Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Treatment Advances in Lung Cancer with Leptomeningeal Metastasis

Author(s): Yuan Meng, Meiying Zhu, Jie Yang, Xuerui Wang, Yangyueying Liang, Minghui Yu, Longhui Li and Fanming Kong*

Volume 24, Issue 9, 2024

Published on: 24 January, 2024

Page: [910 - 919] Pages: 10

DOI: 10.2174/0115680096276133231201061114

Abstract

Leptomeningeal metastasis (LM) is a serious and often fatal complication in patients with advanced lung cancer, resulting in significant neurological deficits, decreased quality of life, and a poor prognosis.

This article summarizes current research advances in treating lung cancer with meningeal metastases, discusses clinical challenges, and explores treatment strategies.

Through an extensive review of relevant clinical trial reports and screening of recent conference abstracts, we collected clinical data on treating patients with lung cancer with meningeal metastases to provide an overview of the current research progress.

Exciting progress has been made by focusing on specific mutations within lung cancer, including the use of EGFR tyrosine kinase inhibitors or inhibitors for anaplastic lymphoma kinase gene rearrangement, such as osimertinib, alectinib, and lorlatinib. These targeted therapies have shown impressive results in penetrating the central nervous system (CNS). Regarding whole-brain radiotherapy, there is currently some controversy among investigators regarding its effect on survival. Additionally, immune checkpoint inhibitors (ICIs) have demonstrated reliable clinical benefits due to their ability to retain anticancer activity in CNS metastases. Moreover, combination therapy shows promise in providing further treatment possibilities.

Considerable progress has been made in the clinical research of lung cancer with LM. However, the sample size of prospective clinical trials investigating LM for lung cancer is still limited, with most reports being retrospective. Developing more effective management protocols for metastatic LM in lung cancer remains an ongoing challenge for the future.

Graphical Abstract

[1]
Remon, J.; Le Rhun, E.; Besse, B. Leptomeningeal carcinomatosis in non-small cell lung cancer patients: A continuing challenge in the personalized treatment era. Cancer Treat. Rev., 2017, 53, 128-137.
[http://dx.doi.org/10.1016/j.ctrv.2016.12.006] [PMID: 28110254]
[2]
Park, J.H.; Kim, Y.J.; Lee, J.O.; Lee, K.W.; Kim, J.H.; Bang, S.M.; Chung, J.H.; Kim, J.S.; Lee, J.S. Clinical outcomes of leptomeningeal metastasis in patients with non-small cell lung cancer in the modern chemotherapy era. Lung Cancer, 2012, 76(3), 387-392.
[http://dx.doi.org/10.1016/j.lungcan.2011.11.022] [PMID: 22186628]
[3]
Clarke, JL; Perez, HR; Jacks, LM; Panageas, KS; DeAngelis, LM Leptomeningeal metastases in the MRI era. Neurology, 2010, 74(18), 1449-1454.
[http://dx.doi.org/10.1212/WNL.0b013e3181dc1a69]
[4]
Liao, B.C.; Lee, J.H.; Lin, C.C.; Chen, Y.F.; Chang, C.H.; Ho, C.C.; Shih, J.Y.; Yu, C.J.; Yang, J.C.H. Epidermal growth factor receptor tyrosine kinase inhibitors for non–small-cell lung cancer patients with leptomeningeal carcinomatosis. J. Thorac. Oncol., 2015, 10(12), 1754-1761.
[http://dx.doi.org/10.1097/JTO.0000000000000669] [PMID: 26334749]
[5]
Mack, F.; Baumert, B.G.; Schäfer, N.; Hattingen, E.; Scheffler, B.; Herrlinger, U.; Glas, M. Therapy of leptomeningeal metastasis in solid tumors. Cancer Treat. Rev., 2016, 43, 83-91.
[http://dx.doi.org/10.1016/j.ctrv.2015.12.004] [PMID: 26827696]
[6]
Cheng, H.; Perez-Soler, R. Leptomeningeal metastases in non-small-cell lung cancer. Lancet Oncol., 2018, 19(1), e43-e55.
[http://dx.doi.org/10.1016/S1470-2045(17)30689-7] [PMID: 29304362]
[7]
Li, Y.S.; Jiang, B.Y.; Yang, J.J.; Tu, H.Y.; Zhou, Q.; Guo, W.B.; Yan, H.H.; Wu, Y.L. Leptomeningeal metastases in patients with NSCLC with EGFR mutations. J. Thorac. Oncol., 2016, 11(11), 1962-1969.
[http://dx.doi.org/10.1016/j.jtho.2016.06.029] [PMID: 27539328]
[8]
Merkhofer, C.M.; Eastman, B.; Densmore, I.; Halasz, L.M.; McGranahan, T.; Baik, C. Systemic treatment patterns and outcomes in patients with egfr mutated non-small cell lung cancer and leptomeningeal disease. Clin. Lung Cancer, 2022, 23(5), 446-455.
[http://dx.doi.org/10.1016/j.cllc.2022.03.013] [PMID: 35610115]
[9]
Li, Y.; Liu, B.; Connolly, I.D.; Kakusa, B.W.; Pan, W.; Nagpal, S.; Montgomery, S.B.; Hayden, G.M. Recurrently mutated genes differ between leptomeningeal and solid lung cancer brain metastases. J. Thorac. Oncol., 2018, 13(7), 1022-1027.
[http://dx.doi.org/10.1016/j.jtho.2018.03.018] [PMID: 29604399]
[10]
Rybarczyk-Kasiuchnicz, A.; Ramlau, R.; Stencel, K. Treatment of brain metastases of non-small cell lung carcinoma. Int. J. Mol. Sci., 2021, 22(2), 593.
[http://dx.doi.org/10.3390/ijms22020593] [PMID: 33435596]
[11]
Jackman, D.M.; Cioffredi, L.A.; Jacobs, L.; Sharmeen, F.; Morse, L.K.; Lucca, J.; Plotkin, S.R.; Marcoux, P.J.; Rabin, M.S.; Lynch, T.J.; Johnson, B.E.; Kesari, S. A Phase I trial of high dose gefitinib for patients with leptomeningeal metastases from non-small cell lung cancer. Oncotarget, 2015, 6(6), 4527-4536.
[http://dx.doi.org/10.18632/oncotarget.2886] [PMID: 25784657]
[12]
Togashi, Y.; Masago, K.; Masuda, S.; Mizuno, T.; Fukudo, M.; Ikemi, Y.; Sakamori, Y.; Nagai, H.; Kim, Y.H.; Katsura, T.; Mishima, M. Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer. Cancer Chemother. Pharmacol., 2012, 70(3), 399-405.
[http://dx.doi.org/10.1007/s00280-012-1929-4] [PMID: 22806307]
[13]
Lee, E.; Keam, B.; Kim, D.W.; Kim, T.M.; Lee, S.H.; Chung, D.H.; Heo, D.S. Erlotinib versus gefitinib for control of leptomeningeal carcinomatosis in non-small-cell lung cancer. J. Thorac. Oncol., 2013, 8(8), 1069-1074.
[http://dx.doi.org/10.1097/JTO.0b013e318294c8e8] [PMID: 23804027]
[14]
How, J.; Mann, J.; Laczniak, A.N.; Baggstrom, M.Q. Pulsatile erlotinib in EGFR-positive non–small-cell lung cancer patients with leptomeningeal and brain metastases: Review of the literature. Clin. Lung Cancer, 2017, 18(4), 354-363.
[http://dx.doi.org/10.1016/j.cllc.2017.01.013] [PMID: 28245967]
[15]
Kawamura, T.; Hata, A.; Takeshita, J.; Fujita, S.; Hayashi, M.; Tomii, K.; Katakami, N. High-dose erlotinib for refractory leptomeningeal metastases after failure of standard-dose EGFR-TKIs. Cancer Chemother. Pharmacol., 2015, 75(6), 1261-1266.
[http://dx.doi.org/10.1007/s00280-015-2759-y] [PMID: 25921002]
[16]
Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.M.; Park, K.; Kim, S.W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; Heo, D.S.; Crino, L.; Tan, E.H.; Chao, T.Y.; Shahidi, M.; Cong, X.J.; Lorence, R.M.; Yang, J.C.H. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial. Lancet Oncol., 2012, 13(5), 528-538.
[http://dx.doi.org/10.1016/S1470-2045(12)70087-6] [PMID: 22452896]
[17]
Hoffknecht, P.; Tufman, A.; Wehler, T.; Pelzer, T.; Wiewrodt, R.; Schütz, M.; Serke, M.; Stöhlmacher-Williams, J.; Märten, A.; Maria Huber, R.; Dickgreber, N.J. Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. J. Thorac. Oncol., 2015, 10(1), 156-163.
[http://dx.doi.org/10.1097/JTO.0000000000000380] [PMID: 25247337]
[18]
Zeng, Q.; Wang, J.; Cheng, Z.; Chen, K.; Johnström, P.; Varnäs, K.; Li, D.Y.; Yang, Z.F.; Zhang, X. Discovery and evaluation of clinical candidate AZD3759, a potent, oral active, central nervous system-penetrant, epidermal growth factor receptor tyrosine kinase inhibitor. J. Med. Chem., 2015, 58(20), 8200-8215.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01073] [PMID: 26313252]
[19]
Ballard, P.; Yates, J.W.T.; Yang, Z.; Kim, D.W.; Yang, J.C.H.; Cantarini, M.; Pickup, K.; Jordan, A.; Hickey, M.; Grist, M.; Box, M.; Johnström, P.; Varnäs, K.; Malmquist, J.; Thress, K.S.; Jänne, P.A.; Cross, D. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res., 2016, 22(20), 5130-5140.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0399] [PMID: 27435396]
[20]
Tamura, K.; Yoshida, T.; Masuda, K.; Matsumoto, Y.; Shinno, Y.; Okuma, Y.; Goto, Y.; Horinouchi, H.; Yamamoto, N.; Ohe, Y. Comparison of clinical outcomes of osimertinib and first-generation EGFR-tyrosine kinase inhibitors (TKIs) in TKI-untreated EGFR-mutated non-small-cell lung cancer with leptomeningeal metastases. ESMO Open, 2023, 8(4), 101594.
[http://dx.doi.org/10.1016/j.esmoop.2023.101594] [PMID: 37517364]
[21]
Wang, X.; Cai, J.; Zeng, Z.; Liu, A. Efficacy of osimertinib for preventing leptomeningeal metastasis derived from advanced EGFR-mutated non-small cell lung cancer: A propensity-matched retrospective study. BMC Cancer, 2021, 21(1), 873.
[http://dx.doi.org/10.1186/s12885-021-08581-2] [PMID: 34330231]
[22]
Ahn, M.J.; Chiu, C.H.; Cheng, Y.; Han, J.Y.; Goldberg, S.B.; Greystoke, A.; Crawford, J.; Zhao, Y.; Huang, X.; Johnson, M.; Vishwanathan, K.; Yates, J.W.T.; Brown, A.P.; Mendoza-Naranjo, A.; Mok, T. Osimertinib for patients with leptomeningeal metastases associated with EGFR T790M-positive advanced NSCLC: The AURA leptomeningeal metastases analysis. J. Thorac. Oncol., 2020, 15(4), 637-648.
[http://dx.doi.org/10.1016/j.jtho.2019.12.113] [PMID: 31887431]
[23]
Saboundji, K.; Auliac, J.B.; Pérol, M.; François, G.; Janicot, H.; Marcq, M.; Dubos-Arvis, C.; Renault, A.; Guisier, F.; Odier, L.; Gervais, R.; Chouaïd, C. Efficacy of osimertinib in EGFR-mutated non-small cell lung cancer with leptomeningeal metastases pretreated with EGFR-tyrosine kinase inhibitors. Target. Oncol., 2018, 13(4), 501-507.
[http://dx.doi.org/10.1007/s11523-018-0581-2] [PMID: 30039345]
[24]
Lee, J.; Choi, Y.L.; Han, J.; Park, S.; Jung, H.A.; Su, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Osimertinib improves overall survival in patients with EGFR-mutated NSCLC with leptomeningeal metastases regardless of T790M mutational status. J. Thorac. Oncol., 2020, 15(11), 1758-1766.
[http://dx.doi.org/10.1016/j.jtho.2020.06.018] [PMID: 32652216]
[25]
Chiang, C.L.; Ho, H.L.; Yeh, Y.C.; Lee, C.C.; Huang, H.C.; Shen, C.I.; Luo, Y.H.; Chen, Y.M.; Chiu, C.H.; Chou, T.Y. Prognosticators of osimertinib treatment outcomes in patients with EGFR-mutant non-small cell lung cancer and leptomeningeal metastasis. J. Cancer Res. Clin. Oncol., 2023, 149(1), 5-14.
[http://dx.doi.org/10.1007/s00432-022-04396-1] [PMID: 36318332]
[26]
Nanjo, S.; Hata, A.; Okuda, C.; Kaji, R.; Okada, H.; Tamura, D.; Irie, K.; Okada, H.; Fukushima, S.; Katakami, N. Standard-dose osimertinib for refractory leptomeningeal metastases in T790M- positive EGFR-mutant non-small cell lung cancer. Br. J. Cancer, 2018, 118(1), 32-37.
[http://dx.doi.org/10.1038/bjc.2017.394] [PMID: 29190637]
[27]
Park, S.; Lee, M.H.; Seong, M.; Kim, S.T.; Kang, J.H.; Cho, B.C.; Lee, K.H.; Cho, E.K.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann. Oncol., 2020, 31(10), 1397-1404.
[http://dx.doi.org/10.1016/j.annonc.2020.06.017] [PMID: 32634610]
[28]
Yang, J.C.H.; Kim, S.W.; Kim, D.W.; Lee, J.S.; Cho, B.C.; Ahn, J.S.; Lee, D.H.; Kim, T.M.; Goldman, J.W.; Natale, R.B.; Brown, A.P.; Collins, B.; Chmielecki, J.; Vishwanathan, K.; Mendoza- Naranjo, A.; Ahn, M.J. Osimertinib in patients with epidermal growth factor receptor mutation–positive non–small-cell lung cancer and leptomeningeal metastases: The BLOOM study. J. Clin. Oncol., 2020, 38(6), 538-547.
[http://dx.doi.org/10.1200/JCO.19.00457] [PMID: 31809241]
[29]
Flippot, R.; Biondani, P.; Auclin, E.; Xiao, D.; Hendriks, L.; Le Rhun, E.; Leduc, C.; Beau-Faller, M.; Gervais, R.; Remon, J.; Adam, J.; Planchard, D.; Lavaud, P.; Naltet, C.; Caramella, C.; Le Pechoux, C.; Lacroix, L.; Gazzah, A.; Mezquita, L.; Besse, B. Activity of EGFR tyrosine kinase inhibitors in NSCLC with refractory leptomeningeal metastases. J. Thorac. Oncol., 2019, 14(8), 1400-1407.
[http://dx.doi.org/10.1016/j.jtho.2019.05.007] [PMID: 31108248]
[30]
Ahn, M.J.; Kim, D.W.; Cho, B.C.; Kim, S.W.; Lee, J.S.; Ahn, J.S.; Kim, T.M.; Lin, C.C.; Kim, H.R.; John, T.; Kao, S.; Goldman, J.W.; Su, W.C.; Natale, R.; Rabbie, S.; Harrop, B.; Overend, P.; Yang, Z.; Yang, J.C.H. Activity and safety of AZD3759 in EGFR-mutant non-small-cell lung cancer with CNS metastases (BLOOM): A phase 1, open-label, dose-escalation and dose-expansion study. Lancet Respir. Med., 2017, 5(11), 891-902.
[http://dx.doi.org/10.1016/S2213-2600(17)30378-8] [PMID: 29056570]
[31]
Yang, Z.; Guo, Q.; Wang, Y.; Chen, K.; Zhang, L.; Cheng, Z.; Xu, Y.; Yin, X.; Bai, Y.; Rabbie, S.; Kim, D.W.; Ahn, M.J.; Yang, J.C.H.; Zhang, X. AZD3759, a BBB-penetrating EGFR inhibitor for the treatment of EGFR mutant NSCLC with CNS metastases. Sci. Transl. Med., 2016, 8(368), 368ra172.
[http://dx.doi.org/10.1126/scitranslmed.aag0976] [PMID: 27928026]
[32]
Maggie Liu, S.Y.; Dong, X.R.; Wang, Z.; Du, Y.; Cui, J.W.; Chu, Q.; Xu, B.F.; Zheng, M.Y.; Deng, J.Y.; Lu, C.; Wei, X.W.; Li, Y.S.; Zheng, M.M.; Yang, M.Y.; Huang, J.; Li, A.; Bai, X.Y.; Sun, Y.L.; Xu, C.R.; Wang, B.C.; Chen, H.J.; Yang, J.J.; Yan, H.H.; Zhong, W.Z.; Zhou, Q.; Wu, Y.L. Efficacy, safety and dose selection of AZD3759 in patients with untreated EGFR-mutated non-small-cell lung cancer and central nervous system metastases in China (CTONG1702-Arm 8): A multi-center, single-arm, phase 2 trial. EClinicalMedicine, 2023, 64, 102238.
[http://dx.doi.org/10.1016/j.eclinm.2023.102238] [PMID: 37781161]
[33]
Yang, J.C.H.; Camidge, D.R.; Yang, C.T.; Zhou, J.; Guo, R.; Chiu, C.H.; Chang, G.C.; Shiah, H.S.; Chen, Y.; Wang, C.C.; Berz, D.; Su, W.C.; Yang, N.; Wang, Z.; Fang, J.; Chen, J.; Nikolinakos, P.; Lu, Y.; Pan, H.; Maniam, A.; Bazhenova, L.; Shirai, K.; Jahanzeb, M.; Willis, M.; Masood, N.; Chowhan, N.; Hsia, T.C.; Jian, H.; Lu, S. Safety, efficacy, and pharmacokinetics of almonertinib (HS-10296) in pretreated patients with EGFR-mutated advanced NSCLC: A multicenter, open-label, phase 1 trial. J. Thorac. Oncol., 2020, 15(12), 1907-1918.
[http://dx.doi.org/10.1016/j.jtho.2020.09.001] [PMID: 32916310]
[34]
Zhang, Y.; Zhang, Y.; Niu, W.; Ge, X.; Huang, F.; Pang, J.; Li, X.; Wang, Y.; Gao, W.; Fan, F.; Li, S.; Liu, H. Experimental study of almonertinib crossing the blood-brain barrier in EGFR- mutant NSCLC brain metastasis and spinal cord metastasis models. Front. Pharmacol., 2021, 12, 750031.
[http://dx.doi.org/10.3389/fphar.2021.750031] [PMID: 34630120]
[35]
Tan, C.S.; Cho, B.C.; Soo, R.A. Treatment options for EGFR mutant NSCLC with CNS involvement—Can patients BLOOM with the use of next generation EGFR TKIs? Lung Cancer, 2017, 108, 29-37.
[http://dx.doi.org/10.1016/j.lungcan.2017.02.012] [PMID: 28625644]
[36]
Ozcan, G.; Singh, M.; Vredenburgh, J.J. Leptomeningeal metastasis from non–small cell lung cancer and current landscape of treatments. Clin. Cancer Res., 2023, 29(1), 11-29.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-1585] [PMID: 35972437]
[37]
Horn, L.; Pao, W. EML4-ALK: Honing in on a new target in non-small-cell lung cancer. J. Clin. Oncol., 2009, 27(26), 4232-4235.
[http://dx.doi.org/10.1200/JCO.2009.23.6661] [PMID: 19667260]
[38]
Gainor, J.F.; Ou, S.H.I.; Logan, J.; Borges, L.F.; Shaw, A.T. The central nervous system as a sanctuary site in ALK-positive non-small-cell lung cancer. J. Thorac. Oncol., 2013, 8(12), 1570-1573.
[http://dx.doi.org/10.1097/JTO.0000000000000029] [PMID: 24389440]
[39]
Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177.
[http://dx.doi.org/10.1056/NEJMoa1408440] [PMID: 25470694]
[40]
Costa, D.B.; Shaw, A.T.; Ou, S.H.I.; Solomon, B.J.; Riely, G.J.; Ahn, M.J.; Zhou, C.; Shreeve, S.M.; Selaru, P.; Polli, A.; Schnell, P.; Wilner, K.D.; Wiltshire, R.; Camidge, D.R.; Crinò, L. Clinical experience with crizotinib in patients with advanced ALK -rearranged non–small-cell lung cancer and brain metastases. J. Clin. Oncol., 2015, 33(17), 1881-1888.
[http://dx.doi.org/10.1200/JCO.2014.59.0539] [PMID: 25624436]
[41]
Solomon, B.J.; Cappuzzo, F.; Felip, E.; Blackhall, F.H.; Costa, D.B.; Kim, D.W.; Nakagawa, K.; Wu, Y.L.; Mekhail, T.; Paolini, J.; Tursi, J.; Usari, T.; Wilner, K.D.; Selaru, P.; Mok, T.S.K. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK -positive non–small-cell lung cancer: Results from PROFILE 1014. J. Clin. Oncol., 2016, 34(24), 2858-2865.
[http://dx.doi.org/10.1200/JCO.2015.63.5888] [PMID: 27022118]
[42]
Friboulet, L.; Li, N.; Katayama, R.; Lee, C.C.; Gainor, J.F.; Crystal, A.S.; Michellys, P.Y.; Awad, M.M.; Yanagitani, N.; Kim, S.; Pferdekamper, A.C.; Li, J.; Kasibhatla, S.; Sun, F.; Sun, X.; Hua, S.; McNamara, P.; Mahmood, S.; Lockerman, E.L.; Fujita, N.; Nishio, M.; Harris, J.L.; Shaw, A.T.; Engelman, J.A. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov., 2014, 4(6), 662-673.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0846] [PMID: 24675041]
[43]
Kim, D.W.; Mehra, R.; Tan, D.S.W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Sutradhar, S.; Li, S.; Szczudlo, T.; Yovine, A.; Shaw, A.T. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): Updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol., 2016, 17(4), 452-463.
[http://dx.doi.org/10.1016/S1470-2045(15)00614-2] [PMID: 26973324]
[44]
Crinò, L.; Ahn, M.J.; De Marinis, F.; Groen, H.J.M.; Wakelee, H.; Hida, T.; Mok, T.; Spigel, D.; Felip, E.; Nishio, M.; Scagliotti, G.; Branle, F.; Emeremni, C.; Quadrigli, M.; Zhang, J.; Shaw, A.T. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK -rearranged non–small-cell lung cancer previously treated with chemotherapy and crizotinib: Results from ASCEND-2. J. Clin. Oncol., 2016, 34(24), 2866-2873.
[http://dx.doi.org/10.1200/JCO.2015.65.5936] [PMID: 27432917]
[45]
Gadgeel, S.M.; Gandhi, L.; Riely, G.J.; Chiappori, A.A.; West, H.L.; Azada, M.C.; Morcos, P.N.; Lee, R.M.; Garcia, L.; Yu, L.; Boisserie, F.; Di Laurenzio, L.; Golding, S.; Sato, J.; Yokoyama, S.; Tanaka, T.; Ou, S.H.I. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): Results from the dose-finding portion of a phase 1/2 study. Lancet Oncol., 2014, 15(10), 1119-1128.
[http://dx.doi.org/10.1016/S1470-2045(14)70362-6] [PMID: 25153538]
[46]
Kodama, T.; Tsukaguchi, T.; Yoshida, M.; Kondoh, O.; Sakamoto, H. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance. Cancer Lett., 2014, 351(2), 215-221.
[http://dx.doi.org/10.1016/j.canlet.2014.05.020] [PMID: 24887559]
[47]
Wang, W.; Sun, X.; Hui, Z. Treatment optimization for brain metastasis from anaplastic lymphoma kinase rearrangement non-small-cell lung cancer. Oncol. Res. Treat., 2019, 42(11), 599-606.
[http://dx.doi.org/10.1159/000502755] [PMID: 31527380]
[48]
Kodama, T.; Hasegawa, M.; Takanashi, K.; Sakurai, Y.; Kondoh, O.; Sakamoto, H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother. Pharmacol., 2014, 74(5), 1023-1028.
[http://dx.doi.org/10.1007/s00280-014-2578-6] [PMID: 25205428]
[49]
Huber, R.M.; Hansen, K.H.; Paz-Ares Rodríguez, L.; West, H.L.; Reckamp, K.L.; Leighl, N.B.; Tiseo, M.; Smit, E.F.; Kim, D.W.; Gettinger, S.N.; Hochmair, M.J.; Kim, S.W.; Langer, C.J.; Ahn, M.J.; Kim, E.S.; Kerstein, D.; Groen, H.J.M.; Camidge, D.R. Brigatinib in crizotinib-refractory ALK+ NSCLC: 2-year follow-up on systemic and intracranial outcomes in the phase 2 ALTA trial. J. Thorac. Oncol., 2020, 15(3), 404-415.
[http://dx.doi.org/10.1016/j.jtho.2019.11.004] [PMID: 31756496]
[50]
Shaw, A.T.; Felip, E.; Bauer, T.M.; Besse, B.; Navarro, A.; Postel-Vinay, S.; Gainor, J.F.; Johnson, M.; Dietrich, J.; James, L.P.; Clancy, J.S.; Chen, J.; Martini, J.F.; Abbattista, A.; Solomon, B.J. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: An international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol., 2017, 18(12), 1590-1599.
[http://dx.doi.org/10.1016/S1470-2045(17)30680-0] [PMID: 29074098]
[51]
Zou, H.Y.; Friboulet, L.; Kodack, D.P.; Engstrom, L.D.; Li, Q.; West, M.; Tang, R.W.; Wang, H.; Tsaparikos, K.; Wang, J.; Timofeevski, S.; Katayama, R.; Dinh, D.M.; Lam, H.; Lam, J.L.; Yamazaki, S.; Hu, W.; Patel, B.; Bezwada, D.; Frias, R.L.; Lifshits, E.; Mahmood, S.; Gainor, J.F.; Affolter, T.; Lappin, P.B.; Gukasyan, H.; Lee, N.; Deng, S.; Jain, R.K.; Johnson, T.W.; Shaw, A.T.; Fantin, V.R.; Smeal, T. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell, 2015, 28(1), 70-81.
[http://dx.doi.org/10.1016/j.ccell.2015.05.010] [PMID: 26144315]
[52]
Shaw, A.T.; Solomon, B.J.; Besse, B.; Bauer, T.M.; Lin, C.C.; Soo, R.A.; Riely, G.J.; Ou, S.H.I.; Clancy, J.S.; Li, S.; Abbattista, A.; Thurm, H.; Satouchi, M.; Camidge, D.R.; Kao, S.; Chiari, R.; Gadgeel, S.M.; Felip, E.; Martini, J.F. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non–small-cell lung cancer. J. Clin. Oncol., 2019, 37(16), 1370-1379.
[http://dx.doi.org/10.1200/JCO.18.02236] [PMID: 30892989]
[53]
Felip, E.; Shaw, A.T.; Bearz, A.; Camidge, D.R.; Solomon, B.J.; Bauman, J.R.; Bauer, T.M.; Peters, S.; Toffalorio, F.; Abbattista, A.; Thurm, H.; Peltz, G.; Wiltshire, R.; Besse, B. Intracranial and extracranial efficacy of lorlatinib in patients with ALK-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs. Ann. Oncol., 2021, 32(5), 620-630.
[http://dx.doi.org/10.1016/j.annonc.2021.02.012] [PMID: 33639216]
[54]
Zagouri, F.; Zoumpourlis, P.; Le Rhun, E.; Bartsch, R.; Zografos, E.; Apostolidou, K.; Dimopoulos, M.A.; Preusser, M. Intrathecal administration of anti-HER2 treatment for the treatment of meningeal carcinomatosis in breast cancer: A metanalysis with meta-regression. Cancer Treat. Rev., 2020, 88, 102046.
[http://dx.doi.org/10.1016/j.ctrv.2020.102046] [PMID: 32599393]
[55]
El Shafie, R.A.; Böhm, K.; Weber, D.; Lang, K.; Schlaich, F.; Adeberg, S.; Paul, A.; Haefner, M.F.; Katayama, S.; Hörner-Rieber, J.; Hoegen, P.; Löw, S.; Debus, J.; Rieken, S.; Bernhardt, D. Palliative radiotherapy for leptomeningeal carcinomatosis–analysis of outcome, prognostic factors, and symptom response. Front. Oncol., 2019, 8, 641.
[http://dx.doi.org/10.3389/fonc.2018.00641] [PMID: 30671384]
[56]
Yan, W.; Liu, Y.; Li, J.; Han, A.; Kong, L.; Yu, J.; Zhu, H. Whole brain radiation therapy does not improve the overall survival of EGFR-mutant NSCLC patients with leptomeningeal metastasis. Radiat. Oncol., 2019, 14(1), 168.
[http://dx.doi.org/10.1186/s13014-019-1376-z] [PMID: 31521171]
[57]
Morris, P.G.; Reiner, A.S.; Szenberg, O.R.; Clarke, J.L.; Panageas, K.S.; Perez, H.R.; Kris, M.G.; Chan, T.A.; DeAngelis, L.M.; Omuro, A.M. Leptomeningeal metastasis from non-small cell lung cancer: Survival and the impact of whole brain radiotherapy. J. Thorac. Oncol., 2012, 7(2), 382-385.
[http://dx.doi.org/10.1097/JTO.0b013e3182398e4f] [PMID: 22089116]
[58]
El Shafie, R.A.; Böhm, K.; Weber, D.; Lang, K.; Schlaich, F.; Adeberg, S.; Paul, A.; Haefner, M.F.; Katayama, S.; Sterzing, F.; Hörner-Rieber, J.; Löw, S.; Herfarth, K.; Debus, J.; Rieken, S.; Bernhardt, D. Outcome and prognostic factors following palliative craniospinal irradiation for leptomeningeal carcinomatosis. Cancer Manag. Res., 2019, 11, 789-801.
[http://dx.doi.org/10.2147/CMAR.S182154] [PMID: 30697071]
[59]
Devecka, M.; Duma, M.N.; Wilkens, J.J.; Kampfer, S.; Borm, K.J.; Münch, S.; Straube, C.; Combs, S.E. Craniospinal irradiation(CSI) in patients with leptomeningeal metastases: Risk-benefit-profile and development of a prognostic score for decision making in the palliative setting. BMC Cancer, 2020, 20(1), 501.
[http://dx.doi.org/10.1186/s12885-020-06984-1] [PMID: 32487151]
[60]
Yang, T.J.; Wijetunga, N.A.; Yamada, J.; Wolden, S.; Mehallow, M.; Goldman, D.A.; Zhang, Z.; Young, R.J.; Kris, M.G.; Yu, H.A.; Seidman, A.D.; Gavrilovic, I.T.; Lin, A.; Santomasso, B.; Grommes, C.; Piotrowski, A.F.; Schaff, L.; Stone, J.B.; DeAngelis, L.M.; Boire, A.; Pentsova, E. Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro-oncol., 2021, 23(1), 134-143.
[http://dx.doi.org/10.1093/neuonc/noaa152] [PMID: 32592583]
[61]
Wang, Y.; Yang, X.; Li, N.J.; Xue, J.X. Leptomeningeal metastases in non-small cell lung cancer: Diagnosis and treatment. Lung Cancer, 2022, 174, 1-13.
[http://dx.doi.org/10.1016/j.lungcan.2022.09.013] [PMID: 36206679]
[62]
Li, H.; Zheng, S.; Lin, Y.; Yu, T.; Xie, Y.; Jiang, C.; Liu, X.; Qian, X.; Yin, Z. Safety, pharmacokinetic and clinical activity of intrathecal chemotherapy with pemetrexed via the ommaya reservoir for leptomeningeal metastases from lung adenocarcinoma: A prospective phase I study. Clin. Lung Cancer, 2023, 24(2), e94-e104.
[http://dx.doi.org/10.1016/j.cllc.2022.11.011] [PMID: 36588048]
[63]
Fan, C.; Zhao, Q.; Li, L.; Shen, W.; Du, Y.; Teng, C.; Gao, F.; Song, X.; Jiang, Q.; Huang, D.; Jin, Y.; Lv, Y.; Wei, L.; Shi, T.; Zhao, X.; Gao, N.; Jiang, Z.; Xin, T. Efficacy and safety of intrathecal pemetrexed combined with dexamethasone for treating tyrosine kinase inhibitor-failed leptomeningeal metastases from EGFR-Mutant NSCLC—a prospective, open-label, single-arm phase 1/2 clinical trial (Unique Identifier: ChiCTR1800016615). J. Thorac. Oncol., 2021, 16(8), 1359-1368.
[http://dx.doi.org/10.1016/j.jtho.2021.04.018] [PMID: 33989780]
[64]
Zhou, T.; Zhu, S.; Xiong, Q.; Gan, J.; Wei, J.; Cai, J.; Liu, A. Intrathecal chemotherapy combined with systemic therapy in patients with refractory leptomeningeal metastasis of non-small cell lung cancer: a retrospective study. BMC Cancer, 2023, 23(1), 333.
[http://dx.doi.org/10.1186/s12885-023-10806-5] [PMID: 37041504]
[65]
Prakadan, S.M.; Alvarez-Breckenridge, C.A.; Markson, S.C.; Kim, A.E.; Klein, R.H.; Nayyar, N.; Navia, A.W.; Kuter, B.M.; Kolb, K.E.; Bihun, I.; Mora, J.L.; Bertalan, M.S.; Shaw, B.; White, M.; Kaplan, A.; Stocking, J.H.; Wadsworth, M.H., II; Lee, E.Q.; Chukwueke, U.; Wang, N.; Subramanian, M.; Rotem, D.; Cahill, D.P.; Adalsteinsson, V.A.; Miller, J.W.; Sullivan, R.J.; Carter, S.L.; Brastianos, P.K.; Shalek, A.K. Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases. Nat. Commun., 2021, 12(1), 5955.
[http://dx.doi.org/10.1038/s41467-021-25860-5] [PMID: 34642316]
[66]
Taggart, D.; Andreou, T.; Scott, K.J.; Williams, J.; Rippaus, N.; Brownlie, R.J.; Ilett, E.J.; Salmond, R.J.; Melcher, A.; Lorger, M. Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8 + T cell trafficking. Proc. Natl. Acad. Sci., 2018, 115(7), E1540-E1549.
[http://dx.doi.org/10.1073/pnas.1714089115] [PMID: 29386395]
[67]
Pierret, T.; Giaj-Levra, N.; Toffart, A.C.; Alongi, F.; Moro-Sibilot, D.; Gobbini, E. Immunotherapy in NSCLC patients with brain and leptomeningeal metastases. Front. Oncol., 2022, 12, 787080.
[http://dx.doi.org/10.3389/fonc.2022.787080] [PMID: 35494085]
[68]
Hendriks, L.E.L.; Bootsma, G.; Mourlanette, J.; Henon, C.; Mezquita, L.; Ferrara, R.; Audigier-Valette, C.; Mazieres, J.; Lefebvre, C.; Duchemann, B.; Cousin, S.; le Pechoux, C.; Botticella, A.; De Ruysscher, D.; Dingemans, A.M.C.; Besse, B. Survival of patients with non-small cell lung cancer having leptomeningeal metastases treated with immune checkpoint inhibitors. Eur. J. Cancer, 2019, 116, 182-189.
[http://dx.doi.org/10.1016/j.ejca.2019.05.019] [PMID: 31203193]
[69]
Zheng, M.M.; Tu, H.Y.; Yang, J.J.; Zhang, X.C.; Zhou, Q.; Xu, C.R.; Jiang, B.Y.; Yang, X.N.; Yang, X.R.; Deng, J.Y.; Yang, M.Y.; Xu, B.F.; Chen, X.M.; Li, Y.S.; Wu, Y.L. Clinical outcomes of non–small cell lung cancer patients with leptomeningeal metastases after immune checkpoint inhibitor treatments. Eur. J. Cancer, 2021, 150, 23-30.
[http://dx.doi.org/10.1016/j.ejca.2021.03.037] [PMID: 33882375]
[70]
Brastianos, P.K.; Lee, E.Q.; Cohen, J.V.; Tolaney, S.M.; Lin, N.U.; Wang, N.; Chukwueke, U.; White, M.D.; Nayyar, N.; Kim, A.; Alvarez-Breckenridge, C.; Krop, I.; Mahar, M.K.; Bertalan, M.S.; Shaw, B.; Mora, J.L.; Goss, N.; Subramanian, M.; Nayak, L.; Dietrich, J.; Forst, D.A.; Nahed, B.V.; Batchelor, T.T.; Shih, H.A.; Gerstner, E.R.; Moy, B.; Lawrence, D.; Giobbie-Hurder, A.; Carter, S.L.; Oh, K.; Cahill, D.P.; Sullivan, R.J. Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nat. Med., 2020, 26(8), 1280-1284.
[http://dx.doi.org/10.1038/s41591-020-0918-0] [PMID: 32483359]
[71]
Brastianos, P.K.; Strickland, M.R.; Lee, E.Q.; Wang, N.; Cohen, J.V.; Chukwueke, U.; Forst, D.A.; Eichler, A.; Overmoyer, B.; Lin, N.U.; Chen, W.Y.; Bardia, A.; Juric, D.; Dagogo-Jack, I.; White, M.D.; Dietrich, J.; Nayyar, N.; Kim, A.E.; Alvarez-Breckenridge, C.; Mahar, M.; Mora, J.L.; Nahed, B.V.; Jones, P.S.; Shih, H.A.; Gerstner, E.R.; Giobbie-Hurder, A.; Carter, S.L.; Oh, K.; Cahill, D.P.; Sullivan, R.J. Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nat. Commun., 2021, 12(1), 5954.
[http://dx.doi.org/10.1038/s41467-021-25859-y] [PMID: 34642329]
[72]
Hong, Y.; Duan, P.; He, L.; Li, Q.; Chen, Y.; Wang, P.; Fu, Y.; Liu, T.; Ding, Z. Systematic immunological level determined the prognosis of leptomeningeal metastasis in lung cancer. Cancer Manag. Res., 2022, 14, 1153-1164.
[http://dx.doi.org/10.2147/CMAR.S347323] [PMID: 35321403]
[73]
Qian, C.; Zhang, Y.; Cheng, W.; Zhang, Q.; Li, M.; Fang, S. Case report: Rechallenge with EGFR–TKIs after immunotherapy in EGFR–mutated non–small cell lung cancer with leptomeningeal metastasis. Front. Oncol., 2022, 12, 957661.
[http://dx.doi.org/10.3389/fonc.2022.957661] [PMID: 36457498]
[74]
Yi, Y.; Cai, J.; Xu, P.; Xiong, L.; Lu, Z.; Zeng, Z.; Liu, A. Correction: Potential benefit of osimertinib plus bevacizumab in leptomeningeal metastasis with EGFR mutant non-small-cell lung cancer. J. Transl. Med., 2022, 20(1), 292.
[http://dx.doi.org/10.1186/s12967-022-03453-0] [PMID: 35761407]
[75]
Zhang, Y.; Zhang, M.; Cheng, W.; Fang, S. Case report: Almonertinib in combination with bevacizumab for leptomeningeal metastases from epidermal growth factor receptor-mutation non-small cell lung cancer: Case series. Front. Oncol., 2022, 12, 1040450.
[http://dx.doi.org/10.3389/fonc.2022.1040450] [PMID: 36439478]
[76]
Liao, P.Y.; Ou, W.F.; Su, K.Y.; Sun, M.H.; Huang, C.M.; Chen, K.C.; Hsu, K.H.; Yu, S.L.; Huang, Y.H.; Tseng, J.S.; Yang, T.Y.; Chang, G.C. Influence of the timing of leptomeningeal metastasis on the outcome of EGFR-mutant lung adenocarcinoma patients and predictors of detectable EGFR mutations in cerebrospinal fluid. Cancers, 2022, 14(12), 2824.
[http://dx.doi.org/10.3390/cancers14122824] [PMID: 35740489]
[77]
Colclough, N.; Chen, K.; Johnström, P.; Strittmatter, N.; Yan, Y.; Wrigley, G.L.; Schou, M.; Goodwin, R.; Varnäs, K.; Adua, S.J.; Zhao, M.; Nguyen, D.X.; Maglennon, G.; Barton, P.; Atkinson, J.; Zhang, L.; Janefeldt, A.; Wilson, J.; Smith, A.; Takano, A.; Arakawa, R.; Kondrashov, M.; Malmquist, J.; Revunov, E.; Vazquez-Romero, A.; Moein, M.M.; Windhorst, A.D.; Karp, N.A.; Finlay, M.R.V.; Ward, R.A.; Yates, J.W.T.; Smith, P.D.; Farde, L.; Cheng, Z.; Cross, D.A.E. Preclinical comparison of the blood–brain barrier permeability of osimertinib with other EGFR TKIs. Clin. Cancer Res., 2021, 27(1), 189-201.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1871] [PMID: 33028591]

© 2025 Bentham Science Publishers | Privacy Policy