have been reported to exhibit anti-phosphodiesterase activities. The selection of these plants was based on their traditional uses in the treatment of diabetes mellitus. The review emphasizes the antiphosphodiesterase properties of 31 bioactive components derived from these plant extracts. Many phenolic compounds have been identified as PDE inhibitors: Brazilin, mesozygin, artonin I, chalcomaracin, norartocarpetin, moracin L, moracin M, moracin C, curcumin, gallic acid, caffeic acid, rutin, quercitrin, quercetin, catechin, kaempferol, chlorogenic acid, and ellagic acid. Moreover, smome lignans have reported as PDE inhibitors: (+)-Medioresinol di-O-β-d-glucopyranoside, (+)- Pinoresinol di-O-β-d-glucopyranoside, (+)-Pinoresinol-4-O-β-d-glucopyranosyl (1→6)-β-dglucopyranoside, Liriodendrin, (+)-Pinoresinol 4′-O-β-d-glucopyranoside, and forsythin. This review provides a promising starting point of medicinal plants, which could be further studied for the development of natural phosphodiesterase inhibitors to treat diabetes mellitus. Therefore, it is important to consider clinical studies for the identification of new targets for the treatment of diabetes.

Next »
Graphical Abstract

[1]
Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev., 2013, 9(1), 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[2]
Kalwat, M.A.; Cobb, M.H. Mechanisms of the amplifying pathway of insulin secretion in the β cell. Pharmacol. Ther., 2017, 179, 17-30.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.003] [PMID: 28527919]
[3]
Tengholm, A. Cyclic AMP dynamics in the pancreatic β-cell. Ups. J. Med. Sci., 2012, 117(4), 355-369.
[http://dx.doi.org/10.3109/03009734.2012.724732] [PMID: 22970724]
[4]
Choi, Y.H.; Park, S.; Hockman, S.; Zmuda-Trzebiatowska, E.; Svennelid, F.; Haluzik, M.; Gavrilova, O.; Ahmad, F.; Pepin, L.; Napolitano, M.; Taira, M.; Sundler, F.; Stenson Holst, L.; Degerman, E.; Manganiello, V.C. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J. Clin. Invest., 2006, 116(12), 3240-3251.
[http://dx.doi.org/10.1172/JCI24867] [PMID: 17143332]
[5]
Kilanowska, A.; Ziółkowska, A. Role of phosphodiesterase in the biology and pathology of diabetes. Int. J. Mol. Sci., 2020, 21(21), 8244.
[http://dx.doi.org/10.3390/ijms21218244] [PMID: 33153226]
[6]
Collins, S.; Surwit, R.S. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res., 2001, 56(1), 309-328.
[http://dx.doi.org/10.1210/rp.56.1.309] [PMID: 11237219]
[7]
Tian, G.; Sågetorp, J.; Xu, Y.; Shuai, H.; Degerman, E.; Tengholm, A. Role of phosphodiesterases in the shaping of sub-plasma membrane cAMP oscillations and pulsatile insulin secretion. J. Cell Sci., 2012, 125(Pt 21), jcs.107201.
[http://dx.doi.org/10.1242/jcs.107201] [PMID: 22946044]
[8]
Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 2006, 7(3), 165-176.
[http://dx.doi.org/10.1038/nrm1838] [PMID: 16482094]
[9]
Härndahl, L.; Wierup, N.; Enerbäck, S.; Mulder, H.; Manganiello, V.C.; Sundler, F.; Degerman, E.; Ahrén, B.; Holst, L.S. β-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J. Biol. Chem., 2004, 279(15), 15214-15222.
[http://dx.doi.org/10.1074/jbc.M308952200] [PMID: 14736883]
[10]
Walz, H.A.; Härndahl, L.; Wierup, N.; Zmuda-Trzebiatowska, E.; Svennelid, F.; Manganiello, V.C.; Ploug, T.; Sundler, F.; Degerman, E.; Ahrén, B.; Holst, L.S. Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B. J. Endocrinol., 2006, 189(3), 629-641.
[http://dx.doi.org/10.1677/joe.1.06522] [PMID: 16731793]
[11]
Saraswati, M.; Rani, H.S. Phosphodiesterases in the pathophysiology of diabetes mellitus. Int. J. Anal. Bio-Sci., 2011, 34(5)
[12]
Moya-Beltrán, A.; Rojas-Villalobos, C.; Díaz, M.; Guiliani, N.; Quatrini, R.; Castro, M. Nucleotide second messenger-based signaling in extreme acidophiles of the Acidithiobacillus species complex: Partition between the core and variable gene complements. Front. Microbiol., 2019, 10, 381.
[http://dx.doi.org/10.3389/fmicb.2019.00381] [PMID: 30899248]
[13]
Yang, H.; Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol., 2016, 57(2), R93-R108.
[http://dx.doi.org/10.1530/JME-15-0316] [PMID: 27194812]
[14]
Pratt, E.P.S.; Harvey, K.E.; Salyer, A.E.; Hockerman, G.H. Regulation of cAMP accumulation and activity by distinct phosphodiesterase subtypes in INS-1 cells and human pancreatic β-cells. PLoS One, 2019, 14(8), e0215188.
[http://dx.doi.org/10.1371/journal.pone.0215188] [PMID: 31442224]
[15]
Seino, S.; Shibasaki, T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol. Rev., 2005, 85(4), 1303-1342.
[http://dx.doi.org/10.1152/physrev.00001.2005] [PMID: 16183914]
[16]
Chepurny, O.G.; Kelley, G.G.; Dzhura, I.; Leech, C.A.; Roe, M.W.; Dzhura, E.; Li, X.; Schwede, F.; Genieser, H.G.; Holz, G.G. PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2′- O -Me-cAMP-AM in human islets of Langerhans. Am. J. Physiol. Endocrinol. Metab., 2010, 298(3), E622-E633.
[http://dx.doi.org/10.1152/ajpendo.00630.2009] [PMID: 20009023]
[17]
Nesher, R.; Anteby, E.; Yedovizky, M.; Warwar, N.; Kaiser, N.; Cerasi, E. β-cell protein kinases and the dynamics of the insulin response to glucose. Diabetes, 2002, 51(Suppl. 1), S68-S73.
[http://dx.doi.org/10.2337/diabetes.51.2007.S68] [PMID: 11815461]
[18]
Kim, J.W.; Roberts, C.D.; Berg, S.A.; Caicedo, A.; Roper, S.D.; Chaudhari, N. Imaging cyclic AMP changes in pancreatic islets of transgenic reporter mice. PLoS One, 2008, 3(5), e2127.
[http://dx.doi.org/10.1371/journal.pone.0002127] [PMID: 18461145]
[19]
Kasai, H.; Suzuki, T.; Liu, T.T.; Kishimoto, T.; Takahashi, N. Fast and cAMP-sensitive mode of Ca(2+)-dependent exocytosis in pancreatic β-cells. Diabetes, 2002, 51(Suppl. 1), S19-S24.
[http://dx.doi.org/10.2337/diabetes.51.2007.S19] [PMID: 11815452]
[20]
Takahashi, N.; Kadowaki, T.; Yazaki, Y.; Ellis-Davies, G.C.R.; Miyashita, Y.; Kasai, H. Post-priming actions of ATP on Ca 2+ -dependent exocytosis in pancreatic beta cells. Proc. Natl. Acad. Sci., 1999, 96(2), 760-765.
[http://dx.doi.org/10.1073/pnas.96.2.760] [PMID: 9892707]
[21]
Doyle, M.E.; Egan, J.M. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther., 2007, 113(3), 546-593.
[http://dx.doi.org/10.1016/j.pharmthera.2006.11.007] [PMID: 17306374]
[22]
Azevedo, M.F.; Faucz, F.R.; Bimpaki, E.; Horvath, A.; Levy, I.; de Alexandre, R.B.; Ahmad, F.; Manganiello, V.; Stratakis, C.A. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr. Rev., 2014, 35(2), 195-233.
[http://dx.doi.org/10.1210/er.2013-1053] [PMID: 24311737]
[23]
Furman, B.; Ong, W.K.; Pyne, N.J. Cyclic AMP signaling in pancreatic islets. Adv. Exp. Med. Biol., 2010, 654, 581-304.
[24]
Altarejos, J.Y.; Montminy, M. CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol., 2011, 12(3), 141-151.
[http://dx.doi.org/10.1038/nrm3072] [PMID: 21346730]
[25]
Friebe, A.; Sandner, P.; Schmidtko, A. cGMP: A unique 2nd messenger molecule – recent developments in cGMP research and development. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(2), 287-302.
[http://dx.doi.org/10.1007/s00210-019-01779-z] [PMID: 31853617]
[26]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[27]
Undank, S.; Kaiser, J.; Sikimic, J.; Düfer, M.; Krippeit-Drews, P.; Drews, G. Atrial natriuretic peptide affects stimulus-secretion coupling of pancreatic β-cells. Diabetes, 2017, 66(11), 2840-2848.
[http://dx.doi.org/10.2337/db17-0392] [PMID: 28864549]
[28]
Nyström, T.; Ortsäter, H.; Huang, Z.; Zhang, F.; Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Sjöholm, Å. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radic. Biol. Med., 2012, 53(5), 1017-1023.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.031] [PMID: 22750508]
[29]
Choi, B-M.; Pae, H-O.; Jang, S-I.; Kim, Y-M.; Chung, H-T. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol., 2002, 35(1), 116-126.
[PMID: 16248976]
[30]
Shao, Y.; Huang, M.; Cui, W.; Feng, L.J.; Wu, Y.; Cai, Y.; Li, Z.; Zhu, X.; Liu, P.; Wan, Y.; Ke, H.; Luo, H.B. Discovery of a phosphodiesterase 9A inhibitor as a potential hypoglycemic agent. J. Med. Chem., 2014, 57(24), 10304-10313.
[http://dx.doi.org/10.1021/jm500836h] [PMID: 25432025]
[31]
Pyne, N.J.; Furman, B.L. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia, 2003, 46(9), 1179-1189.
[http://dx.doi.org/10.1007/s00125-003-1176-7] [PMID: 12904862]
[32]
Schett, G.; Sloan, V.S.; Stevens, R.M.; Schafer, P. Apremilast: A novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther. Adv. Musculoskelet. Dis., 2010, 2(5), 271-278.
[http://dx.doi.org/10.1177/1759720X10381432] [PMID: 22870453]
[33]
Banner, K.H.; Press, N.J. Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br. J. Pharmacol., 2009, 157(6), 892-906.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00170.x] [PMID: 19508401]
[34]
Heimann, E.; Jones, H.A.; Resjö, S.; Manganiello, V.C.; Stenson, L.; Degerman, E. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS One, 2010, 5(12), e14191.
[http://dx.doi.org/10.1371/journal.pone.0014191] [PMID: 21152070]
[35]
Waddleton, D.; Wu, W.; Feng, Y.; Thompson, C.; Wu, M.; Zhou, Y.P.; Howard, A.; Thornberry, N.; Li, J.; Mancini, J.A. Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets. Biochem. Pharmacol., 2008, 76(7), 884-893.
[http://dx.doi.org/10.1016/j.bcp.2008.07.025] [PMID: 18706893]
[36]
Ahmad, M.; Abdel-Wahab, Y.H.A.; Tate, R.; Flatt, P.R.; Pyne, N.J.; Furman, B.L. Effect of type-selective inhibitors on cyclic nucleotide phosphodiesterase activity and insulin secretion in the clonal insulin secreting cell line BRIN-BD11. Br. J. Pharmacol., 2000, 129(6), 1228-1234.
[http://dx.doi.org/10.1038/sj.bjp.0703165] [PMID: 10725272]
[37]
Shafiee-Nick, R.; Pyne, N.J.; Furman, B.L. Effects of type‐selective phosphodiesterase inhibitors on glucose‐induced insulin secretion and islet phosphodiesterase activity. Br. J. Pharmacol., 1995, 115(8), 1486-1492.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb16641.x] [PMID: 8564209]
[38]
Andersson, K-E. PDE5 inhibitors – pharmacology and clinical applications 20 years after sildenafil discovery. Br. J. Pharmacol., 2018, 175(13), 2554-2565.
[http://dx.doi.org/10.1111/bph.14205] [PMID: 29667180]
[39]
Zhao, Z.; Low, Y.S.; Armstrong, N.A.; Ryu, J.H.; Sun, S.A.; Arvanites, A.C.; Hollister-Lock, J.; Shah, N.H.; Weir, G.C.; Annes, J.P. Repurposing cAMP-modulating medications to promote β-cell replication. Mol. Endocrinol., 2014, 28(10), 1682-1697.
[http://dx.doi.org/10.1210/me.2014-1120] [PMID: 25083741]
[40]
Gepts, W. Islet changes suggesting a possible immune aetiology of human diabetes mellitus. Acta Endocrinol. Suppl., 1976, 205, 95-106.
[PMID: 793281]
[41]
Bottazzo, G.F.; Dean, B.M.; McNally, J.M.; MacKay, E.H.; Swift, P.G.F.; Gamble, D.R. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N. Engl. J. Med., 1985, 313(6), 353-360.
[http://dx.doi.org/10.1056/NEJM198508083130604] [PMID: 3159965]
[42]
Roep, B.O. The role of T-cells in the pathogenesis of Type 1 diabetes: From cause to cure. Diabetologia, 2003, 46(3), 305-321.
[http://dx.doi.org/10.1007/s00125-003-1089-5] [PMID: 12687328]
[43]
Malik, A.; Morya, R.K.; Bhadada, S.K.; Rana, S. Type 1 diabetes mellitus: Complex interplay of oxidative stress, cytokines, gastrointestinal motility and small intestinal bacterial overgrowth. Eur. J. Clin. Invest., 2018, 48(11), e13021.
[http://dx.doi.org/10.1111/eci.13021] [PMID: 30155878]
[44]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[45]
Wang, K.; Li, F.; Cui, Y.; Cui, C.; Cao, Z.; Xu, K.; Han, S.; Zhu, P.; Sun, Y. The association between depression and type 1 diabetes mellitus: Inflammatory cytokines as ferrymen in between? Mediators. Inflamm., 2019, 2019, 2987901.
[46]
Emanuelli, B.; Glondu, M.; Filloux, C.; Peraldi, P.; Van Obberghen, E. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells. Diabetes, 2004, 53(Suppl. 3), S97-S103.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S97] [PMID: 15561930]
[47]
Cnop, M.; Welsh, N.; Jonas, J.C.; Jörns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes, 2005, 54(Suppl. 2), S97-S107.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S97] [PMID: 16306347]
[48]
Souness, J.E.; Aldous, D.; Sargent, C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology, 2000, 47(2-3), 127-162.
[http://dx.doi.org/10.1016/S0162-3109(00)00185-5] [PMID: 10878287]
[49]
Miller, M.S. Phosphodiesterase inhibition in the treatment of autoimmune and inflammatory diseases: Current status and potential. J. Receptor Ligand Channel Res., 2015, 8, 19-30.
[50]
Boswell-Smith, V.; Spina, D.; Page, C.P. Phosphodiesterase inhibitors. Br. J. Pharmacol., 2006, 147(Suppl. 1), S252-S257.
[PMID: 16402111]
[51]
Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front. Pharmacol., 2018, 9, 1048.
[http://dx.doi.org/10.3389/fphar.2018.01048] [PMID: 30386231]
[52]
Byun, H.R.; Choi, J.A.; Koh, J.Y. The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics, 2014, 6(9), 1748-1757.
[http://dx.doi.org/10.1039/C4MT00143E] [PMID: 25054451]
[53]
Malekifard, F.; Delirezh, N.; Hobbenaghi, R.; Malekinejad, H. Immunotherapeutic effects of pentoxifylline in type 1 diabetic mice and its role in the response of T-helper lymphocytes. Iran. J. Basic Med. Sci., 2015, 18(3), 247-252.
[PMID: 25945237]
[54]
Beshay, E.; Prud’homme, G.J. Inhibitors of phosphodiesterase isoforms III or IV suppress islet-cell nitric oxide production. Lab. Invest., 2001, 81(8), 1109-1117.
[http://dx.doi.org/10.1038/labinvest.3780323] [PMID: 11502862]
[55]
Liang, L.; Beshay, E.; Prud’homme, G.J. The phosphodiesterase inhibitors pentoxifylline and rolipram prevent diabetes in NOD mice. Diabetes, 1998, 47(4), 570-575.
[http://dx.doi.org/10.2337/diabetes.47.4.570] [PMID: 9568689]
[56]
Badger, A.M.; Olivera, D.L.; Esser, K.M. Beneficial effects of the phosphodiesterase inhibitors BRL 61063, pentoxifylline, and rolipram in a murine model of endotoxin shock. Circ. Shock., 1994, 44(4), 188-195.
[57]
Fang, L.; Radovits, T.; Szabó, G.; Mózes, M.M.; Rosivall, L.; Kökény, G. Selective phosphodiesterase-5 (PDE-5) inhibitor vardenafil ameliorates renal damage in type 1 diabetic rats by restoring cyclic 3′,5′ guanosine monophosphate (cGMP) level in podocytes. Nephrol. Dial. Transplant., 2013, 28(7), 1751-1761.
[http://dx.doi.org/10.1093/ndt/gfs391] [PMID: 23203993]
[58]
Goldstein, I.; Young, J.M.; Fischer, J.; Bangerter, K.; Segerson, T.; Taylor, T.; Group, V.D.S. Vardenafil, a new phosphodiesterase type 5 inhibitor, in the treatment of erectile dysfunction in men with diabetes: A multicenter double-blind placebo-controlled fixed-dose study. Diabetes Care, 2003, 26(3), 777-783.
[http://dx.doi.org/10.2337/diacare.26.3.777] [PMID: 12610037]
[59]
Caruso, S.; Rugolo, S.; Agnello, C.; Intelisano, G.; Di Mari, L.; Cianci, A. Sildenafil improves sexual functioning in premenopausal women with type 1 diabetes who are affected by sexual arousal disorder: A double-blind, crossover, placebo-controlled pilot study. Fertil. Steril., 2006, 85(5), 1496-1501.
[http://dx.doi.org/10.1016/j.fertnstert.2005.10.043] [PMID: 16579999]
[60]
Balhara, Y.P.; Sarkar, S.; Gupta, R. Phosphodiesterase-5 inhibitors for erectile dysfunction in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Indian J. Endocrinol. Metab., 2015, 19(4), 451-461.
[http://dx.doi.org/10.4103/2230-8210.159023] [PMID: 26180759]
[61]
Behrend, L.; Vibe-Petersen, J.; Perrild, H. Sildenafil in the treatment of erectile dysfunction in men with diabetes: Demand, efficacy and patient satisfaction. Int. J. Impot. Res., 2005, 17(3), 264-269.
[http://dx.doi.org/10.1038/sj.ijir.3901302] [PMID: 15674401]
[62]
Rendell, M.S.; Rajfer, J.; Wicker, P.A.; Smith, M.D.; Group, S.D.S.; Group, S.D.S. Sildenafil for treatment of erectile dysfunction in men with diabetes: A randomized controlled trial. JAMA, 1999, 281(5), 421-426.
[http://dx.doi.org/10.1001/jama.281.5.421] [PMID: 9952201]
[63]
Wondmkun, Y.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes., 2020, 13, 3611-3616.
[http://dx.doi.org/10.2147/DMSO.S275898] [PMID: 33116712]
[64]
Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest., 2000, 106(4), 453-458.
[http://dx.doi.org/10.1172/JCI10762] [PMID: 10953019]
[65]
Cusi, K.; Maezono, K.; Osman, A.; Pendergrass, M.; Patti, M.E.; Pratipanawatr, T.; DeFronzo, R.A.; Kahn, C.R.; Mandarino, L.J. Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. J. Clin. Invest., 2000, 105(3), 311-320.
[http://dx.doi.org/10.1172/JCI7535] [PMID: 10675357]
[66]
Bouzakri, K.; Koistinen, H.; Zierath, J. Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes. Curr. Diabetes Rev., 2005, 1(2), 167-174.
[http://dx.doi.org/10.2174/1573399054022785] [PMID: 18220592]
[67]
Karlsson, H.K.R.; Zierath, J.R. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem. Biophys., 2007, 48(2-3), 103-113.
[http://dx.doi.org/10.1007/s12013-007-0030-9] [PMID: 17709880]
[68]
Saisho, Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J. Diabetes, 2015, 6(1), 109-124.
[http://dx.doi.org/10.4239/wjd.v6.i1.109] [PMID: 25685282]
[69]
Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(3), 45-63.
[PMID: 31333808]
[70]
Eguchi, N.; Vaziri, N.D.; Dafoe, D.C.; Ichii, H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci., 2021, 22(4), 1509.
[http://dx.doi.org/10.3390/ijms22041509] [PMID: 33546200]
[71]
Wang, J.; Wang, H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell. Longev., 2017, 2017, 1930261.
[http://dx.doi.org/10.1155/2017/1930261]
[72]
Härndahl, L.; Jing, X.J.; Ivarsson, R.; Degerman, E.; Ahrén, B.; Manganiello, V.C.; Renström, E.; Holst, L.S. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic β-cell exocytosis and release of insulin. J. Biol. Chem., 2002, 277(40), 37446-37455.
[http://dx.doi.org/10.1074/jbc.M205401200] [PMID: 12169692]
[73]
Muhammed, S.J.; Lundquist, I.; Salehi, A. Pancreatic β‐cell dysfunction, expression of INOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes. Metab., 2012, 14(11), 1010-1019.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01632.x] [PMID: 22687049]
[74]
Parker, J.C.; Vanvolkenburg, M.A.; Nardone, N.A.; Hargrove, D.M.; Andrews, K.M. Modulation of insulin secretion and glycemia by selective inhibition of cyclic AMP phosphodiesterase III. Biochem. Biophys. Res. Commun., 1997, 236(3), 665-669.
[http://dx.doi.org/10.1006/bbrc.1997.7034] [PMID: 9245710]
[75]
El-Metwally, M.; Shafiee-Nick, R.; Pyne, N.J.; Furman, B.L. The effect of selective phosphodiesterase inhibitors on plasma insulin concentrations and insulin secretion in vitro in the rat. Eur. J. Pharmacol., 1997, 324(2-3), 227-232.
[http://dx.doi.org/10.1016/S0014-2999(97)00076-9] [PMID: 9145777]
[76]
Snyder, P.B. The adipocyte cGMP-inhibited cyclic nucleotide phosphodiesterase (PDE3B) as a target for lipolytic and thermogenic agents for the treatment of obesity. Emerg. Therap. Targets, 1999, 3(4), 587-599.
[http://dx.doi.org/10.1517/14728222.3.4.587]
[77]
Park, S.Y.; Shin, H.K.; Lee, J.H.; Kim, C.D.; Lee, W.S.; Rhim, B.Y.; Hong, K.W. Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor γ transcription. J. Pharmacol. Exp. Ther., 2009, 329(2), 571-579.
[http://dx.doi.org/10.1124/jpet.108.146456] [PMID: 19221061]
[78]
Chang, S.A.; Cha, B.Y.; Yoo, S.J.; Ahn, Y.B.; Song, K.H.; Han, J.H.; Lee, J.M.; Son, H.S.; Yoon, K.H.; Kang, M.I.; Lee, K.W.; Son, H.Y.; Kang, S.K. The effect of cilostazol on glucose tolerance and insulin resistance in a rat model of non-insulin dependent diabetes mellitus. Korean J. Intern. Med., 2001, 16(2), 87-92.
[http://dx.doi.org/10.3904/kjim.2001.16.2.87] [PMID: 11590907]
[79]
Wada, T.; Onogi, Y.; Kimura, Y.; Nakano, T.; Fusanobori, H.; Ishii, Y.; Sasahara, M.; Tsuneki, H.; Sasaoka, T. Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions. Eur. J. Pharmacol., 2013, 707(1-3), 120-129.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.016] [PMID: 23528355]
[80]
Liu, J.S.; Chuang, T.J.; Chen, J.H.; Lee, C.H.; Hsieh, C.H.; Lin, T.K.; Hsiao, F.C.; Hung, Y.J. Cilostazol attenuates the severity of peripheral arterial occlusive disease in patients with type 2 diabetes: The role of plasma soluble receptor for advanced glycation end-products. Endocrine, 2015, 49(3), 703-710.
[http://dx.doi.org/10.1007/s12020-015-0545-6] [PMID: 25666934]
[81]
Lee, C.Y.; Wu, T.C.; Lin, S.J. Long-term cilostazol treatment and predictive factors on outcomes of endovascular intervention in patients with diabetes mellitus and critical limb ischemia. Diabetes Ther., 2020, 11(8), 1757-1773.
[http://dx.doi.org/10.1007/s13300-020-00860-8] [PMID: 32564334]
[82]
Plock, N.; Vollert, S.; Mayer, M.; Hanauer, G.; Lahu, G. Pharmacokinetic/pharmacodynamic modeling of the PDE4 inhibitor TAK‐648 in Type 2 diabetes: Early translational approaches for human dose prediction. Clin. Transl. Sci., 2017, 10(3), 185-193.
[http://dx.doi.org/10.1111/cts.12436] [PMID: 28088839]
[83]
Wouters, E.F.M.; Bredenbröker, D.; Teichmann, P.; Brose, M.; Rabe, K.F.; Fabbri, L.M.; Göke, B. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J. Clin. Endocrinol. Metab., 2012, 97(9), E1720-E1725.
[http://dx.doi.org/10.1210/jc.2011-2886] [PMID: 22723325]
[84]
Marampon, F.; Antinozzi, C.; Corinaldesi, C.; Vannelli, G.B.; Sarchielli, E.; Migliaccio, S.; Di Luigi, L.; Lenzi, A.; Crescioli, C. The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism. Endocrine, 2018, 59(3), 602-613.
[http://dx.doi.org/10.1007/s12020-017-1378-2] [PMID: 28786077]
[85]
Aversa, A.; Fittipaldi, S.; Francomano, D.; Bimonte, V.M.; Greco, E.A.; Crescioli, C.; Di Luigi, L.; Lenzi, A.; Migliaccio, S. Tadalafil improves lean mass and endothelial function in nonobese men with mild ED/LUTS: In vivo and in vitro characterization. Endocrine, 2017, 56(3), 639-648.
[http://dx.doi.org/10.1007/s12020-016-1208-y] [PMID: 28133708]
[86]
Yu, H.M.; Chung, H.K.; Kim, K.S.; Lee, J.M.; Hong, J.H.; Park, K.S. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes. Biochem. Biophys. Res. Commun., 2017, 493(1), 631-636.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.140] [PMID: 28888986]
[87]
Aversa, A. Systemic and metabolic effects of PDE5-inhibitor drugs. World J. Diabetes, 2010, 1(1), 3-7.
[http://dx.doi.org/10.4239/wjd.v1.i1.3] [PMID: 21537421]
[88]
Sabatini, S.; Sgrò, P.; Duranti, G.; Ceci, R.; Di Luigi, L. Tadalafil alters energy metabolism in C2C12 skeletal muscle cells. Acta Biochim. Pol., 2011, 58(2), 237-241.
[http://dx.doi.org/10.18388/abp.2011_2271] [PMID: 21681286]
[89]
Crescioli, C.; Sturli, N.; Sottili, M.; Bonini, P.; Lenzi, A.; Di Luigi, L. Insulin-like effect of the phosphodiesterase type 5 inhibitor tadalafil onto male human skeletal muscle cells. J. Endocrinol. Invest., 2013, 36(11), 1020-1026.
[PMID: 23873283]
[90]
Bergandi, L.; Silvagno, F.; Russo, I.; Riganti, C.; Anfossi, G.; Aldieri, E.; Ghigo, D.; Trovati, M.; Bosia, A. Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2003, 23(12), 2215-2221.
[http://dx.doi.org/10.1161/01.ATV.0000107028.20478.8e] [PMID: 14615391]
[91]
Mandosi, E.; Giannetta, E.; Filardi, T.; Lococo, M.; Bertolini, C.; Fallarino, M.; Gianfrilli, D.; Venneri, M.A.; Lenti, L.; Lenzi, A.; Morano, S. Endothelial dysfunction markers as a therapeutic target for Sildenafil treatment and effects on metabolic control in type 2 diabetes. Expert Opin. Ther. Targets, 2015, 19(12), 1617-1622.
[http://dx.doi.org/10.1517/14728222.2015.1066337] [PMID: 26178526]
[92]
Ayala, J.E.; Bracy, D.P.; Julien, B.M.; Rottman, J.N.; Fueger, P.T.; Wasserman, D.H. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes, 2007, 56(4), 1025-1033.
[http://dx.doi.org/10.2337/db06-0883] [PMID: 17229936]
[93]
Sandner, P. From molecules to patients: Exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol. Chem., 2018, 399(7), 679-690.
[http://dx.doi.org/10.1515/hsz-2018-0155] [PMID: 29604206]
[94]
DeNinno, M.P.; Andrews, M.; Bell, A.S.; Chen, Y.; Eller-Zarbo, C.; Eshelby, N.; Etienne, J.B.; Moore, D.E.; Palmer, M.J.; Visser, M.S.; Yu, L.J.; Zavadoski, W.J.; Michael Gibbs, E. The discovery of potent, selective, and orally bioavailable PDE9 inhibitors as potential hypoglycemic agents. Bioorg. Med. Chem. Lett., 2009, 19(9), 2537-2541.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.024] [PMID: 19339180]
[95]
Kleiman, R.J.; Chapin, D.S.; Christoffersen, C.; Freeman, J.; Fonseca, K.R.; Geoghegan, K.F.; Grimwood, S.; Guanowsky, V.; Hajós, M.; Harms, J.F.; Helal, C.J.; Hoffmann, W.E.; Kocan, G.P.; Majchrzak, M.J.; McGinnis, D.; McLean, S.; Menniti, F.S.; Nelson, F.; Roof, R.; Schmidt, A.W.; Seymour, P.A.; Stephenson, D.T.; Tingley, F.D.; Vanase-Frawley, M.; Verhoest, P.R.; Schmidt, C.J. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. J. Pharmacol. Exp. Ther., 2012, 341(2), 396-409.
[http://dx.doi.org/10.1124/jpet.111.191353] [PMID: 22328573]
[96]
Kroker, K.S.; Rast, G.; Giovannini, R.; Marti, A.; Dorner-Ciossek, C.; Rosenbrock, H. Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology, 2012, 62(5-6), 1964-1974.
[http://dx.doi.org/10.1016/j.neuropharm.2011.12.021] [PMID: 22245562]
[97]
Vardigan, J.D.; Converso, A.; Hutson, P.H.; Uslaner, J.M. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task. J. Neurogenet., 2011, 25(4), 120-126.
[http://dx.doi.org/10.3109/01677063.2011.630494] [PMID: 22070409]
[98]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[99]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[100]
Abdelsalam, N.R.; Hasan, M.E.; Javed, T.; Rabie, S.M.A.; El-Wakeel, H.E.D.M.F.; Zaitoun, A.F.; Abdelsalam, A.Z.; Aly, H.M.; Ghareeb, R.Y.; Hemeida, A.A.; Shah, A.N. Endorsement and phylogenetic analysis of some Fabaceae plants based on DNA barcoding. Mol. Biol. Rep., 2022, 49(6), 5645-5657.
[http://dx.doi.org/10.1007/s11033-022-07574-z] [PMID: 35655052]
[101]
Permender, R.; Hema, C.; Sushila, R.; Dharmender, R.; Vikash, K. Antidiabetic potential of Fabaceae family: An overview. Curr. Nutr. Food Sci., 2010, 6(3), 161-175.
[http://dx.doi.org/10.2174/157340110792389163]
[102]
Adnan, M.; Jeon, B.B.; Chowdhury, M.H.U.; Oh, K.K.; Das, T.; Chy, M.N.U.; Cho, D.H. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L. Wood against type-2 diabetes mellitus. Life, 2022, 12(2), 277.
[http://dx.doi.org/10.3390/life12020277] [PMID: 35207564]
[103]
Rangra, N.; Samanta, S.; Pradhan, K. A comprehensive review on phytopharmacological investigations of Acacia auriculiformis A.Cunn. ex Benth. Asian Pac. J. Trop. Biomed., 2019, 9(1), 1.
[http://dx.doi.org/10.4103/2221-1691.250263]
[104]
Umaru, I.J.; Samling, B.; Umaru, H.A. Phytochemical screening of Etlingera elatior (torch ginger) cultivated on different dosage of biochar. Asian J. Biochem. Genet., 2018, 1(4), 1-6.
[105]
Vinodhini, S. Review on ethnomedical uses, pharmacological activity and phytochemical constituents of Samanea saman (jacq.) Merr. rain tree. Pharmacogn. Mag., 2018, 10(2), 202-209.
[106]
Kazeem, M.I.; Azeez, G.A.; Ashafa, A.O.T. Effect of senna alata (L) roxb (fabaceae) leaf extracts on alpha-amylase, alpha-glucosidase and postprandial hyperglycemia in rats. Trop. J. Pharm. Res., 2015, 14(10), 1843-1848.
[http://dx.doi.org/10.4314/tjpr.v14i10.15]
[107]
Mosaddik, A.; Nahar, L.; Nasrin, F.; Zahan, R.; Haque, A.; Haque, E. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity. Pharmacognosy Res., 2014, 6(2), 180-187.
[http://dx.doi.org/10.4103/0974-8490.129043] [PMID: 24761124]
[108]
Badami, S.; Moorkoth, S.; Rai, S.R.; Kannan, E.; Bhojraj, S. Antioxidant activity of caesalpinia sappan heartwood. Biol. Pharm. Bull., 2003, 26(11), 1534-1537.
[http://dx.doi.org/10.1248/bpb.26.1534] [PMID: 14600396]
[109]
Singh, R.; Singh, S.; Kumar, S.; Arora, S. Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem. Toxicol., 2007, 45(7), 1216-1223.
[http://dx.doi.org/10.1016/j.fct.2007.01.002] [PMID: 17336438]
[110]
Chowtivannakul, P.; Srichaikul, B.; Talubmook, C. Antidiabetic and antioxidant activities of seed extract from Leucaena leucocephala (Lam.) de Wit. Agric. Nat. Resour., 2016, 50(5), 357-361.
[http://dx.doi.org/10.1016/j.anres.2016.06.007]
[111]
Escalona-Arranz, J.C.; Perez-Rosés, R.; Rodríguez-Amado, J.; Morris-Quevedo, H.J.; Mwasi, L.B.; Cabrera-Sotomayor, O.; Machado-García, R.; Fong-Lórez, O.; Alfonso-Castillo, A.; Puente-Zapata, E. Antioxidant and toxicological evaluation of a Tamarindus indica L. leaf fluid extract. Nat. Prod. Res., 2016, 30(4), 456-459.
[http://dx.doi.org/10.1080/14786419.2015.1019350] [PMID: 25752793]
[112]
Milani, E.; Nikfar, S.; Khorasani, R.; Zamani, M.J.; Abdollahi, M. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2005, 140(2), 251-255.
[http://dx.doi.org/10.1016/j.cca.2005.02.010] [PMID: 15907769]
[113]
Barbagallo, F.; Campolo, F.; Franceschini, E.; Crecca, E.; Pofi, R.; Isidori, A.M.; Venneri, M.A. PDE5 inhibitors in type 2 diabetes cardiovascular complications. Endocrines, 2020, 1(2), 90-101.
[http://dx.doi.org/10.3390/endocrines1020009]
[114]
Li, X.; Zhao, Q.; Wang, J.; Wang, J.; Dai, H.; Li, H.; Wang, B. Efficacy and safety of PDE5 inhibitors in the treatment of diabetes mellitus erectile dysfunction. Medicine, 2018, 97(40), e12559.
[http://dx.doi.org/10.1097/MD.0000000000012559] [PMID: 30290616]
[115]
Poolsup, N.; Suksomboon, N.; Aung, N. Effect of phosphodiesterase-5 inhibitors on glycemic control in person with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Clin. Transl. Endocrinol., 2016, 6, 50-55.
[http://dx.doi.org/10.1016/j.jcte.2016.11.003] [PMID: 29067241]
[116]
Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology, 2020, 9(9), 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[117]
Anand Ganapathy, A.; Hari Priya, V.M.; Kumaran, A. Medicinal plants as a potential source of Phosphodiesterase-5 inhibitors: A review. J. Ethnopharmacol., 2021, 267, 113536.
[http://dx.doi.org/10.1016/j.jep.2020.113536] [PMID: 33137431]
[118]
Reneerkens, O.A.H.; Rutten, K.; Steinbusch, H.W.M.; Blokland, A.; Prickaerts, J. Selective phosphodiesterase inhibitors: A promising target for cognition enhancement. Psychopharmacology, 2009, 202(1-3), 419-443.
[http://dx.doi.org/10.1007/s00213-008-1273-x] [PMID: 18709359]
[119]
Ribaudo, G.; Memo, M.; Gianoncelli, A. A perspective on natural and nature-inspired small molecules targeting phosphodiesterase 9 (PDE9): Chances and challenges against neurodegeneration. Pharmaceuticals, 2021, 14(1), 58.
[http://dx.doi.org/10.3390/ph14010058] [PMID: 33451065]
[120]
Abusnina, A.; Lugnier, C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell. Signal., 2017, 39, 55-65.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.018] [PMID: 28754627]
[121]
Chit, K.; Myint, W.; Thein, K.; Maw, W.W.; Myint, M.M.; Than, A.; Khin, M. Cyclic AMP phosphodiesterase inhibitory activity and chemical screening of four medicinal plants. Pharm. Biol., 2001, 39(3), 181-183.
[http://dx.doi.org/10.1076/phbi.39.3.181.5932]
[122]
Fozing, C.; Ali, Z.; Ngadjui, B.; Choudhary, M.; Kapche, G.; Abegaz, B.; Khan, I. Phosphodiesterase I-inhibiting Diels-Alder adducts from the leaves of Morus mesozygia. Planta Med., 2012, 78(2), 154-159.
[http://dx.doi.org/10.1055/s-0031-1280338] [PMID: 22083899]
[123]
Chen, S.K.; Zhao, P.; Shao, Y.X.; Li, Z.; Zhang, C.; Liu, P.; He, X.; Luo, H.B.; Hu, X. Moracin M from Morus alba L. is a natural phosphodiesterase-4 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(9), 3261-3264.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.026] [PMID: 22483586]
[124]
Kruangtip, O.; Chootip, K.; Temkitthawon, P.; Changwichit, K.; Chuprajob, T.; Changtam, C.; Suksamrarn, A.; Khorana, N.; Scholfield, C.N.; Ingkaninan, K. Curcumin analogues inhibit phosphodiesterase-5 and dilate rat pulmonary arteries. J. Pharm. Pharmacol., 2014, 67(1), 87-95.
[http://dx.doi.org/10.1111/jphp.12302] [PMID: 25176340]
[125]
Oboh, G.; Ademiluyi, A.O.; Oyeleye, S.I.; Olasehinde, T.A.; Boligon, A.A. Modulation of some markers of erectile dysfunction and malonaldehyde levels in isolated rat penile tissue with unripe and ripe plantain peels: Identification of the constituents of the plants using HPLC. Pharm. Biol., 2017, 55(1), 1920-1926.
[http://dx.doi.org/10.1080/13880209.2017.1340966] [PMID: 28651482]
[126]
Oboh, G.; Adebayo, A.A.; Ademosun, A.O. Effects of water extractable phytochemicals of mahogany (Swietenia macrophylla) and axlewood (Anogeissus leiocarpus) stem bark on some enzymes implicated in erectile dysfunction and type-2 diabetes. J. Food Biochem., 2017, 41(6), e12430.
[http://dx.doi.org/10.1111/jfbc.12430]
[127]
Nikaido, T.; Ohmoto, T.; Noguchi, H.; Kinoshita, T.; Saitoh, H.; Sankawa, U. Inhibitors of cyclic AMP phosphodiesterase in medicinal plants. Planta Med., 1981, 43(9), 18-23.
[http://dx.doi.org/10.1055/s-2007-971466] [PMID: 6285403]
[128]
Shi, S.Y.; Peng, M.J.; Zhang, Y.P.; Peng, S. Combination of preparative HPLC and HSCCC methods to separate phosphodiesterase inhibitors from Eucommia ulmoides bark guided by ultrafiltration-based ligand screening. Anal. Bioanal. Chem., 2013, 405(12), 4213-4223.
[http://dx.doi.org/10.1007/s00216-013-6806-4] [PMID: 23404133]
[129]
Coon, T.A.; McKelvey, A.C.; Weathington, N.M.; Birru, R.L.; Lear, T.; Leikauf, G.D.; Chen, B.B. Novel PDE4 inhibitors derived from Chinese medicine forsythia. PLoS One, 2014, 9(12), e115937.
[http://dx.doi.org/10.1371/journal.pone.0115937] [PMID: 25549252]
[130]
Shah, Z.A.; Abu-Izneid, T.; Rauf, A.; Rashid, U.; Nizam, M.; Muhammad, N.; Rengasamy, K.R.R. Phosphodiesterase 1 inhibition and molecular docking study of phytochemicals isolated from stem heartwood of Heterophragma adenophyllum Seem. S. Afr. J. Bot., 2020, 135, 274-279.
[http://dx.doi.org/10.1016/j.sajb.2020.08.013]
[131]
Mostafa, M.; Nahar, N.; Mosihuzzaman, M.; Sokeng, S.D.; Fatima, N.; Atta-ur-Rahman; Choudhary, M.I. Phosphodiesterase-I inhibitor quinovic acid glycosides fromBridelia ndellensis. Nat. Prod. Res., 2006, 20(7), 686-692.
[http://dx.doi.org/10.1080/14786410600661658] [PMID: 16901813]
[132]
Povolo, C.; Foschini, A.; Ribaudo, G. Optimization of the extraction of bioactive molecules from Lycium barbarum fruits and evaluation of the antioxidant activity: A combined study. Nat. Prod. Res., 2019, 33(18), 2694-2698.
[http://dx.doi.org/10.1080/14786419.2018.1460835] [PMID: 29667524]
[133]
Omodanisi, E.; Aboua, Y.; Oguntibeju, O. Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats. Molecules, 2017, 22(4), 439.
[http://dx.doi.org/10.3390/molecules22040439] [PMID: 28333074]
[134]
Khairullah, A.R.; Solikhah, T.I.; Ansori, A.N.M.; Fadholly, A.; Ram, S.C.; Ansharieta, R.; Widodo, A.; Riwu, K.H.P.; Putri, N.; Proboningrat, A. A review of an important medicinal plant: Alpinia galanga (L.) willd. Sys Rev Pharm., 2020, 11(10), 387-395.
[135]
Wang, Y.; Dan, Y.; Yang, D.; Hu, Y.; Zhang, L.; Zhang, C.; Zhu, H.; Cui, Z.; Li, M.; Liu, Y. The genus Anemarrhena Bunge: A review on ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol., 2014, 153(1), 42-60.
[http://dx.doi.org/10.1016/j.jep.2014.02.013] [PMID: 24556224]
[136]
Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G. Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen: An overview of pharmacological studies. Phytomedicine, 2016, 23(12), 1409-1421.
[http://dx.doi.org/10.1016/j.phymed.2016.07.011] [PMID: 27765361]
[137]
He, X.; Wang, J.; Li, M.; Hao, D.; Yang, Y.; Zhang, C.; He, R.; Tao, R. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 2014, 151(1), 78-92.
[http://dx.doi.org/10.1016/j.jep.2013.11.023] [PMID: 24296089]
[138]
Fakhrudin, N.; Nurrochmad, A.; Sudarmanto, A.; Ikawati, Z. Caesalpinia sappan L. wood is a potential source of natural phosphodiesterase-1 inhibitors. Pharmacogn. Mag., 2020, 12(6)
[139]
Kaur, H.; Amini, M.H.; Prabhakar, P.K.; Singh, A.; Suttee, A. Phytochemical screening and antimicrobial activity of Caesalpinia sappan L. leaves. Int. J. Pharmacogn. Phytochem., 2016, 8(6), 1040-1045.
[140]
Tirwomwe, M.; Echoru, I.; Maseruka, R.; Kimanje, K.R.; Byarugaba, W. Hypoglycemic and toxic effect of morus mesozygia leaf extract on the liver and kidneys of alloxan-induced hyperglycemic wistar rats. Evid. Based Complement. Alternat. Med., 2019, 2019, 6712178.
[141]
Sowunmi, A.; Aderibigbe, A.; Olusegun, A. Evaluation of antidepressant-like effect of morus mesozygia extract in mice: The monoaminergic involvement. IJRSI, 2020, 7(2), 1-6.
[142]
Sokeng, S.D.; Rokeya, B.; Hannan, J.M.A.; Ali, L.; Kamtchouing, P. The antihyperglycemic effect of Bridelia ndellensis ethanol extract and its fractions is mediated by an insulinotropic action. J. Diabetes Mellit., 2013, 3, 114-115.
[143]
Devi, B.; Sharma, N.; Kumar, D.; Jeet, K. Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci., 2013, 5(2), 14-18.
[144]
Kumar, S.; Yadav, J. Ethnobotanical and pharmacological properties of Aloe vera: A review. J. Med. Plants Res., 2014, 8(48), 1387-1398.
[145]
Zhong, J.; Huang, Y.; Ding, W.; Wu, X.; Wan, J.; Luo, H. Chemical constituents of Aloe barbadensis Miller and their inhibitory effects on phosphodiesterase-4D. Fitoterapia, 2013, 91, 159-165.
[http://dx.doi.org/10.1016/j.fitote.2013.08.027] [PMID: 24028970]
[146]
Zhang, Y.; Feng, F.; Chen, T.; Li, Z.; Shen, Q.W. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. J. Ethnopharmacol., 2016, 192, 256-263.
[http://dx.doi.org/10.1016/j.jep.2016.07.002] [PMID: 27377336]
[147]
Kumar, N.; Sakhya, S. Ethnopharmacological properties of curcuma longa: A review. IJPSR, 2013, 4(1), 103-112.
[148]
Temkitthawon, P.; Hinds, T.R.; Beavo, J.A.; Viyoch, J.; Suwanborirux, K.; Pongamornkul, W.; Sawasdee, P.; Ingkaninan, K. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors. J. Ethnopharmacol., 2011, 137(3), 1437-1441.
[http://dx.doi.org/10.1016/j.jep.2011.08.025] [PMID: 21884777]
[149]
Sharma, A.; Shetty, M.; Parida, A.; Adiga, S.; Kamath, S.; Sowjanya, Effect of ethanolic extract of Acacia auriculiformis leaves on learning and memory in rats. Pharmacognosy Res., 2014, 6(3), 246-250.
[http://dx.doi.org/10.4103/0974-8490.132605] [PMID: 25002806]
[150]
Sinou, C.; Forest, F.; Lewis, G.P.; Bruneau, A. The genus Bauhinia s.l. (Leguminosae): A phylogeny based on the plastid trn L– trn F region. Botany, 2009, 87(10), 947-960.
[http://dx.doi.org/10.1139/B09-065]
[151]
Siddiqua, A.; Zahra, M.; Begum, K.; Jamil, M. The traditional uses, phytochemistry and pharmacological properties of Cassia fistula. JPP, 2018, 2(1), 15-23.
[152]
Oboh, G.; Adebayo, A.A.; Ademosun, A.O.; Boligon, A.A. In vitro inhibition of phosphodiesterase-5 and arginase activities from rat penile tissue by two Nigerian herbs (Hunteria umbellata and Anogeissus leiocarpus). J. Basic Clin. Physiol. Pharmacol., 2017, 28(4), 393-401.
[http://dx.doi.org/10.1515/jbcpp-2016-0143] [PMID: 28306529]
[153]
Oboh, G.; Adebayo, A.A.; Ademosun, A.O. Erection-stimulating, anti-diabetic and antioxidant properties of Hunteria umbellata and Cylicodiscus gabunensis water extractable phytochemicals. J. Complement. Integr. Med., 2018, 15(1), 0164.
[http://dx.doi.org/10.1515/jcim-2016-0164] [PMID: 28749782]
[154]
Umaru, I.J.; Samling, B.; Umaru, H.A. Phytochemical screening of Leucaena leucocephala leaf essential oil and its antibacterial potentials. MOJ Drug Design Develop. Thera., 2018, 2(6), 224-228.
[http://dx.doi.org/10.15406/mojddt.2018.02.00066]
[155]
Soon, Y.; Tan, B. Evaluation of the hypoglycemic and anti-oxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singap. Med. J., 2002, 43(2), 077-085.
[156]
Zhang, J.; Xin, H.; Xu, Y.; Shen, Y.; He, Y.Q.; Hsien-Yeh; Lin, B.; Song, H.; Juan-Liu; Yang, H.; Qin, L.; Zhang, Q.; Du, J. Morinda officinalis How. - A comprehensive review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2018, 213, 230-255.
[http://dx.doi.org/10.1016/j.jep.2017.10.028] [PMID: 29126988]
[157]
Lee, K-H.; Kim, B-S.; Rhee, K-H. Screening of herbal medicines for phosphodiesterase 5 inhibitor. Korean J. Pharmacogn., 2012, 43(2), 184-191.
[158]
Morvin Yabesh, J.E.; Prabhu, S.; Vijayakumar, S. An ethnobotanical study of medicinal plants used by traditional healers in silent valley of Kerala, India. J. Ethnopharmacol., 2014, 154(3), 774-789.
[http://dx.doi.org/10.1016/j.jep.2014.05.004] [PMID: 24832113]
[159]
Prabsattroo, T.; Wattanathorn, J.; Iamsaard, S.; Somsapt, P.; Sritragool, O.; Thukhummee, W.; Muchimapura, S. Moringa oleifera extract enhances sexual performance in stressed rats. J. Zhejiang Univ. Sci. B, 2015, 16(3), 179-190.
[http://dx.doi.org/10.1631/jzus.B1400197] [PMID: 25743119]
[160]
Abe, R.; Ohtani, K. An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines. J. Ethnopharmacol., 2013, 145(2), 554-565.
[http://dx.doi.org/10.1016/j.jep.2012.11.029] [PMID: 23183086]
[161]
Oladeji, O.S.; Adelowo, F.E.; Oluyori, A.P.; Bankole, D.T. Ethnobotanical description and biological activities of Senna alata. Evid. Based Complement. Alternat. Med., 2020, 2020, 2580259.
[162]
Moghadamtousi, S.; Goh, B.; Chan, C.; Shabab, T.; Kadir, H. Biological activities and phytochemicals of Swietenia macrophylla King. Molecules, 2013, 18(9), 10465-10483.
[http://dx.doi.org/10.3390/molecules180910465] [PMID: 23999722]
[163]
Meher, B.; Dash, D.K.; Roy, A. A review on: Phytochemistry, pharmacology and traditional uses of Tamarindus indica L. WJPPS, 2014, 3(10), 229-240.
[164]
Ahmad, W.; Jantan, I.; Bukhari, S.N.A. Tinospora crispa (L.) Hook. f. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects. Front. Pharmacol., 2016, 7, 59.
[http://dx.doi.org/10.3389/fphar.2016.00059] [PMID: 27047378]
[165]
Brantner, A.; Alajlani, M.; Autz, C.; Benetik, S.; Plhak, E.; Prinz, S.; Pitakbut, T.; Dej-adisai, S. Antidiabetic activity of selected indigenous Thai medicinal plants. Planta Med., 2016, 82(S 01), P1045.
[http://dx.doi.org/10.1055/s-0036-1597023]
[166]
Mohana, D.; Raveesha, K. Anti-bacterial activity of Caesalpinia coriaria (Jacq.) Willd. against plant pathogenic Xanthomonas pathovars: An eco-friendly approach. JAST, 2006, 2(2), 317-327.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy