Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

A Review on Synthetic Thiazole Derivatives as an Antimalarial Agent

Author(s): Tutumoni Kalita, Ankita Choudhury, Anshul Shakya, Surajit Kumar Ghosh, Udaya Pratap Singh and Hans Raj Bhat*

Volume 21, Issue 5, 2024

Published on: 24 January, 2024

Article ID: e240124226141 Pages: 33

DOI: 10.2174/0115701638276379231223101625

Price: $65

Abstract

Background: Thiazole is a widely studied core structure in heterocyclic chemistry and has proven to be a valuable scaffold in medicinal chemistry. The presence of thiazole in both naturally occurring and synthetic pharmacologically active compounds demonstrates the adaptability of these derivatives.

Methods: The current study attempted to review and compile the contributions of numerous researchers over the last 20 years to the medicinal importance of these scaffolds, with a primary focus on antimalarial activity. The review is based on an extensive search of PubMed, Google Scholar, Elsevier, and other renowned journal sites for a thorough literature survey involving various research and review articles.

Results: A comprehensive review of the antimalarial activity of the thiazole scaffold revealed potential therapeutic targets in Plasmodium species. Furthermore, the correlation of structure-activity-relationship (SAR) studies from various articles suggests that the thiazole ring has therapeutic potential.

Conclusion: This article intends to point researchers in the right direction for developing potential thiazole-based compounds as antimalarial agents in the future.

Graphical Abstract

[1]
World Malaria Day. Harness innovation to reduce the malaria disease burden and save lives. 2022. Available from: https://www.who.int/campaigns/world-malaria-day/2022
[2]
World malaria report Tracking progress against malaria. 2021. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
[3]
Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: The past and the present. Microorganisms 2019; 7(6): 179.
[http://dx.doi.org/10.3390/microorganisms7060179] [PMID: 31234443]
[4]
Jagannathan P, Kakuru A. Malaria in 2022: Increasing challenges, cautious optimism. Nat Commun 2022; 13(1): 2678.
[http://dx.doi.org/10.1038/s41467-022-30133-w] [PMID: 35562368]
[5]
WHO recommends groundbreaking malaria vaccine for children at risk. Available from: https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk
[6]
Rogerson SJ, Beeson JG, Laman M, et al. Identifying and combating the impacts of COVID-19 on malaria. BMC Med 2020; 18(1): 239.
[http://dx.doi.org/10.1186/s12916-020-01710-x] [PMID: 32727467]
[7]
Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem 2015; 97(1): 911-27.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[8]
Zhang ZH, Chen Y, Yan XJ, et al. Synthesis and evaluation of novel urea and amide derivatives of 2-amino-4-phenylthiazole as potential antibacterial agents. Med Chem Res 2017; 26(9): 2080-7.
[http://dx.doi.org/10.1007/s00044-017-1910-1]
[9]
Gahtori P, Ghosh SK, Singh B, Singh UP, Bhat HR, Uppal A. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines. Saudi Pharm J 2012; 20(1): 35-43.
[http://dx.doi.org/10.1016/j.jsps.2011.05.003] [PMID: 23960775]
[10]
Bawa S, Ali R, Kumar S, Afzal O. In-vitro antimicrobial screening and molecular docking studies of synthesized 2-chloro-N-(4-phenylthiazol-2-yl)acetamide derivatives. Drug Discov Ther 2015; 6(2): 79.
[http://dx.doi.org/10.4103/2394-6555.162452]
[11]
Pattan SR, Reddy VVK, Manvi FV, Desai BG, Bhat AR. Synthesis of N-3(4-(4-chlorophenyl thiazole- 2-yl)-(2-(amino)methyl)-quinazoline-4(3H)-one and their derivatives for antitubercular activity. Indian J Chem 2006; 45(July): 1778-81.
[http://dx.doi.org/10.1002/chin.200647175]
[12]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15(3): 4142-57.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[13]
Yu CC, Liu SP, Hsu JL, Hsu JTA, Kudryavtsev KV, Guh JH. KUD773, a phenylthiazole derivative, displays anticancer activity in human hormone-refractory prostate cancers through inhibition of tubulin polymerization and anti-Aurora A activity. J Biomed Sci 2015; 22(1): 2.
[http://dx.doi.org/10.1186/s12929-014-0107-x] [PMID: 25563361]
[14]
Gouda MA, Berghot MA, Baz EA, Hamama WS. Synthesis, antitumor and antioxidant evaluation of some new thiazole and thiophene derivatives incorporated coumarin moiety. Med Chem Res 2012; 21(7): 1062-70.
[http://dx.doi.org/10.1007/s00044-011-9610-8]
[15]
Yurttaş L, Özkay Y, Karaca GH, Acar U. Synthesis of some new thiazole derivatives and their biological activity evaluation. J Chem 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/464379]
[16]
Mocelo-castell R, Villanueva-novelo C, Cáceres-castillo D, et al. 2-amino-4-arylthiazole derivatives as anti-giardial agents: Synthesis, biological evaluation and QSAR studies. Open Chem 2015; 13(1): 000010151520150127.
[http://dx.doi.org/10.1515/chem-2015-0127]
[17]
Kaiser M, Mäser P, Tadoori LP, Ioset JR, Brun R, Sullivan DJ. Antiprotozoal activity profiling of approved drugs: A starting point toward drug repositioning. PLoS One 2015; 10(8): e0135556.
[http://dx.doi.org/10.1371/journal.pone.0135556] [PMID: 26270335]
[18]
Kayagil I, Demirayak S. Synthesis and anticancer activities of some thiazole derivatives. Phosphorus Sulfur Silicon Relat Elem 2009; 184(9): 2197-207.
[http://dx.doi.org/10.1080/10426500802446181]
[19]
Gahtori P, Ghosh SK. Design, synthesis and SAR exploration of hybrid 4-chlorophenylthiazolyl- s -triazine as potential antimicrobial agents. J Enzyme Inhib Med Chem 2012; 27(2): 281-93.
[http://dx.doi.org/10.3109/14756366.2011.587418] [PMID: 21657948]
[20]
Gupta V, Kant V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Sci Inter 2013; 1(7): 253-60.
[http://dx.doi.org/10.17311/sciintl.2013.253.260]
[21]
Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur J Med Chem 2015; 97(1): 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[22]
Havel S, Khirsariya P, Akavaram N, Paruch K, Carbain B. Preparation of 3,4-substituted-5-aminopyrazoles and 4-substituted-2-aminothiazoles. J Org Chem 2018; 83(24): 15380-405.
[http://dx.doi.org/10.1021/acs.joc.8b02655] [PMID: 30458618]
[23]
Khrustalev DP, Suleimenova AA, Fazylov SD. Synthesis of 2-amino-4-phenylthiazole under conditions of microwave irradiation. Russ J Appl Chem 2008; 81(5): 900.
[http://dx.doi.org/10.1134/S1070427208050376]
[24]
Khrustalev DP. Modification of 2-amino-4-phenylthiazole under microwave irradiation. Russ J Gen Chem 2009; 79(3): 515-6.
[http://dx.doi.org/10.1134/S1070363209030311]
[25]
Hantzsch A, Weber JH. On compounds of thiazole (pyridines of the thiophene series). Ber Dtsch Chem Ges 1887; 20: 3118-32.
[http://dx.doi.org/10.1002/cber.188702002200]
[26]
Tcherniac J. Methyloxythiazole, presentation and properties. Rep Ger Chem Soc 1892; 25(2): 3648-52.
[27]
Gabriel S. Synthesis of oxazoles and thiazoles II. Ber Dtsch Chem Ges 1910; 43(2): 1283-7.
[http://dx.doi.org/10.1002/cber.19100430219]
[28]
Cook AH, Heilbron I, Levy AL. 318. Studies in the azole series. Part I. A novel route to 5-aminothiazoles. J Chem Soc 1947; 1(1594): 1594-8.
[http://dx.doi.org/10.1039/jr9470001594] [PMID: 18898853]
[29]
Bazie VB, Ouattara AK, Sagna T, et al. Resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine (Dhfr and Dhps) and artemisinin and its derivatives (K13): A major challenge for malaria elimination in West Africa. J Biosci Med 2020; 8(2): 82-95.
[http://dx.doi.org/10.4236/jbm.2020.82007]
[30]
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 2018; 158: 917-36.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[31]
Nezami A, Luque I, Kimura T, Kiso Y, Freire E. Identification and characterization of allophenylnorstatine-based inhibitors of plasmepsin II, an antimalarial target. Biochemistry 2002; 41(7): 2273-80.
[http://dx.doi.org/10.1021/bi0117549] [PMID: 11841219]
[32]
Takasu K, Inoue H, Kim HS, et al. Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity. J Med Chem 2002; 45(5): 995-8.
[http://dx.doi.org/10.1021/jm0155704] [PMID: 11855978]
[33]
Takasu K, Terauchi H, Inoue H, Kim HS, Wataya Y, Ihara M. Parallel synthesis of antimalarial rhodacyanine dyes by the combination of three components in one pot. J Comb Chem 2003; 5(3): 211-4.
[http://dx.doi.org/10.1021/cc020119z] [PMID: 12739934]
[34]
Calas M, Ancelin ML, Cordina G, et al. Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: comparison between mono- and bisquaternary ammonium salts. J Med Chem 2000; 43(3): 505-16.
[http://dx.doi.org/10.1021/jm9911027] [PMID: 10669577]
[35]
Biagini GA, Richier E, Bray PG, Calas M, Vial H, Ward SA. Heme binding contributes to antimalarial activity of bis-quaternary ammoniums. Antimicrob Agents Chemother 2003; 47(8): 2584-9.
[http://dx.doi.org/10.1128/AAC.47.8.2584-2589.2003] [PMID: 12878523]
[36]
Vial HJ, Wein S, Farenc C, et al. Prodrugs of bisthiazolium salts are orally potent antimalarials. Proc Natl Acad Sci 2004; 101(43): 15458-63.
[http://dx.doi.org/10.1073/pnas.0404037101] [PMID: 15492221]
[37]
Salom-Roig X, Hamzé A, Calas M, Vial H. Dual molecules as new antimalarials. Comb Chem High Throughput Screen 2005; 8(1): 49-62.
[http://dx.doi.org/10.2174/1386207053328219] [PMID: 15720197]
[38]
Ancelin ML, Calas M, Vidal-Sailhan V, Herbuté S, Ringwald P, Vial HJ. Potent inhibitors of Plasmodium phospholipid metabolism with a broad spectrum of in vitro antimalarial activities. Antimicrob Agents Chemother 2003; 47(8): 2590-7.
[http://dx.doi.org/10.1128/AAC.47.8.2590-2597.2003] [PMID: 12878524]
[39]
Ancelin ML, Calas M, Bonhoure A, Herbute S, Vial HJ. In vivo antimalarial activities of mono- and bis quaternary ammonium salts interfering with Plasmodium phospholipid metabolism. Antimicrob Agents Chemother 2003; 47(8): 2598-605.
[http://dx.doi.org/10.1128/AAC.47.8.2598-2605.2003] [PMID: 12878525]
[40]
Wengelnik K, Vidal V, Ancelin ML, et al. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 2002; 295(5558): 1311-4.
[http://dx.doi.org/10.1126/science.1067236] [PMID: 11847346]
[41]
Hamzé A, Rubi E, Arnal P, et al. Mono- and bis-thiazolium salts have potent antimalarial activity. J Med Chem 2005; 48(10): 3639-43.
[http://dx.doi.org/10.1021/jm0492608] [PMID: 15887971]
[42]
Nicolas O, Margout D, Taudon N, et al. Pharmacological properties of a new antimalarial bisthiazolium salt, T3, and a corresponding prodrug, TE3. Antimicrob Agents Chemother 2005; 49(9): 3631-9.
[http://dx.doi.org/10.1128/AAC.49.9.3631-3639.2005] [PMID: 16127032]
[43]
Nicolas O, Margout D, Taudon N, Calas M, Vial H, Bressolle F. Liquid chromatography–electrospray mass spectrometry determination of a bis-thiazolium compound with potent antimalarial activity and its neutral bioprecursor in human plasma, whole blood and red blood cells. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 820(1): 83-93.
[http://dx.doi.org/10.1016/j.jchromb.2005.03.022] [PMID: 15866496]
[44]
Skinner-Adams TS, McCarthy JS, Gardiner DL, Hilton PM, Andrews KT. Antiretrovirals as antimalarial agents. J Infect Dis 2004; 190(11): 1998-2000.
[http://dx.doi.org/10.1086/425584] [PMID: 15529265]
[45]
Skinner-Adams TS, Andrews KT, Melville L, McCarthy J, Gardiner DL. Synergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 2007; 51(2): 759-62.
[http://dx.doi.org/10.1128/AAC.00840-06] [PMID: 17088482]
[46]
Hout S, Azas N, Darque A, et al. Activity of benzothiazoles and chemical derivatives on Plasmodium falciparum. Parasitology 2004; 129(5): 525-42.
[http://dx.doi.org/10.1017/S0031182004006031] [PMID: 15552398]
[47]
Goud PM, Sheri A, Desai PV, et al. Design, synthesis and evaluation of trisubstituted thiazoles targeting Plasmodium falciparum cysteine proteases. Med Chem Res 2005; 14(2): 74-105.
[http://dx.doi.org/10.1007/s00044-005-0126-y]
[48]
Takasu K, Pudhom K, Kaiser M, Brun R, Ihara M. Synthesis and antimalarial efficacy of aza-fused rhodacyanines in vitro and in the P. berghei mouse model. J Med Chem 2006; 49(15): 4795-8.
[http://dx.doi.org/10.1021/jm0606241] [PMID: 16854088]
[49]
Pudhom K, Kasai K, Terauchi H, et al. Synthesis of three classes of rhodacyanine dyes and evaluation of their in vitro and in vivo antimalarial activity. Bioorg Med Chem 2006; 14(24): 8550-63.
[http://dx.doi.org/10.1016/j.bmc.2006.08.035] [PMID: 16971131]
[50]
Alhamadsheh MM, Waters NC, Huddler DP, Kreishman-deitrick M, Florova G, Reynolds KA. Synthesis and biological evaluation of thiazolidine-2-one 1,1-dioxide as inhibitors of Escherichia coli β-ketoacyl-ACP-synthase III (FabH). Bioorg Med Chem Lett 2007; 17(4): 879-83.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.067] [PMID: 17189694]
[51]
Bowyer PW, Gunaratne RS, Grainger M, et al. Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum. Biochem J 2007; 408(2): 173-80.
[http://dx.doi.org/10.1042/BJ20070692] [PMID: 17714074]
[52]
Donia MS, Wang B, Dunbar DC, et al. Mollamides B and C, Cyclic hexapeptides from the indonesian tunicate Didemnum molle. J Nat Prod 2008; 71(6): 941-5.
[http://dx.doi.org/10.1021/np700718p] [PMID: 18543965]
[53]
Kumar G, Parasuraman P, Sharma SK, et al. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem 2007; 50(11): 2665-75.
[http://dx.doi.org/10.1021/jm061257w] [PMID: 17477517]
[54]
Linington RG, González J, Ureña LD, Romero LI, Ortega-Barría E, Gerwick WH. Venturamides A and B: Antimalarial constituents of the panamanian marine Cyanobacterium Oscillatoria sp. J Nat Prod 2007; 70(3): 397-401.
[http://dx.doi.org/10.1021/np0605790] [PMID: 17328572]
[55]
Dow GS, Chen Y, Andrews KT, et al. Antimalarial activity of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors. Antimicrob Agents Chemother 2008; 52(10): 3467-77.
[http://dx.doi.org/10.1128/AAC.00439-08] [PMID: 18644969]
[56]
Le Roch KG, Johnson JR, Ahiboh H, et al. A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum. BMC Genomics 2008; 9(1): 513.
[http://dx.doi.org/10.1186/1471-2164-9-513] [PMID: 18973684]
[57]
Karade HN, Acharya BN, Sathe M, Kaushik MP. Design, synthesis, and antimalarial evaluation of thiazole-derived amino acids. Med Chem Res 2008; 17(1): 19-29.
[http://dx.doi.org/10.1007/s00044-008-9089-0]
[58]
Portmann C, Blom JF, Gademann K, Jüttner F. Aerucyclamides A and B: Isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J Nat Prod 2008; 71(7): 1193-6.
[http://dx.doi.org/10.1021/np800118g] [PMID: 18558743]
[59]
Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J Nat Prod 2008; 71(11): 1891-6.
[http://dx.doi.org/10.1021/np800409z] [PMID: 18973386]
[60]
Morde VA, Shaikh MS, Pissurlenkar RRS, Coutinho EC. Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors. Mol Divers 2009; 13(4): 501-17.
[http://dx.doi.org/10.1007/s11030-009-9141-0] [PMID: 19347595]
[61]
Sunduru N, Srivastava K, Rajakumar S, Puri SK, Saxena JK, Chauhan PMS. Synthesis of novel thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials. Bioorg Med Chem Lett 2009; 19(9): 2570-3.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.026] [PMID: 19339178]
[62]
Branowska D, Farahat AA, Kumar A, et al. Synthesis and antiprotozoal activity of 2,5-bis[amidinoaryl]thiazoles. Bioorg Med Chem 2010; 18(10): 3551-8.
[http://dx.doi.org/10.1016/j.bmc.2010.03.058] [PMID: 20403703]
[63]
Caldarelli SA, Duckert JF, Wein S, et al. Synthesis and evaluation of bis-thiazolium salts as potential antimalarial drugs. ChemMedChem 2010; 5(7): 1102-9.
[http://dx.doi.org/10.1002/cmdc.201000097] [PMID: 20540062]
[64]
Morisaki D, Kim HS, Inoue H, et al. Selective accumulation of rhodacyanine in plasmodial mitochondria is related to the growth inhibition of malaria parasites. Chem Sci 2010; 1(2): 206-9.
[http://dx.doi.org/10.1039/c0sc00125b]
[65]
Ortial S, Denoyelle S, Wein S, et al. Synthesis and evaluation of hybrid bis-cationic salts as antimalarial drugs. ChemMedChem 2010; 5(1): 52-5.
[http://dx.doi.org/10.1002/cmdc.200900427] [PMID: 19943278]
[66]
González cabrera D, Douelle F, Feng TS, et al. Novel orally active antimalarial thiazoles. J Med Chem 2011; 54(21): 7713-9.
[http://dx.doi.org/10.1021/jm201108k] [PMID: 21966980]
[67]
Rojas ruiz FA, García-sánchez RN, Estupiñan SV, et al. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg Med Chem 2011; 19(15): 4562-73.
[http://dx.doi.org/10.1016/j.bmc.2011.06.025] [PMID: 21723734]
[68]
Shah F, Wu Y, Gut J, et al. Design, synthesis and biological evaluation of novel benzothiazole and triazole analogs as falcipain inhibitors. MedChemComm 2011; 2(12): 1201-7.
[http://dx.doi.org/10.1039/c1md00129a]
[69]
Thompson MJ, Louth JC, Little SM, Chen B, Coldham I. 2,4-Diarylthiazole antiprion compounds as a novel structural class of antimalarial leads. Bioorg Med Chem Lett 2011; 21(12): 3644-7.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.090] [PMID: 21570837]
[70]
Cohen A, Verhaeghe P, Crozet MD, et al. Tandem synthesis and in vitro antiplasmodial evaluation of new naphtho[2,1-d]thiazole derivatives. Eur J Med Chem 2012; 55: 315-24.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.034] [PMID: 22889559]
[71]
Fatima S, Sharma A, Saxena R, et al. One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents. Eur J Med Chem 2012; 55: 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.018] [PMID: 22871486]
[72]
Ferrer P, Tripathi AK, Clark MA, Hand CC, Rienhoff HY Jr, Sullivan DJJ. Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model. PLoS One 2012; 7(5): e37171.
[http://dx.doi.org/10.1371/journal.pone.0037171] [PMID: 22629364]
[73]
Ge JF, Zhang QQ, Lu JM, et al. Synthesis of cyanine dyes and investigation of their In vitro antiprotozoal activities. MedChemComm 2012; 3(11): 1435-42.
[http://dx.doi.org/10.1039/c2md20136d]
[74]
Ongarora DSB, Gut J, Rosenthal PJ, Masimirembwa CM, Chibale K. Benzoheterocyclic amodiaquine analogues with potent antiplasmodial activity: Synthesis and pharmacological evaluation. Bioorg Med Chem Lett 2012; 22(15): 5046-50.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.010] [PMID: 22749280]
[75]
Paquet T, Gordon R, Waterson D, Witty MJ, Chibale K. Antimalarial aminothiazoles and aminopyridines from phenotypic whole-cell screening of a SoftFocus ® library. Future Med Chem 2012; 4(18): 2265-77.
[http://dx.doi.org/10.4155/fmc.12.176] [PMID: 23234550]
[76]
Peña S, Scarone L, Manta E, et al. Synthesis of a Microcystis aeruginosa predicted metabolite with antimalarial activity. Bioorg Med Chem Lett 2012; 22(15): 4994-7.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.028] [PMID: 22765903]
[77]
Wein S, Maynadier M, Bordat Y, et al. Transport and pharmacodynamics of albitiazolium, an antimalarial drug candidate. Br J Pharmacol 2012; 166(8): 2263-76.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01966.x] [PMID: 22471905]
[78]
Aher RB, Roy K. QSAR and pharmacophore modeling of diverse aminothiazoles and aminopyridines for antimalarial potency against multidrug-resistant Plasmodium falciparum. Med Chem Res 2014; 23(9): 4238-49.
[http://dx.doi.org/10.1007/s00044-014-0997-x]
[79]
Mjambili F, Njoroge M, Naran K, et al. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorg Med Chem Lett 2014; 24(2): 560-4.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.022] [PMID: 24373723]
[80]
Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. Design and synthesis of 3-[(7-chloro-1-oxidoquinolin-4-ylamino)alkyl]-1,3-thiazolidin-4-ones as antimalarial agents. J Enzyme Inhib Med Chem 2013; 28(5): 1048-53.
[http://dx.doi.org/10.3109/14756366.2012.710848] [PMID: 22957722]
[81]
Venugopala KN, Krishnappa M, Nayak SK, et al. Synthesis and antimosquito properties of 2,6-substituted benzo[d]thiazole and 2,4-substituted benzo[d]thiazole analogues against Anopheles arabiensis. Eur J Med Chem 2013; 65: 295-303.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.061] [PMID: 23727539]
[82]
Younis Y, Street LJ, Waterson D, Witty MJ, Chibale K. Cell-based medicinal chemistry optimization of high throughput screening hits for orally active antimalarials. Part 2: Hits from SoftFocus kinase and other libraries. J Med Chem 2013; 56(20): 7750-4.
[http://dx.doi.org/10.1021/jm400279y] [PMID: 23927599]
[83]
Cheuka PM, Cabrera DG, Paquet T, Chibale K. Structure–activity relationship studies of antiplasmodial aminomethylthiazoles. Bioorg Med Chem Lett 2014; 24(22): 5207-11.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.071] [PMID: 25316314]
[84]
Liu Z, Wenzler T, Brun R, Zhu X, Boykin DW. Synthesis and antiparasitic activity of new bis-arylimidamides: DB766 analogs modified in the terminal groups. Eur J Med Chem 2014; 83: 167-73.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.022] [PMID: 24956553]
[85]
Makam P, Thakur PK, Kannan T. In vitro and in silico antimalarial activity of 2-(2-hydrazinyl)thiazole derivatives. Eur J Pharm Sci 2014; 52(1): 138-45.
[http://dx.doi.org/10.1016/j.ejps.2013.11.001] [PMID: 24231338]
[86]
Peña S, Fagundez C, Medeiros A, et al. Synthesis of cyclohexapeptides as antimalarial and anti-trypanosomal agents. MedChemComm 2014; 5(9): 1309-16.
[http://dx.doi.org/10.1039/C4MD00135D]
[87]
Ulrich P, Cerami C, Gipson GR, Clark MA, Tripathi A, Sullivan DJ. In vitro and In vivo antimalarial activity of amphiphilic naphthothiazolium salts with amine-bearing side chains. Am J Trop Med Hyg 2014; 91(4): 824-32.
[http://dx.doi.org/10.4269/ajtmh.13-0565] [PMID: 25184829]
[88]
Bekhit AA, Hassan AMM, Abd El Razik HA, El-Miligy MMM, El-Agroudy EJ, Bekhit AEDA. New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur J Med Chem 2015; 94: 30-44.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.038] [PMID: 25768697]
[89]
Chopra R, de Kock C, Smith P, Chibale K, Singh K. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities. Eur J Med Chem 2015; 100(1): 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.043] [PMID: 26057222]
[90]
Kumar SP, George LB, Jasrai YT, Pandya HA. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives. SAR QSAR Environ Res 2015; 26(1): 61-77.
[http://dx.doi.org/10.1080/1062936X.2014.984628] [PMID: 25567142]
[91]
Mehta JV, Gajera SB, Patel DD, Patel MN. Synthesis, spectral investigation and development of tetrahedral copper(II) complexes as artificial metallonucleases and antimalarial agents. Appl Organomet Chem 2015; 29(6): 357-67.
[http://dx.doi.org/10.1002/aoc.3299]
[92]
Rao Vallu V, Biswas M, Bollikonda S, Padi PR, Agarwal R, Ghanta MR. Synthesis of some novel thiazole derivatives. J Chem Pharm Res 2015; 7(4): 564-9.
[93]
Sharma I, Sullivan M, McCutchan TF. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics. Antimicrob Agents Chemother 2015; 59(6): 3174-9.
[http://dx.doi.org/10.1128/AAC.04294-14] [PMID: 25779576]
[94]
Zhu J, Han L, Diao Y, et al. Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase. J Med Chem 2015; 58(3): 1123-39.
[http://dx.doi.org/10.1021/jm501127s] [PMID: 25580811]
[95]
Bueno JM, Carda M, Crespo B, et al. Design, synthesis and antimalarial evaluation of novel thiazole derivatives. Bioorg Med Chem Lett 2016; 26(16): 3938-44.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.010] [PMID: 27432764]
[96]
Sahu S, Ghosh SK, Ghoshal A, Kalita J, Gahtori P, Bhattacharyya DR. Microwave assisted synthesis, antimalarial screening and structure–activity-relationship exploration of some phenylthiazolyl-triazine derivatives against dihydrofolate reductase. Med Chem Res 2016; 25(12): 2916-23.
[http://dx.doi.org/10.1007/s00044-016-1714-8]
[97]
Sarkar S, Siddiqui AA, Saha SJ, et al. Antimalarial activity of small-molecule benzothiazole hydrazones. Antimicrob Agents Chemother 2016; 60(7): 4217-28.
[http://dx.doi.org/10.1128/AAC.01575-15] [PMID: 27139466]
[98]
Scott FJ, Khalaf AI, Duffy S, Avery VM, Suckling CJ. Selective anti-malarial minor groove binders. Bioorg Med Chem Lett 2016; 26(14): 3326-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.039] [PMID: 27212070]
[99]
Bhatt A, Singh RK, Kant R. Synthesis, antimicrobial and antimalarial study of novel 1,3,4-thiadiazole derivatives incorporating imidazo[1,2-b] pyridazine and thiazolidinone moieties. Chem Biol Lett 2017; 4(2): 73-80.
[100]
Held J, Supan C, Salazar CLO, et al. Safety and efficacy of the choline analogue SAR97276 for malaria treatment: results of two phase 2, open-label, multicenter trials in African patients. Malar J 2017; 16(1): 188.
[http://dx.doi.org/10.1186/s12936-017-1832-x] [PMID: 28049519]
[101]
Kalita JM, Ghosh SK, Sahu S, Dutta M. Rational design and microwave assisted synthesis of some novel phenyl thiazolyl clubbed s-triazine derivatives as antimalarial antifolate. Futur J Pharm Sci 2017; 3(1): 11-7.
[http://dx.doi.org/10.1016/j.fjps.2016.09.004]
[102]
Thakkar SS, Thakor P, Ray A, Doshi H, Thakkar VR. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg Med Chem 2017; 25(20): 5396-406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[103]
Vekariya RH, Patel KD, Vekariya MK, et al. Microwave-assisted green synthesis of new imidazo[2,1-b]thiazole derivatives and their antimicrobial, antimalarial, and antitubercular activities. Res Chem Intermed 2017; 43(11): 6207-31.
[http://dx.doi.org/10.1007/s11164-017-2985-5]
[104]
Alborz M, Jarrahpour A, Pournejati R, et al. Synthesis and biological evaluation of some novel diastereoselective benzothiazole β-lactam conjugates. Eur J Med Chem 2018; 143: 283-91.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.053] [PMID: 29197733]
[105]
Bekhit AA, Saudi MN, Hassan AMM, et al. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur J Med Chem 2019; 163(163): 353-66.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.067] [PMID: 30530172]
[106]
Jain S, Kumar A, Saini D. Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, In vivo and in silico study as antimalarials. Exp Parasitol 2018; 185: 107-14.
[http://dx.doi.org/10.1016/j.exppara.2018.01.015] [PMID: 29355497]
[107]
Prajapati NP, Patel KD, Vekariya RH, Patel HD, Rajani DP. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study. J Mol Struct 2019; 1179: 401-10.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.025]
[108]
Sharma PC, Saini A, Bansal KK, Sharma A, Gupta GK. Design, synthesis and molecular docking studies of some thiazole clubbed heterocyclic compounds as possible anti-infective agents. Lett Org Chem 2018; 15(8): 716-26.
[http://dx.doi.org/10.2174/1570178615666180425120039]
[109]
Tsagris DJ, Birchall K, Bouloc N, et al. Trisubstituted thiazoles as potent and selective inhibitors of Plasmodium falciparum protein kinase G (PfPKG). Bioorg Med Chem Lett 2018; 28(19): 3168-73.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.028] [PMID: 30174152]
[110]
Cuartas V, Robledo SM, Vélez ID, et al. New thiazolyl‐pyrazoline derivatives bearing nitrogen mustard as potential antimicrobial and antiprotozoal agents. Arch Pharm 2020; 353(5): e1900351.
[http://dx.doi.org/10.1002/ardp.201900351] [PMID: 32187709]
[111]
Guimarães DSM, de Sousa Luz LS, do Nascimento SB, et al. Improvement of antimalarial activity of a 3-alkylpiridine alkaloid analog by replacing the pyridine ring to a thiazole-containing heterocycle: Mode of action, mutagenicity profile, and Caco-2 cell-based permeability. Eur J Pharm Sci 2019; 138(July): 105015.
[http://dx.doi.org/10.1016/j.ejps.2019.105015] [PMID: 31344442]
[112]
Matralis AN, Malik A, Penzo M, et al. Development of chemical entities endowed with potent fast-killing properties against Plasmodium falciparum malaria parasites. J Med Chem 2019; 62(20): 9217-35.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01099] [PMID: 31566384]
[113]
Penzo M, de las Heras-Dueña L, Mata-Cantero L, et al. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci Rep 2019; 9(1): 7005.
[http://dx.doi.org/10.1038/s41598-019-42801-x] [PMID: 31065005]
[114]
Sahu S, Ghosh SK, Gahtori P, Pratap Singh U, Bhattacharyya DR, Bhat HR. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol Rep 2019; 71(5): 762-7.
[http://dx.doi.org/10.1016/j.pharep.2019.04.006] [PMID: 31351317]
[115]
Silva MGD, Cardoso JF, Perasoli FB, et al. Nanoemulsion composed of 10-(4,5-dihydrothiazol-2-yl)thio)decan-1-ol), a synthetic analog of 3-alkylpiridine marine alkaloid: Development, characterization, and antimalarial activity. Eur J Pharm Sci 2020; 151(May): 105382.
[http://dx.doi.org/10.1016/j.ejps.2020.105382] [PMID: 32470575]
[116]
Sujatha K, Ommi NB, Mudiraj A, Babu PP, Vedula RR. Synthesis of thiazolyl hydrazonothiazolamines and 1,3,4‐thiadiazinyl hydrazonothiazolamines as a class of antimalarial agents. Arch Pharm 2019; 352(12): 1900079.
[http://dx.doi.org/10.1002/ardp.201900079] [PMID: 31602690]
[117]
Barrows RD, Hammill JT, Tran MC, et al. Evaluation of 1,1-cyclopropylidene as a thioether isostere in the 4-thio-thienopyrimidine (TTP) series of antimalarials. Bioorg Med Chem 2020; 28(22): 115758.
[http://dx.doi.org/10.1016/j.bmc.2020.115758] [PMID: 33007559]
[118]
Das A, Ghosh SK, Bhat HR, Kalita J, Kashyap A, Adhikari N. Docking, synthesis and antimalarial evaluation of hybrid phenyl thiazole 1,3,5-triazine derivatives. Curr Bioact Compd 2020; 16(5): 639-53.
[http://dx.doi.org/10.2174/1573407215666190308154139]
[119]
Bansal KK, Bhardwaj JK, Saraf P, Thakur VK, Sharma PC. Synthesis of thiazole clubbed pyrazole derivatives as apoptosis inducers and anti-infective agents. Mater Today Chem 2020; 17: 100335.
[http://dx.doi.org/10.1016/j.mtchem.2020.100335]
[120]
Gore VA, Tekale SU, Bhale SP, Rajani DP, Domb AJ. Synthesis and biological evaluation of novel thiazole hydrazines as antimicrobial and antimalarial agents. Lett Appl NanoBioSci 2020; 10(1): 1846-55.
[http://dx.doi.org/10.33263/LIANBS101.18461855]
[121]
Teixeira de MGPA, Veríssimo de OCM, dos Santos IR, et al. Dual parasiticidal activities of phthalimides: Synthesis and biological profile against Trypanosoma cruzi and Plasmodium falciparum. ChemMedChem 2020; 15(22): 2164-75.
[http://dx.doi.org/10.1002/cmdc.202000331] [PMID: 32813331]
[122]
Haredi AA, Eldeeb MM, El-Naggar M, Temairk H, Mohamed MA. Novel quinazolin-2,4-dione hybrid molecules as possible inhibitors against Malaria: Synthesis and in silico molecular docking studies. Front Mol Biosci 2020; 7(June): 105.
[http://dx.doi.org/10.3389/fmolb.2020.00105] [PMID: 32582763]
[123]
Kryshchyshyn-Dylevych AP, Zelisko NI, Grellier P, Lesyk RB. Preliminary evaluation of thiazolidinone- and pyrazoline-related heterocyclic derivatives as potential antimalarial agents. Biopolim Kletka 2020; 36(1): 47-59.
[http://dx.doi.org/10.7124/bc.000A20]
[124]
Sweeney-jones AM, Gagaring K, Antonova-Koch J, et al. Antimalarial peptide and polyketide natural products from the Fijian marine cyanobacterium Moorea producens. Mar Drugs 2020; 18(3): 167.
[http://dx.doi.org/10.3390/md18030167] [PMID: 32197482]
[125]
Varghese S, Rahmani R, Drew DR, et al. Structure‐activity studies of truncated latrunculin analogues with antimalarial activity. ChemMedChem 2021; 16(4): 679-93.
[http://dx.doi.org/10.1002/cmdc.202000399] [PMID: 32929894]
[126]
Arwansyah A, Arif AR, Syahputra G, Sukarti S, Kurniawan I. Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation. Mol Simul 2021; 47(12): 988-1001.
[http://dx.doi.org/10.1080/08927022.2021.1935926]
[127]
Chesnokov O, Visitdesotrakul P, Kalani K, Nefzi A, Oleinikov AV. Small molecule compounds identified from mixture-based library inhibit binding between Plasmodium falciparum infected erythrocytes and endothelial receptor icam-1. Int J Mol Sci 2021; 22(11): 5659.
[http://dx.doi.org/10.3390/ijms22115659] [PMID: 34073419]
[128]
Kabeche S, Aida J, Akther T, et al. Nonbisphosphonate inhibitors of Plasmodium falciparum FPPS/GGPPS. Bioorg Med Chem Lett 2021; 41(March): 127978.
[http://dx.doi.org/10.1016/j.bmcl.2021.127978] [PMID: 33766764]
[129]
Kaur K, Asati V. Design, synthesis and molecular modeling studies of thiosemicarbazone & thiazole derivatives as potential anti-malarial agents. RSC Med Chem 2021; 1154: 406-17.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.077]
[130]
Ropponen HK, Bader CD, Diamanti E, et al. Search for the active ingredients from a 2‐aminothiazole DMSO stock solution with antimalarial activity. ChemMedChem 2021; 16(13): 2089-93.
[http://dx.doi.org/10.1002/cmdc.202100067] [PMID: 33844432]
[131]
Irabuena C, Scarone L, de Souza GE, et al. Synthesis and antiplasmodial assessment of nitazoxanide and analogs as new antimalarial candidates. Med Chem Res 2022; 31(3): 426-35.
[http://dx.doi.org/10.1007/s00044-021-02843-1] [PMID: 35106047]
[132]
Sharma D, Sharma A, Pahwa R, Chand Rana A, Sharma PC. Design, synthesis, anti-infective and anti-cancer potential of thiazole based Pyrazoles bearing benzothiazole moiety. J med Pharm Allied Sci 2022; 11(2): 4622-8.
[http://dx.doi.org/10.55522/jmpas.V11I2.2470]
[133]
Yadav A, Verma P, Chauhan B, Mishra AP. Insilco study, synthesis of thiazole molecules as possible dihydrofolate reductase inhibitors against Malaria. J Pharm Negat Results 2023; 14(3): 1909-16.
[http://dx.doi.org/10.47750/pnr.2023.14.03.247]
[134]
Santos NFN, Junior NSB, de Oliveira JF, et al. Synthesis, characterization, antioxidant and antiparasitic activities new naphthyl-thiazole derivatives. Exp Parasitol 2023; 248: 108498.
[http://dx.doi.org/10.1016/j.exppara.2023.108498] [PMID: 36907541]
[135]
Farghaly TAH, H Alfaifi G, Gomha SM. Recent literature on the synthesis of thiazole derivatives and their biological activities. Mini Rev Med Chem 2023; 23.
[http://dx.doi.org/10.2174/1389557523666230726142459] [PMID: 37496137]
[136]
Ali SH, Sayed AR, Sayed AR. Review of the synthesis and biological activity of thiazoles. Synth Commun 2021; 51(5): 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[137]
Kumawat MK. Thiazole containing heterocycles with antimalarial activity. Curr Drug Discov Technol 2018; 15(3): 196-200.
[http://dx.doi.org/10.2174/1570163814666170725114159] [PMID: 28745209]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy