Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy

Author(s): Zongrui Xing, Xiangyan Jiang, Yuxia Wu and Zeyuan Yu*

Volume 24, Issue 9, 2024

Published on: 24 January, 2024

Page: [890 - 909] Pages: 20

DOI: 10.2174/0115680096273730231206054104

Abstract

Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.

Graphical Abstract

[1]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[2]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[3]
Nelson, D.R. Molecular mechanisms behind Safranal's toxicity to HepG2 cells from dual omics. Antioxidants, 2022, 11(6)
[4]
Hamza, A.A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2023, 165, 115148.
[5]
Othman, E.M.; Habib, H.A.; Zahran, M.E.; Amin, A.; Heeba, G.H. Mechanistic protective effect of cilostazol in cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 pathways. Int. J. Mol. Sci., 2023, 24(16), 12651.
[http://dx.doi.org/10.3390/ijms241612651] [PMID: 37628836]
[6]
Abdel-latif, R.; Heeba, G.H.; Hassanin, S.O.; Waz, S.; Amin, A. TLRs-JNK/ NF-κB pathway underlies the protective effect of the sulfide salt against liver toxicity. Front. Pharmacol., 2022, 13, 850066.
[http://dx.doi.org/10.3389/fphar.2022.850066] [PMID: 35517830]
[7]
Berton, D.; Banerjee, S.N.; Curigliano, G.; Cresta, S.; Arkenau, H-T.; Abdeddaim, C.; Kristeleit, R.S.; Redondo, A.; Leath, C.A.; Antón Torres, A.; Guo, W.; Im, E.; Andre, T. Antitumor activity of dostarlimab in patients with mismatch repair-deficient/microsatellite instability–high tumors: A combined analysis of two cohorts in the GARNET study. J. Clin. Oncol., 2021, 39(15_suppl)(Suppl.), 2564-2564.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.2564]
[8]
Lee, J.H.; Lee, J.H.; Lim, Y.S.; Yeon, J.E.; Song, T.J.; Yu, S.J.; Gwak, G.Y.; Kim, K.M.; Kim, Y.J.; Lee, J.W.; Yoon, J.H. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology, 2015, 148(7), 1383-1391.e6.
[http://dx.doi.org/10.1053/j.gastro.2015.02.055] [PMID: 25747273]
[9]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[10]
Vesely, M.D.; Zhang, T.; Chen, L. Resistance mechanisms to anti-PD cancer immunotherapy. Annu. Rev. Immunol., 2022, 40(1), 45-74.
[http://dx.doi.org/10.1146/annurev-immunol-070621-030155] [PMID: 35471840]
[11]
Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzis, M.V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev., 2020, 86, 102016.
[http://dx.doi.org/10.1016/j.ctrv.2020.102016] [PMID: 32247999]
[12]
Piha-Paul, S.A.; Oh, D.Y.; Ueno, M.; Malka, D.; Chung, H.C.; Nagrial, A.; Kelley, R.K.; Ros, W.; Italiano, A.; Nakagawa, K.; Rugo, H.S.; de Braud, F.; Varga, A.I.; Hansen, A.; Wang, H.; Krishnan, S.; Norwood, K.G.; Doi, T. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int. J. Cancer, 2020, 147(8), 2190-2198.
[http://dx.doi.org/10.1002/ijc.33013] [PMID: 32359091]
[13]
Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; Stadler, Z.; Yaeger, R.; Smith, J.J.; Rousseau, B.; Argiles, G.; Patel, M.; Desai, A.; Saltz, L.B.; Widmar, M.; Iyer, K.; Zhang, J.; Gianino, N.; Crane, C.; Romesser, P.B.; Pappou, E.P.; Paty, P.; Garcia-Aguilar, J.; Gonen, M.; Gollub, M.; Weiser, M.R.; Schalper, K.A.; Diaz, L.A., Jr PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med., 2022, 386(25), 2363-2376.
[http://dx.doi.org/10.1056/NEJMoa2201445] [PMID: 35660797]
[14]
Li, K.; Zhang, A.; Li, X.; Zhang, H.; Zhao, L. Advances in clinical immunotherapy for gastric cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188615.
[http://dx.doi.org/10.1016/j.bbcan.2021.188615] [PMID: 34403771]
[15]
Zheng, Y.; Wang, S.; Cai, J.; Ke, A.; Fan, J. The progress of immune checkpoint therapy in primary liver cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188638.
[http://dx.doi.org/10.1016/j.bbcan.2021.188638] [PMID: 34688805]
[16]
Huang, B.; Song, B.; Xu, C. Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat. Metab., 2020, 2(2), 132-141.
[http://dx.doi.org/10.1038/s42255-020-0174-0] [PMID: 32694690]
[17]
Xue, L.; Qi, H.; Zhang, H.; Ding, L.; Huang, Q.; Zhao, D.; Wu, B.J.; Li, X. Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy. Front. Oncol., 2020, 10, 1510.
[http://dx.doi.org/10.3389/fonc.2020.01510] [PMID: 32974183]
[18]
Pontini, L.; Marinozzi, M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br. J. Pharmacol., 2021, 178(16), 3261-3276.
[http://dx.doi.org/10.1111/bph.15200] [PMID: 32673401]
[19]
Pisanti, S.; Picardi, P.; Ciaglia, E.; D’Alessandro, A.; Bifulco, M. Novel prospects of statins as therapeutic agents in cancer. Pharmacol. Res., 2014, 88, 84-98.
[http://dx.doi.org/10.1016/j.phrs.2014.06.013] [PMID: 25009097]
[20]
Stine, J.E.; Guo, H.; Sheng, X.; Han, X.; Schointuch, M.N.; Gilliam, T.P.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti- metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget, 2016, 7(1), 946-960.
[http://dx.doi.org/10.18632/oncotarget.5834] [PMID: 26503475]
[21]
Schointuch, M.N.; Gilliam, T.P.; Stine, J.E.; Han, X.; Zhou, C.; Gehrig, P.A.; Kim, K.; Bae-Jump, V.L. Simvastatin, an HMG-CoA reductase inhibitor, exhibits anti-metastatic and anti-tumorigenic effects in endometrial cancer. Gynecol. Oncol., 2014, 134(2), 346-355.
[http://dx.doi.org/10.1016/j.ygyno.2014.05.015] [PMID: 24880141]
[22]
Altwairgi, A.K. Statins are potential anticancerous agents (Review). Oncol. Rep., 2015, 33(3), 1019-1039.
[http://dx.doi.org/10.3892/or.2015.3741] [PMID: 25607255]
[23]
Alquraishi, M.; Puckett, D.L.; Alani, D.S.; Humidat, A.S.; Frankel, V.D.; Donohoe, D.R.; Whelan, J.; Bettaieb, A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic. Biol. Med., 2019, 143, 176-192.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.08.007] [PMID: 31401304]
[24]
Huang, J.; Zhao, X.; Li, X.; Peng, J.; Yang, W.; Mi, S. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma. PLoS Biol., 2021, 19(4), e3001197.
[http://dx.doi.org/10.1371/journal.pbio.3001197] [PMID: 33905408]
[25]
Chushi, L.; Wei, W.; Kangkang, X.; Yongzeng, F.; Ning, X.; Xiaolei, C. HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells. Gene, 2016, 587(1), 42-47.
[http://dx.doi.org/10.1016/j.gene.2016.04.029] [PMID: 27085483]
[26]
Qiu, Z.; Yuan, W.; Chen, T.; Zhou, C.; Liu, C.; Huang, Y.; Han, D.; Huang, Q. HMGCR positively regulated the growth and migration of glioblastoma cells. Gene, 2016, 576(1), 22-27.
[http://dx.doi.org/10.1016/j.gene.2015.09.067] [PMID: 26432005]
[27]
Nielsen, S.F.; Nordestgaard, B.G.; Bojesen, S.E. Statin use and reduced cancer-related mortality. N. Engl. J. Med., 2012, 367(19), 1792-1802.
[http://dx.doi.org/10.1056/NEJMoa1201735] [PMID: 23134381]
[28]
Ashida, S.; Kawada, C.; Inoue, K. Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol. Lett., 2017, 14(6), 6533-6542.
[http://dx.doi.org/10.3892/ol.2017.7025] [PMID: 29163687]
[29]
van Beek, E.; Pieterman, E.; Cohen, L.; Löwik, C.; Papapoulos, S. Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem. Biophys. Res. Commun., 1999, 255(2), 491-494.
[http://dx.doi.org/10.1006/bbrc.1999.0224] [PMID: 10049736]
[30]
Konstantinopoulos, P.A.; Karamouzis, M.V.; Papavassiliou, A.G. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev. Drug Discov., 2007, 6(7), 541-555.
[http://dx.doi.org/10.1038/nrd2221] [PMID: 17585331]
[31]
Kaymak, I.; Maier, C.R.; Schmitz, W.; Campbell, A.D.; Dankworth, B.; Ade, C.P.; Walz, S.; Paauwe, M.; Kalogirou, C.; Marouf, H.; Rosenfeldt, M.T.; Gay, D.M.; McGregor, G.H.; Sansom, O.J.; Schulze, A. Mevalonate pathway provides ubiquinone to maintain pyrimidine synthesis and survival in p53-deficient cancer cells exposed to metabolic stress. Cancer Res., 2020, 80(2), 189-203.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0650] [PMID: 31744820]
[32]
Kloudova, A.; Guengerich, F.P.; Soucek, P. The role of oxysterols in human cancer. Trends Endocrinol. Metab., 2017, 28(7), 485-496.
[http://dx.doi.org/10.1016/j.tem.2017.03.002] [PMID: 28410994]
[33]
Nelson, E.R.; Wardell, S.E.; Jasper, J.S.; Park, S.; Suchindran, S.; Howe, M.K.; Carver, N.J.; Pillai, R.V.; Sullivan, P.M.; Sondhi, V.; Umetani, M.; Geradts, J.; McDonnell, D.P. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 2013, 342(6162), 1094-1098.
[http://dx.doi.org/10.1126/science.1241908] [PMID: 24288332]
[34]
Raza, S.; Ohm, J.E.; Dhasarathy, A.; Schommer, J.; Roche, C.; Hammer, K.D.P.; Ghribi, O. The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol. Cell. Biochem., 2015, 410(1-2), 187-195.
[http://dx.doi.org/10.1007/s11010-015-2551-7] [PMID: 26350565]
[35]
Guo, F.; Hong, W.; Yang, M.; Xu, D.; Bai, Q.; Li, X.; Chen, Z. Upregulation of 24(R/S),25-epoxycholesterol and 27-hydroxycholesterol suppresses the proliferation and migration of gastric cancer cells. Biochem. Biophys. Res. Commun., 2018, 504(4), 892-898.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.058] [PMID: 30224060]
[36]
Oni, T.E.; Biffi, G.; Baker, L.A.; Hao, Y.; Tonelli, C.; Somerville, T.D.D.; Deschênes, A.; Belleau, P.; Hwang, C.; Sánchez-Rivera, F.J.; Cox, H.; Brosnan, E.; Doshi, A.; Lumia, R.P.; Khaledi, K.; Park, Y.; Trotman, L.C.; Lowe, S.W.; Krasnitz, A.; Vakoc, C.R.; Tuveson, D.A. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J. Exp. Med., 2020, 217(9), e20192389.
[http://dx.doi.org/10.1084/jem.20192389] [PMID: 32633781]
[37]
Yue, S.; Li, J.; Lee, S.Y.; Lee, H.J.; Shao, T.; Song, B.; Cheng, L.; Masterson, T.A.; Liu, X.; Ratliff, T.L.; Cheng, J.X. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab., 2014, 19(3), 393-406.
[http://dx.doi.org/10.1016/j.cmet.2014.01.019] [PMID: 24606897]
[38]
Antalis, C.J.; Uchida, A.; Buhman, K.K.; Siddiqui, R.A. Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin. Exp. Metastasis, 2011, 28(8), 733-741.
[http://dx.doi.org/10.1007/s10585-011-9405-9] [PMID: 21744083]
[39]
Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; Li, C.; Zhang, L.; Qin, G.; Zhang, M.; Chen, N.; Zhang, M.; Huang, Y.; Zhou, J.; Zhao, Y.; Liu, M.; Zhu, X.; Qiu, Y.; Sun, Y.; Huang, C.; Yan, M.; Wang, M.; Liu, W.; Tian, F.; Xu, H.; Zhou, J.; Wu, Z.; Shi, T.; Zhu, W.; Qin, J.; Xie, L.; Fan, J.; Qian, X.; He, F. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature, 2019, 567(7747), 257-261.
[http://dx.doi.org/10.1038/s41586-019-0987-8] [PMID: 30814741]
[40]
Mardis, E.R.; Ding, L.; Dooling, D.J.; Larson, D.E.; McLellan, M.D.; Chen, K.; Koboldt, D.C.; Fulton, R.S.; Delehaunty, K.D.; McGrath, S.D.; Fulton, L.A.; Locke, D.P.; Magrini, V.J.; Abbott, R.M.; Vickery, T.L.; Reed, J.S.; Robinson, J.S.; Wylie, T.; Smith, S.M.; Carmichael, L.; Eldred, J.M.; Harris, C.C.; Walker, J.; Peck, J.B.; Du, F.; Dukes, A.F.; Sanderson, G.E.; Brummett, A.M.; Clark, E.; McMichael, J.F.; Meyer, R.J.; Schindler, J.K.; Pohl, C.S.; Wallis, J.W.; Shi, X.; Lin, L.; Schmidt, H.; Tang, Y.; Haipek, C.; Wiechert, M.E.; Ivy, J.V.; Kalicki, J.; Elliott, G.; Ries, R.E.; Payton, J.E.; Westervelt, P.; Tomasson, M.H.; Watson, M.A.; Baty, J.; Heath, S.; Shannon, W.D.; Nagarajan, R.; Link, D.C.; Walter, M.J.; Graubert, T.A.; DiPersio, J.F.; Wilson, R.K.; Ley, T.J. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med., 2009, 361(11), 1058-1066.
[http://dx.doi.org/10.1056/NEJMoa0903840] [PMID: 19657110]
[41]
Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; Olivi, A.; McLendon, R.; Rasheed, B.A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D.A.; Tekleab, H.; Diaz, L.A., Jr; Hartigan, J.; Smith, D.R.; Strausberg, R.L.; Marie, S.K.N.; Shinjo, S.M.O.; Yan, H.; Riggins, G.J.; Bigner, D.D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897), 1807-1812.
[http://dx.doi.org/10.1126/science.1164382] [PMID: 18772396]
[42]
Christofk, H.R.; Vander Heiden, M.G.; Harris, M.H.; Ramanathan, A.; Gerszten, R.E.; Wei, R.; Fleming, M.D.; Schreiber, S.L.; Cantley, L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452(7184), 230-233.
[http://dx.doi.org/10.1038/nature06734] [PMID: 18337823]
[43]
Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; Jha, A.K.; Smolen, G.A.; Clasquin, M.F.; Robey, R.B.; Hay, N. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell, 2013, 24(2), 213-228.
[http://dx.doi.org/10.1016/j.ccr.2013.06.014] [PMID: 23911236]
[44]
Ma, X.; Bi, E.; Lu, Y.; Su, P.; Huang, C.; Liu, L.; Wang, Q.; Yang, M.; Kalady, M.F.; Qian, J.; Zhang, A.; Gupte, A.A.; Hamilton, D.J.; Zheng, C.; Yi, Q. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab., 2019, 30(1), 143-156.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.04.002] [PMID: 31031094]
[45]
Luo, C.; Wang, K.; Liu, D.; Li, Y.; Zhao, Q. The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell. Mol. Immunol., 2008, 5(1), 1-7.
[http://dx.doi.org/10.1038/cmi.2008.1] [PMID: 18318989]
[46]
Goossens, P.; Rodriguez-Vita, J.; Etzerodt, A.; Masse, M.; Rastoin, O.; Gouirand, V.; Ulas, T.; Papantonopoulou, O.; Van Eck, M.; Auphan-Anezin, N.; Bebien, M.; Verthuy, C.; Vu Manh, T.P.; Turner, M.; Dalod, M.; Schultze, J.L.; Lawrence, T. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab., 2019, 29(6), 1376-1389.e4.
[http://dx.doi.org/10.1016/j.cmet.2019.02.016] [PMID: 30930171]
[47]
Shi, S-Z.; Lee, E.J.; Lin, Y.J.; Chen, L.; Zheng, H.Y.; He, X.Q.; Peng, J.Y.; Noonepalle, S.K.; Shull, A.Y.; Pei, F.C.; Deng, L.B.; Tian, X.L.; Deng, K.Y.; Shi, H.; Xin, H.B. Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am. J. Cancer Res., 2019, 9(10), 2194-2208.
[PMID: 31720082]
[48]
Son, Y.; Kim, S.M.; Lee, S.A.; Eo, S.K.; Kim, K. Oxysterols induce transition of monocytic cells to phenotypically mature dendritic cell-like cells. Biochem. Biophys. Res. Commun., 2013, 438(1), 161-168.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.046] [PMID: 23876312]
[49]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[50]
Clements, V.K.; Long, T.; Long, R.; Figley, C.; Smith, D.M.C.; Ostrand-Rosenberg, S. Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J. Leukoc. Biol., 2018, 103(3), 395-407.
[http://dx.doi.org/10.1002/JLB.4HI0517-210R] [PMID: 29345342]
[51]
He, S.; Ma, L.; Baek, A.E.; Vardanyan, A.; Vembar, V.; Chen, J.J.; Nelson, A.T.; Burdette, J.E.; Nelson, E.R. Host CYP27A1 expression is essential for ovarian cancer progression. Endocr. Relat. Cancer, 2019, 26(7), 659-675.
[http://dx.doi.org/10.1530/ERC-18-0572] [PMID: 31048561]
[52]
Gentles, A.J.; Newman, A.M.; Liu, C.L.; Bratman, S.V.; Feng, W.; Kim, D.; Nair, V.S.; Xu, Y.; Khuong, A.; Hoang, C.D.; Diehn, M.; West, R.B.; Plevritis, S.K.; Alizadeh, A.A. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med., 2015, 21(8), 938-945.
[http://dx.doi.org/10.1038/nm.3909] [PMID: 26193342]
[53]
Shen, M.; Hu, P.; Donskov, F.; Wang, G.; Liu, Q.; Du, J. Tumor-associated neutrophils as a new prognostic factor in cancer: A systematic review and meta-analysis. PLoS One, 2014, 9(6), e98259.
[http://dx.doi.org/10.1371/journal.pone.0098259] [PMID: 24906014]
[54]
Raccosta, L.; Fontana, R.; Maggioni, D.; Lanterna, C.; Villablanca, E.J.; Paniccia, A.; Musumeci, A.; Chiricozzi, E.; Trincavelli, M.L.; Daniele, S.; Martini, C.; Gustafsson, J.A.; Doglioni, C.; Feo, S.G.; Leiva, A.; Ciampa, M.G.; Mauri, L.; Sensi, C.; Prinetti, A.; Eberini, I.; Mora, J.R.; Bordignon, C.; Steffensen, K.R.; Sonnino, S.; Sozzani, S.; Traversari, C.; Russo, V. The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J. Exp. Med., 2013, 210(9), 1711-1728.
[http://dx.doi.org/10.1084/jem.20130440] [PMID: 23897983]
[55]
Soncini, M.; Corna, G.; Moresco, M.; Coltella, N.; Restuccia, U.; Maggioni, D.; Raccosta, L.; Lin, C.Y.; Invernizzi, F.; Crocchiolo, R.; Doglioni, C.; Traversari, C.; Bachi, A.; Bernardi, R.; Bordignon, C.; Gustafsson, J.Å.; Russo, V. 24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development. Proc. Natl. Acad. Sci., 2016, 113(41), E6219-E6227.
[http://dx.doi.org/10.1073/pnas.1613332113] [PMID: 27671648]
[56]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[57]
Poillet-Perez, L.; White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev., 2019, 33(11-12), 610-619.
[http://dx.doi.org/10.1101/gad.325514.119] [PMID: 31160394]
[58]
Li, X.; Yang, K.B.; Chen, W.; Mai, J.; Wu, X.Q.; Sun, T.; Wu, R.Y.; Jiao, L.; Li, D.D.; Ji, J.; Zhang, H.L.; Yu, Y.; Chen, Y.H.; Feng, G.K.; Deng, R.; Li, J.D.; Zhu, X.F. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy, 2021, 17(12), 4323-4340.
[http://dx.doi.org/10.1080/15548627.2021.1912270] [PMID: 33977871]
[59]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[60]
White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 2012, 12(6), 401-410.
[http://dx.doi.org/10.1038/nrc3262] [PMID: 22534666]
[61]
Takamura, A.; Komatsu, M.; Hara, T.; Sakamoto, A.; Kishi, C.; Waguri, S.; Eishi, Y.; Hino, O.; Tanaka, K.; Mizushima, N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev., 2011, 25(8), 795-800.
[http://dx.doi.org/10.1101/gad.2016211] [PMID: 21498569]
[62]
Rosenfeldt, M.T.; O’Prey, J.; Morton, J.P.; Nixon, C.; MacKay, G.; Mrowinska, A.; Au, A.; Rai, T.S.; Zheng, L.; Ridgway, R.; Adams, P.D.; Anderson, K.I.; Gottlieb, E.; Sansom, O.J.; Ryan, K.M. p53 status determines the role of autophagy in pancreatic tumour development. Nature, 2013, 504(7479), 296-300.
[http://dx.doi.org/10.1038/nature12865] [PMID: 24305049]
[63]
Yang, A.; Rajeshkumar, N.V.; Wang, X.; Yabuuchi, S.; Alexander, B.M.; Chu, G.C.; Von Hoff, D.D.; Maitra, A.; Kimmelman, A.C. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov., 2014, 4(8), 905-913.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0362] [PMID: 24875860]
[64]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[65]
Shin, J. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res., 1998, 21(6), 629-633.
[http://dx.doi.org/10.1007/BF02976748] [PMID: 9868528]
[66]
Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Øvervatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 2005, 171(4), 603-614.
[http://dx.doi.org/10.1083/jcb.200507002] [PMID: 16286508]
[67]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[68]
Mathew, R.; Karp, C.M.; Beaudoin, B.; Vuong, N.; Chen, G.; Chen, H.Y.; Bray, K.; Reddy, A.; Bhanot, G.; Gelinas, C.; DiPaola, R.S.; Karantza-Wadsworth, V.; White, E. Autophagy suppresses tumorigenesis through elimination of p62. Cell, 2009, 137(6), 1062-1075.
[http://dx.doi.org/10.1016/j.cell.2009.03.048] [PMID: 19524509]
[69]
Su, Y.; Qian, H.; Zhang, J.; Wang, S.; Shi, P.; Peng, X. The diversity expression of p62 in digestive system cancers. Clin. Immunol., 2005, 116(2), 118-123.
[http://dx.doi.org/10.1016/j.clim.2005.04.004] [PMID: 15886058]
[70]
Kitamura, H.; Torigoe, T.; Asanuma, H.; Hisasue, S-I.; Suzuki, K.; Tsukamoto, T.; Satoh, M.; Sato, N. Cytosolic overexpression of p62 sequestosome 1 in neoplastic prostate tissue. Histopathology, 2006, 48(2), 157-161.
[http://dx.doi.org/10.1111/j.1365-2559.2005.02313.x] [PMID: 16405664]
[71]
Valencia, T.; Kim, J.Y.; Abu-Baker, S.; Moscat-Pardos, J.; Ahn, C.S.; Reina-Campos, M.; Duran, A.; Castilla, E.A.; Metallo, C.M.; Diaz-Meco, M.T.; Moscat, J. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell, 2014, 26(1), 121-135.
[http://dx.doi.org/10.1016/j.ccr.2014.05.004] [PMID: 25002027]
[72]
Stumptner, C.; Heid, H.; Fuchsbichler, A.; Hauser, H.; Mischinger, H.J.; Zatloukal, K.; Denk, H. Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent. Am. J. Pathol., 1999, 154(6), 1701-1710.
[http://dx.doi.org/10.1016/S0002-9440(10)65426-0] [PMID: 10362795]
[73]
Saito, T.; Ichimura, Y.; Taguchi, K.; Suzuki, T.; Mizushima, T.; Takagi, K.; Hirose, Y.; Nagahashi, M.; Iso, T.; Fukutomi, T.; Ohishi, M.; Endo, K.; Uemura, T.; Nishito, Y.; Okuda, S.; Obata, M.; Kouno, T.; Imamura, R.; Tada, Y.; Obata, R.; Yasuda, D.; Takahashi, K.; Fujimura, T.; Pi, J.; Lee, M.S.; Ueno, T.; Ohe, T.; Mashino, T.; Wakai, T.; Kojima, H.; Okabe, T.; Nagano, T.; Motohashi, H.; Waguri, S.; Soga, T.; Yamamoto, M.; Tanaka, K.; Komatsu, M. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat. Commun., 2016, 7(1), 12030.
[http://dx.doi.org/10.1038/ncomms12030] [PMID: 27345495]
[74]
Umemura, A.; He, F.; Taniguchi, K.; Nakagawa, H.; Yamachika, S.; Font-Burgada, J.; Zhong, Z.; Subramaniam, S.; Raghunandan, S.; Duran, A.; Linares, J.F.; Reina-Campos, M.; Umemura, S.; Valasek, M.A.; Seki, E.; Yamaguchi, K.; Koike, K.; Itoh, Y.; Diaz-Meco, M.T.; Moscat, J.; Karin, M. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-Initiating Cells. Cancer Cell, 2016, 29(6), 935-948.
[http://dx.doi.org/10.1016/j.ccell.2016.04.006] [PMID: 27211490]
[75]
Thompson, H.G.R.; Harris, J.W.; Wold, B.J.; Lin, F.; Brody, J.P. p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene, 2003, 22(15), 2322-2333.
[http://dx.doi.org/10.1038/sj.onc.1206325] [PMID: 12700667]
[76]
Li, S.S.; Xu, L.Z.; Zhou, W.; Yao, S.; Wang, C.L.; Xia, J.L.; Wang, H.F.; Kamran, M.; Xue, X.Y.; Dong, L.; Wang, J.; Ding, X.D.; Bella, L.; Bugeon, L.; Xu, J.; Zheng, F.M.; Dallman, M.J.; Lam, E.W.F.; Liu, Q. p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis. Carcinogenesis, 2017, 38(11), 1092-1103.
[http://dx.doi.org/10.1093/carcin/bgx099] [PMID: 28968743]
[77]
Inoue, D.; Suzuki, T.; Mitsuishi, Y.; Miki, Y.; Suzuki, S.; Sugawara, S.; Watanabe, M.; Sakurada, A.; Endo, C.; Uruno, A.; Sasano, H.; Nakagawa, T.; Satoh, K.; Tanaka, N.; Kubo, H.; Motohashi, H.; Yamamoto, M. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci., 2012, 103(4), 760-766.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02216.x] [PMID: 22320446]
[78]
Huang, J.; Duran, A.; Reina-Campos, M.; Valencia, T.; Castilla, E.A.; Müller, T.D.; Tschöp, M.H.; Moscat, J.; Diaz-Meco, M.T. Adipocyte p62/SQSTM1 suppresses tumorigenesis through opposite regulations of metabolism in adipose tissue and tumor. Cancer Cell, 2018, 33(4), 770-784.e6.
[http://dx.doi.org/10.1016/j.ccell.2018.03.001] [PMID: 29634950]
[79]
Parkhitko, A.; Myachina, F.; Morrison, T.A.; Hindi, K.M.; Auricchio, N.; Karbowniczek, M.; Wu, J.J.; Finkel, T.; Kwiatkowski, D.J.; Yu, J.J.; Henske, E.P. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc. Natl. Acad. Sci. USA, 2011, 108(30), 12455-12460.
[http://dx.doi.org/10.1073/pnas.1104361108] [PMID: 21746920]
[80]
Ichimura, Y.; Waguri, S.; Sou, Y.; Kageyama, S.; Hasegawa, J.; Ishimura, R.; Saito, T.; Yang, Y.; Kouno, T.; Fukutomi, T.; Hoshii, T.; Hirao, A.; Takagi, K.; Mizushima, T.; Motohashi, H.; Lee, M.S.; Yoshimori, T.; Tanaka, K.; Yamamoto, M.; Komatsu, M. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell, 2013, 51(5), 618-631.
[http://dx.doi.org/10.1016/j.molcel.2013.08.003] [PMID: 24011591]
[81]
Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the hallmarks of cancer. Cancer Cell, 2018, 34(1), 21-43.
[http://dx.doi.org/10.1016/j.ccell.2018.03.022] [PMID: 29731393]
[82]
Mitsuishi, Y.; Taguchi, K.; Kawatani, Y.; Shibata, T.; Nukiwa, T.; Aburatani, H.; Yamamoto, M.; Motohashi, H. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell, 2012, 22(1), 66-79.
[http://dx.doi.org/10.1016/j.ccr.2012.05.016] [PMID: 22789539]
[83]
Kitamura, H.; Motohashi, H. NRF2 addiction in cancer cells. Cancer Sci., 2018, 109(4), 900-911.
[http://dx.doi.org/10.1111/cas.13537] [PMID: 29450944]
[84]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[85]
Amin, A.; Alyahyaee, M.; Xie, Y.; Tahtamouni, L. Editorial: Molecular mechanisms of epithelial-mesenchymal transition in cancer metastasis. Front. Oncol., 2022, 12, 1088205.
[http://dx.doi.org/10.3389/fonc.2022.1088205] [PMID: 36568173]
[86]
Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[87]
Ahn, C.H.; Jeong, E.G.; Lee, J.W.; Kim, M.S.; Kim, S.H.; Kim, S.S.; Yoo, N.J.; Lee, S.H. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. Acta Pathol. Microbiol. Scand. Suppl., 2007, 115(12), 1344-1349.
[http://dx.doi.org/10.1111/j.1600-0463.2007.00858.x] [PMID: 18184403]
[88]
Tang, H.; Da, L.; Mao, Y.; Li, Y.; Li, D.; Xu, Z.; Li, F.; Wang, Y.; Tiollais, P.; Li, T.; Zhao, M. Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatol., 2009, 49(1), 60-71.
[http://dx.doi.org/10.1002/hep.22581] [PMID: 19065679]
[89]
Karantza, V.; White, E. Role of autophagy in breast cancer. Autophagy, 2007, 3(6), 610-613.
[http://dx.doi.org/10.4161/auto.4867] [PMID: 17786023]
[90]
Sun, Y.; Liu, J.; Jin, L.; Lin, S.; Yang, Y.; Sui, Y.; Shi, H. Over- expression of the Beclin1 gene upregulates chemosensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma CaSki cells. Cancer Lett., 2010, 294(2), 204-210.
[http://dx.doi.org/10.1016/j.canlet.2010.02.001] [PMID: 20207475]
[91]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[92]
Jiang, G.M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.T.; Meng, X.J.; Li, L.L.; Liu, Y.; Li, W.F.; Shan, H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol. Cancer, 2019, 18(1), 17.
[http://dx.doi.org/10.1186/s12943-019-0944-z] [PMID: 30678689]
[93]
Pan, H.; Chen, L.; Xu, Y.; Han, W.; Lou, F.; Fei, W.; Liu, S.; Jing, Z.; Sui, X. Autophagy-associated immune responses and cancer immunotherapy. Oncotarget, 2016, 7(16), 21235-21246.
[http://dx.doi.org/10.18632/oncotarget.6908] [PMID: 26788909]
[94]
Jia, W.; He, M.X.; McLeod, I.X.; Guo, J.; Ji, D.; He, Y.W. Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy, 2015, 11(12), 2335-2345.
[http://dx.doi.org/10.1080/15548627.2015.1110666] [PMID: 26569626]
[95]
Pua, H.H. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol., 2009, 182(7), 4046-55.
[http://dx.doi.org/10.4049/jimmunol.0801143]
[96]
Xu, X.; Araki, K.; Li, S.; Han, J.H.; Ye, L.; Tan, W.G.; Konieczny, B.T.; Bruinsma, M.W.; Martinez, J.; Pearce, E.L.; Green, D.R.; Jones, D.P.; Virgin, H.W.; Ahmed, R. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol., 2014, 15(12), 1152-1161.
[http://dx.doi.org/10.1038/ni.3025] [PMID: 25362489]
[97]
Garg, A.D.; Dudek, A.M.; Agostinis, P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. OncoImmunology, 2013, 2(10), e26260.
[http://dx.doi.org/10.4161/onci.26260] [PMID: 24353910]
[98]
Buchser, W.J.; Laskow, T.C.; Pavlik, P.J.; Lin, H.M.; Lotze, M.T. Cell-mediated autophagy promotes cancer cell survival. Cancer Res., 2012, 72(12), 2970-2979.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3396] [PMID: 22505650]
[99]
Salio, M.; Puleston, D.J.; Mathan, T.S.M.; Shepherd, D.; Stranks, A.J.; Adamopoulou, E.; Veerapen, N.; Besra, G.S.; Hollander, G.A.; Simon, A.K.; Cerundolo, V. Essential role for autophagy during invariant NKT cell development. Proc. Natl. Acad. Sci. USA, 2014, 111(52), E5678-E5687.
[http://dx.doi.org/10.1073/pnas.1413935112] [PMID: 25512546]
[100]
Pei, B. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J. Immunol., 2015, 194(12), 5872-84.
[http://dx.doi.org/10.4049/jimmunol.1402154]
[101]
Chen, P.; Cescon, M.; Bonaldo, P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy, 2014, 10(2), 192-200.
[http://dx.doi.org/10.4161/auto.26927] [PMID: 24300480]
[102]
Mancino, A.; Lawrence, T. Nuclear factor-kappaB and tumor-associated macrophages. Clin. Cancer Res., 2010, 16(3), 784-789.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1015] [PMID: 20103670]
[103]
Oh, D.S.; Lee, H.K. Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy, 2019, 15(12), 2091-2106.
[http://dx.doi.org/10.1080/15548627.2019.1596493] [PMID: 30900506]
[104]
Lee, H.K.; Mattei, L.M.; Steinberg, B.E.; Alberts, P.; Lee, Y.H.; Chervonsky, A.; Mizushima, N.; Grinstein, S.; Iwasaki, A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity, 2010, 32(2), 227-239.
[http://dx.doi.org/10.1016/j.immuni.2009.12.006] [PMID: 20171125]
[105]
Liu, E.; Van Grol, J.; Subauste, C.S. Atg5 but not Atg7 in dendritic cells enhances IL-2 and IFN-γ production by Toxoplasma gondii-reactive CD4+ T cells. Microbes Infect., 2015, 17(4), 275-284.
[http://dx.doi.org/10.1016/j.micinf.2014.12.008] [PMID: 25578385]
[106]
Parker, K.H.; Horn, L.A.; Ostrand-Rosenberg, S. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. J. Leukoc. Biol., 2016, 100(3), 463-470.
[http://dx.doi.org/10.1189/jlb.3HI0715-305R] [PMID: 26864266]
[107]
Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol., 2012, 12(4), 253-268.
[http://dx.doi.org/10.1038/nri3175] [PMID: 22437938]
[108]
Li, W.; Tanikawa, T.; Kryczek, I.; Xia, H.; Li, G.; Wu, K.; Wei, S.; Zhao, L.; Vatan, L.; Wen, B.; Shu, P.; Sun, D.; Kleer, C.; Wicha, M.; Sabel, M.; Tao, K.; Wang, G.; Zou, W. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab., 2018, 28(1), 87-103.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.04.022] [PMID: 29805099]
[109]
Wei, J.; Long, L.; Yang, K.; Guy, C.; Shrestha, S.; Chen, Z.; Wu, C.; Vogel, P.; Neale, G.; Green, D.R.; Chi, H. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol., 2016, 17(3), 277-285.
[http://dx.doi.org/10.1038/ni.3365] [PMID: 26808230]
[110]
Zeng, H.; Yang, K.; Cloer, C.; Neale, G.; Vogel, P.; Chi, H. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature, 2013, 499(7459), 485-490.
[http://dx.doi.org/10.1038/nature12297] [PMID: 23812589]
[111]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[112]
Kao, K.C.; Vilbois, S.; Tsai, C.H.; Ho, P.C. Metabolic communication in the tumour–immune microenvironment. Nat. Cell Biol., 2022, 24(11), 1574-1583.
[http://dx.doi.org/10.1038/s41556-022-01002-x] [PMID: 36229606]
[113]
Delage, B.; Fennell, D.A.; Nicholson, L.; McNeish, I.; Lemoine, N.R.; Crook, T.; Szlosarek, P.W. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer, 2010, 126(12), 2762-2772.
[http://dx.doi.org/10.1002/ijc.25202] [PMID: 20104527]
[114]
Dillon, B.J.; Prieto, V.G.; Curley, S.A.; Ensor, C.M.; Holtsberg, F.W.; Bomalaski, J.S.; Clark, M.A. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers. Cancer, 2004, 100(4), 826-833.
[http://dx.doi.org/10.1002/cncr.20057] [PMID: 14770441]
[115]
Patil, M.D.; Bhaumik, J.; Babykutty, S.; Banerjee, U.C.; Fukumura, D. Arginine dependence of tumor cells: Targeting a chink in cancer’s armor. Oncogene, 2016, 35(38), 4957-4972.
[http://dx.doi.org/10.1038/onc.2016.37] [PMID: 27109103]
[116]
Poillet-Perez, L.; Xie, X.; Zhan, L.; Yang, Y.; Sharp, D.W.; Hu, Z.S.; Su, X.; Maganti, A.; Jiang, C.; Lu, W.; Zheng, H.; Bosenberg, M.W.; Mehnert, J.M.; Guo, J.Y.; Lattime, E.; Rabinowitz, J.D.; White, E. Autophagy maintains tumour growth through circulating arginine. Nature, 2018, 563(7732), 569-573.
[http://dx.doi.org/10.1038/s41586-018-0697-7] [PMID: 30429607]
[117]
Kamigaki, M.; Sasaki, T.; Serikawa, M.; Inoue, M.; Kobayashi, K.; Itsuki, H.; Minami, T.; Yukutake, M.; Okazaki, A.; Ishigaki, T.; Ishii, Y.; Kosaka, K.; Chayama, K. Statins induce apoptosis and inhibit proliferation in cholangiocarcinoma cells. Int. J. Oncol., 2011, 39(3), 561-568.
[http://dx.doi.org/10.3892/ijo.2011.1087] [PMID: 21687941]
[118]
Ghavami, S.; Mutawe, M.M.; Sharma, P.; Yeganeh, B.; McNeill, K.D.; Klonisch, T.; Unruh, H.; Kashani, H.H.; Schaafsma, D.; Los, M.; Halayko, A.J. Mevalonate cascade regulation of airway mesenchymal cell autophagy and apoptosis: A dual role for p53. PLoS One, 2011, 6(1), e16523.
[http://dx.doi.org/10.1371/journal.pone.0016523] [PMID: 21304979]
[119]
Nakamura, S.; Shigeyama, S.; Minami, S.; Shima, T.; Akayama, S.; Matsuda, T.; Esposito, A.; Napolitano, G.; Kuma, A.; Namba-Hamano, T.; Nakamura, J.; Yamamoto, K.; Sasai, M.; Tokumura, A.; Miyamoto, M.; Oe, Y.; Fujita, T.; Terawaki, S.; Takahashi, A.; Hamasaki, M.; Yamamoto, M.; Okada, Y.; Komatsu, M.; Nagai, T.; Takabatake, Y.; Xu, H.; Isaka, Y.; Ballabio, A.; Yoshimori, T. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol., 2020, 22(10), 1252-1263.
[http://dx.doi.org/10.1038/s41556-020-00583-9] [PMID: 32989250]
[120]
Guo, C.; Wan, R.; He, Y.; Lin, S.H.; Cao, J.; Qiu, Y.; Zhang, T.; Zhao, Q.; Niu, Y.; Jin, Y.; Huang, H.Y.; Wang, X.; Tan, L.; Thomas, R.K.; Zhang, H.; Chen, L.; Wong, K.K.; Hu, L.; Ji, H. Therapeutic targeting of the mevalonate–geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. Nat. Can., 2022, 3(5), 614-628.
[http://dx.doi.org/10.1038/s43018-022-00358-1] [PMID: 35449308]
[121]
Li, L.; Tan, J.; Miao, Y.; Lei, P.; Zhang, Q. ROS and Autophagy: Interactions and molecular regulatory mechanisms. Cell. Mol. Neurobiol., 2015, 35(5), 615-621.
[http://dx.doi.org/10.1007/s10571-015-0166-x] [PMID: 25722131]
[122]
Gao, L.; Loveless, J.; Shay, C.; Teng, Y. Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv. Exp. Med. Biol., 2020, 1260, 1-12.
[http://dx.doi.org/10.1007/978-3-030-42667-5_1] [PMID: 32304028]
[123]
McGregor, G.H.; Campbell, A.D.; Fey, S.K.; Tumanov, S.; Sumpton, D.; Blanco, G.R.; Mackay, G.; Nixon, C.; Vazquez, A.; Sansom, O.J.; Kamphorst, J.J. Targeting the metabolic response to statin-mediated oxidative stress produces a synergistic antitumor response. Cancer Res., 2020, 80(2), 175-188.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0644] [PMID: 31562248]
[124]
Araki, M.; Motojima, K. Hydrophobic statins induce autophagy in cultured human rhabdomyosarcoma cells. Biochem. Biophys. Res. Commun., 2008, 367(2), 462-467.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.166] [PMID: 18178158]
[125]
Araki, M.; Maeda, M.; Motojima, K. Hydrophobic statins induce autophagy and cell death in human rhabdomyosarcoma cells by depleting geranylgeranyl diphosphate. Eur. J. Pharmacol., 2012, 674(2-3), 95-103.
[http://dx.doi.org/10.1016/j.ejphar.2011.10.044] [PMID: 22094060]
[126]
Misirkic, M.; Janjetovic, K.; Vucicevic, L.; Tovilovic, G.; Ristic, B.; Vilimanovich, U.; Harhaji-Trajkovic, L.; Sumarac-Dumanovic, M.; Micic, D.; Bumbasirevic, V.; Trajkovic, V. Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. Pharmacol. Res., 2012, 65(1), 111-119.
[http://dx.doi.org/10.1016/j.phrs.2011.08.003] [PMID: 21871960]
[127]
Castellanos-Esparza, Y.C.; Wu, S.; Huang, L.; Buquet, C.; Shen, R.; Sanchez-Gonzalez, B.; García Latorre, E.A.; Boyer, O.; Varin, R.; Jiménez-Zamudio, L.A.; Janin, A.; Vannier, J.P.; Li, H.; Lu, H. Synergistic promoting effects of pentoxifylline and simvastatin on the apoptosis of triple-negative MDA-MB-231 breast cancer cells. Int. J. Oncol., 2018, 52(4), 1246-1254.
[http://dx.doi.org/10.3892/ijo.2018.4272] [PMID: 29436616]
[128]
Shojaei, S.; Koleini, N.; Samiei, E.; Aghaei, M.; Cole, L.K.; Alizadeh, J.; Islam, M.I.; Vosoughi, A.; Albokashy, M.; Butterfield, Y.; Marzban, H.; Xu, F.; Thliveris, J.; Kardami, E.; Hatch, G.M.; Eftekharpour, E.; Akbari, M.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J., 2020, 287(5), 1005-1034.
[http://dx.doi.org/10.1111/febs.15069] [PMID: 31545550]
[129]
Yang, P.M.; Liu, Y.L.; Lin, Y.C.; Shun, C.T.; Wu, M.S.; Chen, C.C. Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer Res., 2010, 70(19), 7699-7709.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1626] [PMID: 20876807]
[130]
Hu, M.B.; Zhang, J.W.; Gao, J.B.; Qi, Y.W.; Gao, Y.; Xu, L.; Ma, Y.; Wei, Z.Z. Atorvastatin induces autophagy in MDA-MB-231 breast cancer cells. Ultrastruct. Pathol., 2018, 42(5), 409-415.
[http://dx.doi.org/10.1080/01913123.2018.1522406] [PMID: 30300062]
[131]
Yan, Y.; Xu, Z.; Dai, S.; Qian, L.; Sun, L.; Gong, Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J. Exp. Clin. Cancer Res., 2016, 35(1), 23.
[http://dx.doi.org/10.1186/s13046-016-0303-5] [PMID: 26830677]
[132]
Asakura, K.; Izumi, Y.; Yamamoto, M.; Yamauchi, Y.; Kawai, K.; Serizawa, A.; Mizushima, T.; Ohmura, M.; Kawamura, M.; Wakui, M.; Adachi, T.; Nakamura, M.; Suematsu, M.; Nomori, H. The cytostatic effects of lovastatin on ACC-MESO-1 cells. J. Surg. Res., 2011, 170(2), e197-e209.
[http://dx.doi.org/10.1016/j.jss.2011.06.037] [PMID: 21816418]
[133]
Yang, Z.; Su, Z.; DeWitt, J.P.; Xie, L.; Chen, Y.; Li, X.; Han, L.; Li, D.; Xia, J.; Zhang, Y.; Yang, Y.; Jin, C.; Zhang, J.; Li, S.; Li, K.; Zhang, Z.; Qu, X.; He, Z.; Chen, Y.; Shen, Y.; Ren, M.; Yuan, Z. Fluvastatin prevents lung adenocarcinoma bone metastasis by triggering autophagy. EBioMedicine, 2017, 19, 49-59.
[http://dx.doi.org/10.1016/j.ebiom.2017.04.017] [PMID: 28454732]
[134]
Ghavami, S.; Yeganeh, B.; Stelmack, G.L.; Kashani, H.H.; Sharma, P.; Cunnington, R.; Rattan, S.; Bathe, K.; Klonisch, T.; Dixon, I.M.C.; Freed, D.H.; Halayko, A.J. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis., 2012, 3(6), e330.
[http://dx.doi.org/10.1038/cddis.2012.61] [PMID: 22717585]
[135]
Parikh, A.; Childress, C.; Deitrick, K.; Lin, Q.; Rukstalis, D.; Yang, W. Statin-induced autophagy by inhibition of geranylgeranyl biosynthesis in prostate cancer PC3 cells. Prostate, 2010, 70(9), 971-981.
[http://dx.doi.org/10.1002/pros.21131] [PMID: 20135644]
[136]
Ching, J.K.; Ju, J.S.; Pittman, S.K.; Margeta, M.; Weihl, C.C. Increased autophagy accelerates colchicine-induced muscle toxicity. Autophagy, 2013, 9(12), 2115-2125.
[http://dx.doi.org/10.4161/auto.26150] [PMID: 24184927]
[137]
Zhang, P.; Verity, M.A.; Reue, K. Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. Cell Metab., 2014, 20(2), 267-279.
[http://dx.doi.org/10.1016/j.cmet.2014.05.003] [PMID: 24930972]
[138]
Miettinen, T.P.; Björklund, M. Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy. Cell Rep., 2015, 13(11), 2610-2620.
[http://dx.doi.org/10.1016/j.celrep.2015.11.045] [PMID: 26686643]
[139]
Tricarico, P.; Kleiner, G.; Valencic, E.; Campisciano, G.; Girardelli, M.; Crovella, S.; Knowles, A.; Marcuzzi, A. Block of the mevalonate pathway triggers oxidative and inflammatory molecular mechanisms modulated by exogenous isoprenoid compounds. Int. J. Mol. Sci., 2014, 15(4), 6843-6856.
[http://dx.doi.org/10.3390/ijms15046843] [PMID: 24758928]
[140]
Mehibel, M.; Ortiz-Martinez, F.; Voelxen, N.; Boyers, A.; Chadwick, A.; Telfer, B.A.; Mueller-Klieser, W.; West, C.M.; Critchlow, S.E.; Williams, K.J.; Stratford, I.J. Statin-induced metabolic reprogramming in head and neck cancer: A biomarker for targeting monocarboxylate transporters. Sci. Rep., 2018, 8(1), 16804.
[http://dx.doi.org/10.1038/s41598-018-35103-1] [PMID: 30429503]
[141]
Yang, J.; Pan, X.; Zhang, J.; Ma, S.; Zhou, J.; Jia, Z.; Wei, Y.; Liu, Z.; Yang, N.; Shen, Q. Reprogramming dysfunctional dendritic cells by a versatile metabolism nano-intervenor for enhancing cancer combinatorial immunotherapy. Nano Today, 2022, 46, 101618.
[http://dx.doi.org/10.1016/j.nantod.2022.101618]
[142]
Mullen, P.J.; Yu, R.; Longo, J.; Archer, M.C.; Penn, L.Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer, 2016, 16(11), 718-731.
[http://dx.doi.org/10.1038/nrc.2016.76] [PMID: 27562463]
[143]
Jurczyluk, J.; Munoz, M.A.; Skinner, O.P.; Chai, R.C.; Ali, N.; Palendira, U.; Quinn, J.M.W.; Preston, A.; Tangye, S.G.; Brown, A.J.; Argent, E.; Ziegler, J.B.; Mehr, S.; Rogers, M.J. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases. Immunol. Cell Biol., 2016, 94(10), 994-999.
[http://dx.doi.org/10.1038/icb.2016.58] [PMID: 27377765]
[144]
Seabra, M.C.; Wasmeier, C. Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol., 2004, 16(4), 451-457.
[http://dx.doi.org/10.1016/j.ceb.2004.06.014] [PMID: 15261679]
[145]
Zerial, M.; McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 107-117.
[http://dx.doi.org/10.1038/35052055] [PMID: 11252952]
[146]
Akula, M.K.; Shi, M.; Jiang, Z.; Foster, C.E.; Miao, D.; Li, A.S.; Zhang, X.; Gavin, R.M.; Forde, S.D.; Germain, G.; Carpenter, S.; Rosadini, C.V.; Gritsman, K.; Chae, J.J.; Hampton, R.; Silverman, N.; Gravallese, E.M.; Kagan, J.C.; Fitzgerald, K.A.; Kastner, D.L.; Golenbock, D.T.; Bergo, M.O.; Wang, D. Control of the innate immune response by the mevalonate pathway. Nat. Immunol., 2016, 17(8), 922-929.
[http://dx.doi.org/10.1038/ni.3487] [PMID: 27270400]
[147]
Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; Manjeri, G.R.; Li, Y.; Ifrim, D.C.; Arts, R.J.W.; van der Veer, B.M.J.W.; Deen, P.M.T.; Logie, C.; O’Neill, L.A.; Willems, P.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Ng, A.; Joosten, L.A.B.; Wijmenga, C.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684.
[http://dx.doi.org/10.1126/science.1250684] [PMID: 25258083]
[148]
Timilshina, M.; You, Z.; Lacher, S.M.; Acharya, S.; Jiang, L.; Kang, Y.; Kim, J.A.; Chang, H.W.; Kim, K.J.; Park, B.; Song, J.H.; Ko, H.J.; Park, Y.Y.; Ma, M.J.; Nepal, M.R.; Jeong, T.C.; Chung, Y.; Waisman, A.; Chang, J.H. Activation of mevalonate pathway via LKB1 is essential for stability of Treg cells. Cell Rep., 2019, 27(10), 2948-2961.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.05.020] [PMID: 31167140]
[149]
Fung, C.; Lock, R.; Gao, S.; Salas, E.; Debnath, J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell, 2008, 19(3), 797-806.
[http://dx.doi.org/10.1091/mbc.e07-10-1092] [PMID: 18094039]
[150]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[http://dx.doi.org/10.1038/nm934] [PMID: 14502282]
[151]
Munn, D.H.; Sharma, M.D.; Baban, B.; Harding, H.P.; Zhang, Y.; Ron, D.; Mellor, A.L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 2005, 22(5), 633-642.
[http://dx.doi.org/10.1016/j.immuni.2005.03.013] [PMID: 15894280]
[152]
Holmgaard, R.B.; Zamarin, D.; Li, Y.; Gasmi, B.; Munn, D.H.; Allison, J.P.; Merghoub, T.; Wolchok, J.D. Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent manner. Cell Rep., 2015, 13(2), 412-424.
[http://dx.doi.org/10.1016/j.celrep.2015.08.077] [PMID: 26411680]
[153]
Wang, C.; Tao, X.; Wei, J. Effects of LncRNA MEG3 on immunity and autophagy of non-small cell lung carcinoma through IDO signaling pathway. World J. Surg. Oncol., 2021, 19(1), 244.
[http://dx.doi.org/10.1186/s12957-021-02346-8] [PMID: 34399782]
[154]
Kim, F.J.; Maher, C.M. Sigma1 pharmacology in the context of cancer. Handb. Exp. Pharmacol., 2017, 244, 237-308.
[http://dx.doi.org/10.1007/164_2017_38] [PMID: 28744586]
[155]
Maher, C.M.; Thomas, J.D.; Haas, D.A.; Longen, C.G.; Oyer, H.M.; Tong, J.Y.; Kim, F.J. Small-molecule sigma1 modulator induces autophagic degradation of PD-L1. Mol. Cancer Res., 2018, 16(2), 243-255.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0166] [PMID: 29117944]
[156]
Shukla, S.A.; Bachireddy, P.; Schilling, B.; Galonska, C.; Zhan, Q.; Bango, C.; Langer, R.; Lee, P.C.; Gusenleitner, D.; Keskin, D.B.; Babadi, M.; Mohammad, A.; Gnirke, A.; Clement, K.; Cartun, Z.J.; Van Allen, E.M.; Miao, D.; Huang, Y.; Snyder, A.; Merghoub, T.; Wolchok, J.D.; Garraway, L.A.; Meissner, A.; Weber, J.S.; Hacohen, N.; Neuberg, D.; Potts, P.R.; Murphy, G.F.; Lian, C.G.; Schadendorf, D.; Hodi, F.S.; Wu, C.J. Cancer-germline antigen expression discriminates clinical outcome to CTLA-4 blockade. Cell, 2018, 173(3), 624-633.e8.
[http://dx.doi.org/10.1016/j.cell.2018.03.026] [PMID: 29656892]
[157]
Huang, C.T.; Workman, C.J.; Flies, D.; Pan, X.; Marson, A.L.; Zhou, G.; Hipkiss, E.L.; Ravi, S.; Kowalski, J.; Levitsky, H.I.; Powell, J.D.; Pardoll, D.M.; Drake, C.G.; Vignali, D.A.A. Role of LAG-3 in regulatory T cells. Immunity, 2004, 21(4), 503-513.
[http://dx.doi.org/10.1016/j.immuni.2004.08.010] [PMID: 15485628]
[158]
Monney, L.; Sabatos, C.A.; Gaglia, J.L.; Ryu, A.; Waldner, H.; Chernova, T.; Manning, S.; Greenfield, E.A.; Coyle, A.J.; Sobel, R.A.; Freeman, G.J.; Kuchroo, V.K. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415(6871), 536-541.
[http://dx.doi.org/10.1038/415536a] [PMID: 11823861]
[159]
Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen–specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 2010, 207(10), 2175-2186.
[http://dx.doi.org/10.1084/jem.20100637] [PMID: 20819923]
[160]
Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 2010, 207(10), 2187-2194.
[http://dx.doi.org/10.1084/jem.20100643] [PMID: 20819927]
[161]
Göbel, A.; Breining, D.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis., 2019, 10(2), 91.
[http://dx.doi.org/10.1038/s41419-019-1322-x] [PMID: 30692522]
[162]
Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A repurposed drug to fight cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 241.
[http://dx.doi.org/10.1186/s13046-021-02041-2] [PMID: 34303383]
[163]
Tamburrino, D.; Crippa, S.; Partelli, S.; Archibugi, L.; Arcidiacono, P.G.; Falconi, M.; Capurso, G. Statin use improves survival in patients with pancreatic ductal adenocarcinoma: A meta-analysis. Dig. Liver Dis., 2020, 52(4), 392-399.
[http://dx.doi.org/10.1016/j.dld.2020.01.008] [PMID: 32113888]
[164]
Iarrobino, N.A.; Gill, B.; Bernard, M.E.; Mishra, M.V.; Champ, C.E. Targeting tumor metabolism with statins during treatment for advanced-stage pancreatic cancer. Am. J. Clin. Oncol., 2018, 41(11), 1125-1131.
[http://dx.doi.org/10.1097/COC.0000000000000433] [PMID: 29509593]
[165]
Tan, N.; Klein, E.A.; Li, J.; Moussa, A.S.; Jones, J.S. Statin use and risk of prostate cancer in a population of men who underwent biopsy. J. Urol., 2011, 186(1), 86-90.
[http://dx.doi.org/10.1016/j.juro.2011.03.004] [PMID: 21571344]
[166]
Geybels, M.S.; Wright, J.L.; Holt, S.K.; Kolb, S.; Feng, Z.; Stanford, J.L. Statin use in relation to prostate cancer outcomes in a population-based patient cohort study. Prostate, 2013, 73(11), 1214-1222.
[http://dx.doi.org/10.1002/pros.22671] [PMID: 23633265]
[167]
Li, L.; Cui, N.; Hao, T.; Zou, J.; Jiao, W.; Yi, K.; Yu, W. Statins use and the prognosis of colorectal cancer: A meta-analysis. Clin. Res. Hepatol. Gastroenterol., 2021, 45(5), 101588.
[http://dx.doi.org/10.1016/j.clinre.2020.101588] [PMID: 33662632]
[168]
Islam, M.M.; Poly, T.N.; Walther, B.A.; Yang, H.C.; Li, Y-C.J. Statin use and the risk of hepatocellular carcinoma: A meta-analysis of observational studies. Cancers, 2020, 12(3), 671.
[http://dx.doi.org/10.3390/cancers12030671] [PMID: 32183029]
[169]
Majidi, A.; Na, R.; Jordan, S.J.; De Fazio, A.; Webb, P.M. Statin use and survival following a diagnosis of ovarian cancer: A prospective observational study. Int. J. Cancer, 2021, 148(7), 1608-1615.
[http://dx.doi.org/10.1002/ijc.33333] [PMID: 33034053]
[170]
Smyth, L.; Blunt, D.N.; Gatov, E.; Nagamuthu, C.; Croxford, R.; Mozessohn, L.; Cheung, M.C. Statin and cyclooxygenase-2 inhibitors improve survival in newly diagnosed diffuse large B-cell lymphoma: A large population-based study of 4913 subjects. Br. J. Haematol., 2020, 191(3), 396-404.
[http://dx.doi.org/10.1111/bjh.16635] [PMID: 32304100]
[171]
Ni, W.; Mo, H.; Liu, Y.; Xu, Y.; Qin, C.; Zhou, Y.; Li, Y.; Li, Y.; Zhou, A.; Yao, S.; Zhou, R.; Huo, J.; Che, L.; Li, J. Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA SNHG29-mediated YAP activation. Mol. Ther., 2021, 29(10), 2995-3010.
[http://dx.doi.org/10.1016/j.ymthe.2021.05.012] [PMID: 33992804]
[172]
Wolfe, A.R.; Trenton, N.J.; Debeb, B.G.; Larson, R.; Ruffell, B.; Chu, K.; Hittelman, W.; Diehl, M.; Reuben, J.M.; Ueno, N.T.; Woodward, W.A. Mesenchymal stem cells and macrophages interact through IL-6 to promote inflammatory breast cancer in pre- clinical models. Oncotarget, 2016, 7(50), 82482-82492.
[http://dx.doi.org/10.18632/oncotarget.12694] [PMID: 27756885]
[173]
Xu, Y.; Yu, H.; Qin, H.; Kang, J.; Yu, C.; Zhong, J.; Su, J.; Li, H.; Sun, L. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett., 2012, 314(2), 232-243.
[http://dx.doi.org/10.1016/j.canlet.2011.09.034] [PMID: 22019047]
[174]
Sasaki, K.; Tsuno, N.H.; Sunami, E.; Tsurita, G.; Kawai, K.; Okaji, Y.; Nishikawa, T.; Shuno, Y.; Hongo, K.; Hiyoshi, M.; Kaneko, M.; Kitayama, J.; Takahashi, K.; Nagawa, H. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer, 2010, 10(1), 370.
[http://dx.doi.org/10.1186/1471-2407-10-370] [PMID: 20630104]
[175]
Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14(8), 1435-1455.
[http://dx.doi.org/10.1080/15548627.2018.1474314] [PMID: 29940786]
[176]
Wu, Y.C.; Wu, W.K.K.; Li, Y.; Yu, L.; Li, Z.J.; Wong, C.C.M.; Li, H.T.; Sung, J.J.Y.; Cho, C.H. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochem. Biophys. Res. Commun., 2009, 382(2), 451-456.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.051] [PMID: 19289106]
[177]
Pasquier, B. Autophagy inhibitors. Cell Mol Life Sci., 2016, 73(5), 985-100.
[http://dx.doi.org/10.1007/s00018-015-2104-y]
[178]
Vinod, V.; Padmakrishnan, C.J.; Vijayan, B.; Gopala, S. ‘How can I halt thee?’ The puzzles involved in autophagic inhibition. Pharmacol. Res., 2014, 82, 1-8.
[http://dx.doi.org/10.1016/j.phrs.2014.03.005] [PMID: 24657238]
[179]
Thelen, M.; Wymann, M.P.; Langen, H. Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 4960-4964.
[http://dx.doi.org/10.1073/pnas.91.11.4960] [PMID: 8197165]
[180]
Ihara, M.; Shichijo, K.; Takeshita, S.; Kudo, T. Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, induces accumulation of DNA double-strand breaks. J. Radiat. Res., 2020, 61(2), 171-176.
[http://dx.doi.org/10.1093/jrr/rrz102] [PMID: 32052028]
[181]
Vlahos, C.J.; Matter, W.F.; Hui, K.Y.; Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 1994, 269(7), 5241-5248.
[http://dx.doi.org/10.1016/S0021-9258(17)37680-9] [PMID: 8106507]
[182]
Knight, Z.A.; Gonzalez, B.; Feldman, M.E.; Zunder, E.R.; Goldenberg, D.D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W.A.; Williams, R.L.; Shokat, K.M. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell, 2006, 125(4), 733-747.
[http://dx.doi.org/10.1016/j.cell.2006.03.035] [PMID: 16647110]
[183]
Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43.
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
[184]
Ronan, B.; Flamand, O.; Vescovi, L.; Dureuil, C.; Durand, L.; Fassy, F.; Bachelot, M.F.; Lamberton, A.; Mathieu, M.; Bertrand, T.; Marquette, J.P.; El-Ahmad, Y.; Filoche-Romme, B.; Schio, L.; Garcia-Echeverria, C.; Goulaouic, H.; Pasquier, B. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol., 2014, 10(12), 1013-1019.
[http://dx.doi.org/10.1038/nchembio.1681] [PMID: 25326666]
[185]
Pasquier, B. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy, 2015, 11(4), 725-726.
[http://dx.doi.org/10.1080/15548627.2015.1033601] [PMID: 25905679]
[186]
Dowdle, W.E.; Nyfeler, B.; Nagel, J.; Elling, R.A.; Liu, S.; Triantafellow, E.; Menon, S.; Wang, Z.; Honda, A.; Pardee, G.; Cantwell, J.; Luu, C.; Cornella-Taracido, I.; Harrington, E.; Fekkes, P.; Lei, H.; Fang, Q.; Digan, M.E.; Burdick, D.; Powers, A.F.; Helliwell, S.B.; D’Aquin, S.; Bastien, J.; Wang, H.; Wiederschain, D.; Kuerth, J.; Bergman, P.; Schwalb, D.; Thomas, J.; Ugwonali, S.; Harbinski, F.; Tallarico, J.; Wilson, C.J.; Myer, V.E.; Porter, J.A.; Bussiere, D.E.; Finan, P.M.; Labow, M.A.; Mao, X.; Hamann, L.G.; Manning, B.D.; Valdez, R.A.; Nicholson, T.; Schirle, M.; Knapp, M.S.; Keaney, E.P.; Murphy, L.O. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol., 2014, 16(11), 1069-1079.
[http://dx.doi.org/10.1038/ncb3053] [PMID: 25327288]
[187]
Liu, J.; Xia, H.; Kim, M.; Xu, L.; Li, Y.; Zhang, L.; Cai, Y.; Norberg, H.V.; Zhang, T.; Furuya, T.; Jin, M.; Zhu, Z.; Wang, H.; Yu, J.; Li, Y.; Hao, Y.; Choi, A.; Ke, H.; Ma, D.; Yuan, J. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell, 2011, 147(1), 223-234.
[http://dx.doi.org/10.1016/j.cell.2011.08.037] [PMID: 21962518]
[188]
Russell, R.C.; Tian, Y.; Yuan, H.; Park, H.W.; Chang, Y.Y.; Kim, J.; Kim, H.; Neufeld, T.P.; Dillin, A.; Guan, K.L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol., 2013, 15(7), 741-750.
[http://dx.doi.org/10.1038/ncb2757] [PMID: 23685627]
[189]
Lazarus, M.B.; Novotny, C.J.; Shokat, K.M. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol., 2015, 10(1), 257-261.
[http://dx.doi.org/10.1021/cb500835z] [PMID: 25551253]
[190]
Petherick, K.J.; Conway, O.J.L.; Mpamhanga, C.; Osborne, S.A.; Kamal, A.; Saxty, B.; Ganley, I.G. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem., 2015, 290(48), 28726.
[http://dx.doi.org/10.1074/jbc.A114.627778] [PMID: 26614783]
[191]
Egan, D.F.; Chun, M.G.H.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.C.; Sheffler, D.J.; Teriete, P.; Asara, J.M.; Turk, B.E.; Cosford, N.D.P.; Shaw, R.J. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell, 2015, 59(2), 285-297.
[http://dx.doi.org/10.1016/j.molcel.2015.05.031] [PMID: 26118643]
[192]
Wang, S.T.; Ho, H.J.; Lin, J.T.; Shieh, J.J.; Wu, C.Y. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis., 2017, 8(2), e2626.
[http://dx.doi.org/10.1038/cddis.2016.472] [PMID: 28230855]
[193]
Ortiz, N.; Díaz, C. Mevalonate pathway as a novel target for the treatment of metastatic gastric cancer. Oncol. Lett., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/ol.2020.12183] [PMID: 33093924]
[194]
Chang, H.L.; Chen, C.Y.; Hsu, Y.F.; Kuo, W.S.; Ou, G.; Chiu, P.T.; Huang, Y.H.; Hsu, M.J. Simvastatin induced HCT116 colorectal cancer cell apoptosis through p38MAPK-p53-survivin signaling cascade. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(8), 4053-4064.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.011] [PMID: 23583370]
[195]
Lee, J.; Hong, E.M.; Jang, J.A.; Park, S.W.; Koh, D.H.; Choi, M.H.; Jang, H.J.; Kae, S.H. Simvastatin induces apoptosis and suppresses insulin-like growth factor 1 receptor in bile duct cancer cells. Gut Liver, 2016, 10(2), 310-317.
[http://dx.doi.org/10.5009/gnl15195] [PMID: 26470769]
[196]
Ogunwobi, O.O.; Beales, I.L.P. Statins inhibit proliferation and induce apoptosis in Barrett’s esophageal adenocarcinoma cells. Am. J. Gastroenterol., 2008, 103(4), 825-837.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01773.x] [PMID: 18371146]
[197]
Wu, X.; Song, M.; Qiu, P.; Rakariyatham, K.; Li, F.; Gao, Z.; Cai, X.; Wang, M.; Xu, F.; Zheng, J.; Xiao, H. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis. Carcinogenesis, 2017, 38(4), 455-464.
[http://dx.doi.org/10.1093/carcin/bgx018] [PMID: 28207072]
[198]
Wang, S.T.; Huang, S.W.; Liu, K.T.; Lee, T.Y.; Shieh, J.J.; Wu, C.Y. Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/STAT3 pathway. Cell Death Discov., 2020, 6(1), 17.
[http://dx.doi.org/10.1038/s41420-020-0252-9] [PMID: 32257389]
[199]
Zhang, Y.; Liu, Y.; Duan, J.; Wang, H.; Zhang, Y.; Qiao, K.; Wang, J. Cholesterol depletion sensitizes gallbladder cancer to cisplatin by impairing DNA damage response. Cell Cycle, 2019, 18(23), 3337-3350.
[http://dx.doi.org/10.1080/15384101.2019.1676581] [PMID: 31599189]
[200]
Chen, Y.H.; Chen, Y.C.; Lin, C.C.; Hsieh, Y.P.; Hsu, C.S.; Hsieh, M.C. Synergistic anticancer effects of gemcitabine with pitavastatin on pancreatic cancer cell line MIA PaCa-2 in vitro and in vivo. Cancer Manag. Res., 2020, 12, 4645-4665.
[http://dx.doi.org/10.2147/CMAR.S247876] [PMID: 32606957]
[201]
Zhang, W-J.; You, H-Y.; Xie, X.M.; Zheng, Z.H.; Zhu, H.L.; Jiang, F.Z. Pitavastatin suppressed liver cancer cells in vitro and in vivo. OncoTargets Ther., 2016, 9, 5383-5388.
[http://dx.doi.org/10.2147/OTT.S106906] [PMID: 27621652]
[202]
Yang, A.; Kimmelman, A.C. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy, 2014, 10(9), 1683-1684.
[http://dx.doi.org/10.4161/auto.29961] [PMID: 25046107]
[203]
Dasgupta, A.; Arneson-Wissink, P.C.; Schmitt, R.E.; Cho, D.S.; Ducharme, A.M.; Hogenson, T.L.; Krueger, E.W.; Bamlet, W.R.; Zhang, L.; Razidlo, G.L.; Fernandez-Zapico, M.E.; Doles, J.D. Anticachectic regulator analysis reveals Perp-dependent antitumorigenic properties of 3-methyladenine in pancreatic cancer. JCI Insight, 2022, 7(2), e153842.
[http://dx.doi.org/10.1172/jci.insight.153842] [PMID: 34874916]
[204]
Teranishi, F.; Takahashi, N.; Gao, N.; Akamo, Y.; Takeyama, H.; Manabe, T.; Okamoto, T. Phosphoinositide 3-kinase inhibitor (wortmannin) inhibits pancreatic cancer cell motility and migration induced by hyaluronan in vitro and peritoneal metastasis in vivo. Cancer Sci., 2009, 100(4), 770-777.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01084.x] [PMID: 19469020]
[205]
He, K.; Yu, X.; Wang, X.; Tang, L.; Cao, Y.; Xia, J.; Cheng, J. Baicalein and Ly294002 induces liver cancer cells apoptosis via regulating phosphatidyl inositol 3-kinase/Akt signaling pathway. J. Cancer Res. Ther., 2018, 14(Suppl. 2), S519-S525.
[http://dx.doi.org/10.4103/0973-1482.235356] [PMID: 29970718]
[206]
Liao, Y.; Guo, Z.; Xia, X.; Liu, Y.; Huang, C.; Jiang, L.; Wang, X.; Liu, J.; Huang, H. Inhibition of EGFR signaling with Spautin-1 represents a novel therapeutics for prostate cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 157.
[http://dx.doi.org/10.1186/s13046-019-1165-4] [PMID: 30975171]
[207]
Singha, B.; Laski, J.; Ramos Valdés, Y.; Liu, E.; DiMattia, G.E.; Shepherd, T.G. Inhibiting ULK1 kinase decreases autophagy and cell viability in high-grade serous ovarian cancer spheroids. Am. J. Cancer Res., 2020, 10(5), 1384-1399.
[PMID: 32509386]
[208]
Desai, J.M.; Karve, A.S.; Gudelsky, G.A.; Gawali, M.V.; Seibel, W.; Sallans, L.; DasGupta, B.; Desai, P.B. Brain pharmacokinetics and metabolism of the AMP-activated protein kinase selective inhibitor SBI-0206965, an investigational agent for the treatment of glioblastoma. Invest. New Drugs, 2022, 40(5), 944-952.
[http://dx.doi.org/10.1007/s10637-022-01278-8] [PMID: 35802287]
[209]
Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; Vonderheide, R.H.; Pittet, M.J.; Jain, R.K.; Zou, W.; Howcroft, T.K.; Woodhouse, E.C.; Weinberg, R.A.; Krummel, M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med., 2018, 24(5), 541-550.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]

© 2025 Bentham Science Publishers | Privacy Policy