Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Novel Strategies to Improve the Cardioprotective Effects of Cardioplegia

Author(s): Estefanie Osorio-Llanes, Jairo Castellar-López, Wendy Rosales, Yuliet Montoya, John Bustamante, Ricardo Zalaquett, Roberto Bravo-Sagua, Jaime A. Riquelme, Gina Sánchez, Mario Chiong, Sergio Lavandero and Evelyn Mendoza-Torres*

Volume 20, Issue 1, 2024

Published on: 24 January, 2024

Article ID: e240124226064 Pages: 14

DOI: 10.2174/011573403X263956231129064455

Price: $65

Abstract

The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.

Graphical Abstract

[1]
Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors. J Am Coll Cardiol 2019; 74(20): 2529-32.
[http://dx.doi.org/10.1016/j.jacc.2019.10.009] [PMID: 31727292]
[2]
Engelman DT, Ben Ali W, Williams JB, et al. Guidelines for perioperative care in cardiac surgery. JAMA Surg 2019; 154(8): 755-66.
[http://dx.doi.org/10.1001/jamasurg.2019.1153] [PMID: 31054241]
[3]
Alam SR, Stirrat C, Spath N, Zamvar V, Pessotto R, Dweck MR, et al. Myocardial inflammation, injury and infarction during on-pump coronary artery bypass graft surgery. J Cardiothorac Surg 2017; 12(1): 1-10.
[4]
Alam SR, Lewis SC, Zamvar V, et al. Perioperative elafin for ischaemia-reperfusion injury during coronary artery bypass graft surgery: A randomised-controlled trial. Heart 2015; 101(20): 1639-45.
[http://dx.doi.org/10.1136/heartjnl-2015-307745] [PMID: 26310261]
[5]
Hueb W, Gersh BJ, Alves da Costa LM, et al. Accuracy of myocardial biomarkers in the diagnosis of myocardial infarction after revascularization as assessed by cardiac resonance: The medicine, angioplasty, surgery study V (MASS-V) trial. Ann Thorac Surg 2016; 101(6): 2202-8.
[http://dx.doi.org/10.1016/j.athoracsur.2015.11.034] [PMID: 26912303]
[6]
Kaushish Retd R, Unni MK, Luthra M. Beating heart versus conventional coronary bypass surgery: Our experience. Med J Armed Forces India 2010; 66(4): 357-61.
[http://dx.doi.org/10.1016/S0377-1237(10)80018-8] [PMID: 27365743]
[7]
Gaudino M, Angelini GD, Antoniades C, Bakaeen F, Benedetto U, Calafiore AM, et al. Off-pump coronary artery bypass grafting: 30 years of debate. J Am Heart Assoc 2018; 7(16): 1-15.
[8]
Yamamoto H, Yamamoto F. Myocardial protection in cardiac surgery: A historical review from the beginning to the current topics. Gen Thorac Cardiovasc Surg 2013; 61(9): 485-96.
[http://dx.doi.org/10.1007/s11748-013-0279-4] [PMID: 23877427]
[9]
Conti VR, Bertranou EG, Blackstone EH, Kirklin JW, Digerness SB. Cold cardioplegia versus hypothermia for myocardial protection. J Thorac Cardiovasc Surg 1978; 76(5): 577-89.
[http://dx.doi.org/10.1016/S0022-5223(19)41005-2] [PMID: 309031]
[10]
Chen YR. Comparing cardioprotetion by DiOHF intervention and ischemic preconditioning. Int J Cardiol 2018; 259: 163-5.
[http://dx.doi.org/10.1016/j.ijcard.2018.02.019] [PMID: 29579594]
[11]
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 2012; 298: 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[12]
Chai Q, Liu J. Early stage effect of ischemic preconditioning for patients undergoing on-pump coronary artery bypass grafts surgery: Systematic review and meta-analysis. Pak J Med Sci 2014; 30(3): 642-8.
[PMID: 24948996]
[13]
Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 2010; 106(3): 360-8.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.032] [PMID: 20643246]
[14]
Gay WA Jr. Potassium-induced cardioplegia. Ann Thorac Surg 1975; 20(1): 95-100.
[http://dx.doi.org/10.1016/S0003-4975(10)63859-3] [PMID: 803063]
[15]
McCully JD, Tsukube T, Ataka K, Krukenkamp IB, Feinberg H, Levitsky S. Myocardial cytosolic calcium accumulation during ischemia/reperfusion: the effects of aging and cardioplegia. J Card Surg 1994; 9(3S) (Suppl.): 449-52.
[http://dx.doi.org/10.1111/jocs.1994.9.3s.449] [PMID: 8069034]
[16]
Bradić J, Andjić M, Novaković J, Jeremić N, Jakovljević V. Cardioplegia in open heart surgery: Age matters. J Clin Med 2023; 12(4): 1698.
[17]
Drescher C, Diestel A, Wollersheim S, Berger F, Schmitt KRL. How does hypothermia protect cardiomyocytes during cardioplegic ischemia? Eur J Cardiothorac Surg 2011; 40(2): 352-9.
[http://dx.doi.org/10.1016/j.ejcts.2010.12.006] [PMID: 21242090]
[18]
Melrose DG, Dreyer B, Bentall HH, Baker JBE. Elective cardiac arrest. Lancet 1955; 266(6879): 21-3.
[http://dx.doi.org/10.1016/S0140-6736(55)93381-X] [PMID: 14382605]
[19]
Rosenkranz ER, Vinten-Johansen J, Buckberg GD, Okamoto F, Edwards H, Bugyi H. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts, with maintenance of arrest by multidose cold blood cardioplegic infusions. J Thorac Cardiovasc Surg 1982; 84(5): 667-77.
[http://dx.doi.org/10.1016/S0022-5223(19)38955-X] [PMID: 7132406]
[20]
Mishra P, Jadhav RB, Mohapatra CKR, et al. Comparison of del Nido cardioplegia and St. Thomas Hospital solution-two types of cardioplegia in adult cardiac surgery. Kardiochir Torakochirurgia Pol 2016; 4(4): 295-9.
[http://dx.doi.org/10.5114/kitp.2016.64867] [PMID: 28096823]
[21]
Mick SL, Robich MP, Houghtaling PL, et al. del Nido versus Buckberg cardioplegia in adult isolated valve surgery. J Thorac Cardiovasc Surg 2015; 149(2): 626-636.e5.
[http://dx.doi.org/10.1016/j.jtcvs.2014.10.085] [PMID: 25483897]
[22]
Matte GS, del Nido PJ. History and use of del Nido cardioplegia solution at Boston Children’s Hospital. J Extra Corpor Technol 2012; 44(3): 98-103.
[http://dx.doi.org/10.1051/ject/201244098] [PMID: 23198389]
[23]
Ki̇ri̇şci̇ M, Koçarslan A, Altintaş Aykan D, Alkan Baylan F, Doğaner A, Orak Y. Evaluation of the cardioprotective effects of crystalloid del Nido cardioplegia solution via a rapid and accurate cardiac marker: Heart-type fatty acid-binding protein. Turk J Med Sci 2020; 50(4): 999-1006.
[http://dx.doi.org/10.3906/sag-2002-53] [PMID: 32394686]
[24]
Buckberg GD, Athanasuleas CL. Cardioplegia: Solutions or strategies? Eur J Cardiothorac Surg 2016; 50(5): 787-91.
[http://dx.doi.org/10.1093/ejcts/ezw228] [PMID: 27369117]
[25]
Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. Indian J Anaesth 2017; 61(9): 760-7.
[http://dx.doi.org/10.4103/ija.IJA_379_17] [PMID: 28970635]
[26]
Hessel EA II. What’s new in cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2019; 33(8): 2296-326.
[http://dx.doi.org/10.1053/j.jvca.2019.01.039] [PMID: 30928282]
[27]
Chatrath RR, Kaul TK, Walker DR. Myocardial protection during cardioplegia in open-heart surgery: A review. Can Anaesth Soc J 1980; 27(4): 381-8.
[http://dx.doi.org/10.1007/BF03007460] [PMID: 6996794]
[28]
Buckberg GD. Antegrade/retrograde blood cardioplegia to ensure cardioplegic distribution: Operative techniques and objectives. J Card Surg 1989; 4(3): 216-38.
[http://dx.doi.org/10.1111/j.1540-8191.1989.tb00284.x] [PMID: 2520001]
[29]
Calafiore AM, Pelini P, Foschi M, Di Mauro M. Intermittent antegrade warm blood cardioplegia: What is next? Thorac Cardiovasc Surg 2020; 68(3): 232-4.
[http://dx.doi.org/10.1055/s-0039-1679925] [PMID: 30836397]
[30]
Ad N. Commentary: Single- versus multidose cardioplegia: Could 15 minutes save your patient? J Thorac Cardiovasc Surg 2020; 160(5): 1205-6.
[http://dx.doi.org/10.1016/j.jtcvs.2019.08.081] [PMID: 31648827]
[31]
Gambardella I, Gaudino MFL, Antoniou GA, et al. Single- versus multidose cardioplegia in adult cardiac surgery patients: A meta-analysis. J Thorac Cardiovasc Surg 2020; 160(5): 1195-1202.e12.
[http://dx.doi.org/10.1016/j.jtcvs.2019.07.109] [PMID: 31590948]
[32]
Méndez EA, Ten Gabriela S, Fernando ZR, José AD, Rodrigo GG, Juan PC, et al. Cardioplejia sanguínea: Primera parte. Rev Costarric Cardiol 2002; 4(2): 31-4.
[33]
Wei W, Liu Y, Zhang Q, Wang Y, Zhang X, Zhang H. Danshen‐enhanced cardioprotective effect of cardioplegia on ischemia reperfusion injury in a human‐induced pluripotent stem cell‐derived cardiomyocytes model. Artif Organs 2017; 41(5): 452-60.
[http://dx.doi.org/10.1111/aor.12801] [PMID: 27925238]
[34]
Carmo HRP, Lima F, Torina AG, et al. Development of cardioplegic solution without potassium: Experimental study in rat. Rev Bras Cir Cardiovasc 2013; 28(4): 524-30.
[http://dx.doi.org/10.5935/1678-9741.20130085] [PMID: 24598959]
[35]
Dobson GP, Faggian G, Onorati F, Vinten-Johansen J. Hyperkalemic cardioplegia for adult and pediatric surgery: End of an era? Front Physiol 2013; 4(228): 228.
[http://dx.doi.org/10.3389/fphys.2013.00228] [PMID: 24009586]
[36]
Gundry SR, Sequeira A, Coughlin TR, McLaughlin JS. Postoperative conduction disturbances: A comparison of blood and crystalloid cardioplegia. Ann Thorac Surg 1989; 47(3): 384-90.
[http://dx.doi.org/10.1016/0003-4975(89)90378-0] [PMID: 2784664]
[37]
Stammers AH, Tesdahl EA, Mongero LB, Stasko AJ, Weinstein S. Does the type of cardioplegic technique influence hemodilution and transfusion requirements in adult patients undergoing cardiac surgery? J Extra Corpor Technol 2017; 49(4): 231-40.
[http://dx.doi.org/10.1051/ject/201749231] [PMID: 29302113]
[38]
Nardi P, Vacirca SR, Russo M, et al. Cold crystalloid versus warm blood cardioplegia in patients undergoing aortic valve replacement. J Thorac Dis 2018; 10(3): 1490-9.
[http://dx.doi.org/10.21037/jtd.2018.03.67] [PMID: 29707299]
[39]
Chen RY, Chien S. Hemodynamic functions and blood viscosity in surface hypothermia. Am J Physiol 1978; 235(2): H136-43.
[PMID: 28676]
[40]
Pokorny H, Rasoul-Rockenschaub S, Langer F, et al. Histidine-tryptophan-ketoglutarate solution for organ preservation in human liver transplantation-a prospective multi-centre observation study. Transpl Int 2004; 17(5): 256-60.
[http://dx.doi.org/10.1111/j.1432-2277.2004.tb00439.x] [PMID: 15160235]
[41]
Edelman JJ, Seco M, Dunne B, et al. Custodiol for myocardial protection and preservation: A systematic review. Ann Cardiothorac Surg 2013; 2(6): 717-28.
[PMID: 24349972]
[42]
Viana FF, Shi WY, Hayward PA, Larobina ME, Liskaser F, Matalanis G. Custodiol versus blood cardioplegia in complex cardiac operations: An Australian experience. Eur J Cardiothorac Surg 2013; 43(3): 526-31.
[http://dx.doi.org/10.1093/ejcts/ezs319] [PMID: 22665382]
[43]
Hiramatsu T, Matsumura G, Konuma T, Yamazaki K, Kurosawa H, Imai Y. Long-term prognosis of double-switch operation for congenitally corrected transposition of the great arteries. Eur J Cardiothorac Surg 2012; 42(6): 1004-8.
[http://dx.doi.org/10.1093/ejcts/ezs118] [PMID: 22551964]
[44]
Mercan I, Dereli Y, Topcu C, et al. Comparison between the effects of Bretschneider’s HTK solution and cold blood cardioplegia on systemic endothelial functions in patients who undergo coronary artery bypass surgery: A prospective randomized and controlled trial. Rev Bras Cir Cardiovasc 2020; 35(5): 634-43.
[http://dx.doi.org/10.21470/1678-9741-2019-0327] [PMID: 33118727]
[45]
Jynge P, Hearse DJ, Feuvray D, et al. The St. Thomas’ hospital cardioplegic solution: A characterization in two species. Scand J Thorac Cardiovasc Surg Suppl 1981; 30: 1-28.
[PMID: 6278581]
[46]
Mork C, Koechlin L, Schaeffer T, Schoemig L, Zenklusen U, Gahl B, et al. Bretschneider (Custodiol®) and St. Thomas 2 cardioplegia solution in mitral valve repair via anterolateral right thoracotomy: A propensity-modelled comparison. Mediators Inflamm 2019; 2019.
[47]
Lichtenstein SV, Abel JG, Salerno TA. Warm heart surgery and results of operation for recent myocardial infarction. Ann Thorac Surg 1991; 52(3): 455-60.
[http://dx.doi.org/10.1016/0003-4975(91)90905-6] [PMID: 1898132]
[48]
Fan Y, Zhang AM, Xiao YB, Weng YG, Hetzer R. Warm versus cold cardioplegia for heart surgery: A meta-analysis. Eur J Cardiothorac Surg 2010; 37(4): 912-9.
[http://dx.doi.org/10.1016/j.ejcts.2009.09.030] [PMID: 19850490]
[49]
Scrascia G, Guida P, Rotunno C, et al. Myocardial protection during aortic surgery: Comparison between Bretschneider-HTK and cold blood cardioplegia. Perfusion 2011; 26(5): 427-33.
[http://dx.doi.org/10.1177/0267659111409276] [PMID: 21665911]
[50]
Vázquez A, Favieres C, Pérez M, et al. Cardioplejía Del Nido: Una estrategia de protección miocárdica segura, eficaz y económica. Cirugía Cardiovascular 2015; 22(6): 287-93.
[http://dx.doi.org/10.1016/j.circv.2015.05.003]
[51]
Kunst G, Klein AA. Peri‐operative anaesthetic myocardial preconditioning and protection-cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia 2015; 70(4): 467-82.
[http://dx.doi.org/10.1111/anae.12975] [PMID: 25764404]
[52]
Ginther RM Jr. Del nido cardioplegia: Elixir of choice for pediatric myocardial protection. J Extra Corpor Technol 2016; 48(2): 21-4.
[PMID: 27578903]
[53]
Marzouk M, Lafreniere-Bessi V, Dionne S, et al. Transitioning to Del Nido cardioplegia for all-comers: The next switching gear? BMC Cardiovasc Disord 2020; 20(1): 1-8.
[http://dx.doi.org/10.1186/s12872-020-01506-0]
[54]
Nardi P, Pisano C, Bertoldo F, Ruvolo G. New insights on the use of del Nido cardioplegia in the adult cardiac surgery. J Thorac Dis 2018; 10(S26) (Suppl. 26): S3233-6.
[http://dx.doi.org/10.21037/jtd.2018.08.81] [PMID: 30370123]
[55]
García-Suarez J, García Fernandez J, Sanz S, Martínez Lopez D, Reques L, Forteza Gil A. Del nido cardioplegia versus cold blood cardioplegia in adult cardiac surgery: Protocol for a randomized controlled trial. JMIR research protocols 2020; 9(7): e17826.
[56]
O’Blenes SB, Friesen CH, Ali A, Howlett S. Protecting the aged heart during cardiac surgery: The potential benefits of del Nido cardioplegia. J Thorac Cardiovasc Surg 2011; 141(3): 762-70.
[http://dx.doi.org/10.1016/j.jtcvs.2010.06.004] [PMID: 20656301]
[57]
O’Brien JD, Howlett SE, Burton HJ, O’Blenes SB, Litz DS, Friesen CLH. Pediatric cardioplegia strategy results in enhanced calcium metabolism and lower serum troponin T. Ann Thorac Surg 2009; 87(5): 1517-23.
[http://dx.doi.org/10.1016/j.athoracsur.2009.02.067] [PMID: 19379896]
[58]
Ulugol H, Aksu U, Kocyigit M, et al. Comparative effects of blood and crystalloid cardioplegia on cellular injury and oxidative stress in cardiovascular surgery. Ann Thorac Cardiovasc Surg 2019; 25(1): 10-7.
[http://dx.doi.org/10.5761/atcs.oa.18-00113] [PMID: 30158392]
[59]
Karthik S, Grayson AD, Oo AY, Fabri BM. A survey of current myocardial protection practices during coronary artery bypass grafting. Ann R Coll Surg Engl 2004; 86(6): 413-5.
[http://dx.doi.org/10.1308/147870804669] [PMID: 15527576]
[60]
Walsh SR, Tang TY, Kullar P, Jenkins DP, Dutka DP, Gaunt ME. Ischaemic preconditioning during cardiac surgery: Systematic review and meta-analysis of perioperative outcomes in randomised clinical trials. Eur J Cardiothorac Surg 2008; 34(5): 985-94.
[http://dx.doi.org/10.1016/j.ejcts.2008.07.062] [PMID: 18783958]
[61]
Slagsvold KH, Rognmo Ø, Høydal M, Wisløff U, Wahba A. Remote ischemic preconditioning preserves mitochondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ Res 2014; 114(5): 851-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302751] [PMID: 24371264]
[62]
Veres G, Radovits T, Merkely B, Karck M, Szabó G. Custodiol-N, the novel cardioplegic solution reduces ischemia/reperfusion injury after cardiopulmonary bypass. J Cardiothorac Surg 2015; 10(1): 27.
[http://dx.doi.org/10.1186/s13019-015-0226-9] [PMID: 25890005]
[63]
Ferguson ZG, Yarborough DE, Jarvis BL, Sistino JJ. Evidence-based medicine and myocardial protection-where is the evidence? Perfusion 2015; 30(5): 415-22.
[http://dx.doi.org/10.1177/0267659114551856] [PMID: 25298053]
[64]
Cayir MC, Yuksel A. The use of del nido cardioplegia for myocardial protection in isolated coronary artery bypass surgery. Heart Lung Circ 2020; 29(2): 301-7.
[http://dx.doi.org/10.1016/j.hlc.2018.12.006] [PMID: 30723044]
[65]
Boening A, Hinke M, Heep M, Boengler K, Niemann B, Grieshaber P. Cardiac surgery in acute myocardial infarction: Crystalloid versus blood cardioplegia-an experimental study. J Cardiothorac Surg 2020; 15(1): 4-11.
[http://dx.doi.org/10.1186/s13019-020-1058-9] [PMID: 31915024]
[66]
de Haan M, van Straten A, Overdevest E, de Jong M, Soliman-Hamad M. Safety of Custodiol cardioplegia: A cohort study in patients undergoing cardiac surgery with elongated aortic cross-clamp time. Perfusion 2020; 35(7): 591-7.
[http://dx.doi.org/10.1177/0267659119897239] [PMID: 31948381]
[67]
Li Y, Lin H, Zhao Y, et al. Del nido cardioplegia for myocardial protection in adult cardiac surgery: A systematic review and meta-analysis. ASAIO J 2018; 64(3): 360-7.
[http://dx.doi.org/10.1097/MAT.0000000000000652] [PMID: 28863040]
[68]
Vinten-Johansen J, Thourani VH. Myocardial protection: An overview. J Extra Corpor Technol 2000; 32(1): 38-48.
[http://dx.doi.org/10.1051/ject/2000322038] [PMID: 10947622]
[69]
Mahli A, Cosku D. The effects of lidocaine on reperfusion ventricular fibrillation during coronary artery - Bypass Graft Surgery. (1st ed.). InTech 2012; pp. 89-96.
[http://dx.doi.org/10.5772/25726]
[70]
Wyman MG, Wyman RM, Cannom DS, Criley JM. Prevention of primary ventricular fibrillation in acute myocardial infarction with prophylactic lidocaine. Am J Cardiol 2004; 94(5): 545-51.
[http://dx.doi.org/10.1016/j.amjcard.2004.05.014] [PMID: 15342281]
[71]
Butterworth J, Hammon JW. Lidocaine for neuroprotection: More evidence of efficacy. Anesth Analg 2002; 95(5): 1131-3.
[http://dx.doi.org/10.1097/00000539-200211000-00001] [PMID: 12401579]
[72]
Cassuto J, Sinclair R, Bonderovic M. Anti‐inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol Scand 2006; 50(3): 265-82.
[http://dx.doi.org/10.1111/j.1399-6576.2006.00936.x] [PMID: 16480459]
[73]
Lee JM, Suh JK, Jeong JS, Cho SY, Kim DW. Antioxidant effect of lidocaine and procaine on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta. Korean J Anesthesiol 2010; 59(2): 104-10.
[http://dx.doi.org/10.4097/kjae.2010.59.2.104] [PMID: 20740215]
[74]
Toda N, Toda H, Hatano Y, Warltier DC. Nitric oxide. Anesthesiology 2007; 107(5): 822-42.
[http://dx.doi.org/10.1097/01.anes.0000287213.98020.b6] [PMID: 18073558]
[75]
Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br J Anaesth 2002; 89(1): 52-61.
[http://dx.doi.org/10.1093/bja/aef163] [PMID: 12173241]
[76]
Arsyad A, Dobson GP. Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: Possible role of Kv, KATP channels and A2a receptor crosstalk. BMC Anesthesiol 2016; 16(1): 1-11.
[77]
Hondeghem LM, Katzung BG. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta Rev Biomembr 1977; 472(3-4): 373-98.
[http://dx.doi.org/10.1016/0304-4157(77)90003-X] [PMID: 334262]
[78]
Antoniu B, Kim DH, Morii M, Ikemoto N. Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum. I. Ca2+ channel blockers. Biochim Biophys Acta Biomembr 1985; 816(1): 9-17.
[http://dx.doi.org/10.1016/0005-2736(85)90387-6] [PMID: 2408667]
[79]
Zahradníková A, Palade P. Procaine effects on single sarcoplasmic reticulum Ca2+ release channels. Biophys J 1993; 64(4): 991-1003.
[http://dx.doi.org/10.1016/S0006-3495(93)81465-6] [PMID: 8388270]
[80]
Robin E, Simerabet M, Hassoun SM, et al. Postconditioning in focal cerebral ischemia: Role of the mitochondrial ATP-dependent potassium channel. Brain Res 2011; 1375: 137-46.
[http://dx.doi.org/10.1016/j.brainres.2010.12.054] [PMID: 21182830]
[81]
Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoK ATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol 2002; 283(3): H1005-11.
[http://dx.doi.org/10.1152/ajpheart.00054.2002] [PMID: 12181130]
[82]
Watanabe M, Katsura K, Ohsawa I, et al. Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res 2008; 1238: 199-207.
[http://dx.doi.org/10.1016/j.brainres.2008.08.038] [PMID: 18773879]
[83]
Wang L, Zhu QL, Wang GZ, et al. The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia–ischemia–reperfusion in brain. Neurosci Lett 2011; 491(1): 63-7.
[http://dx.doi.org/10.1016/j.neulet.2010.12.065] [PMID: 21215294]
[84]
Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F. Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: Mitochondrial targeted preconditioning. Adv Drug Deliv Rev 2008; 60(13-14): 1471-7.
[http://dx.doi.org/10.1016/j.addr.2008.03.020] [PMID: 18652858]
[85]
Liu D, Pitta M, Lee JH, et al. The KATP channel activator diazoxide ameliorates amyloid-β and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer’s disease. J Alzheimers Dis 2010; 22(2): 443-57.
[http://dx.doi.org/10.3233/JAD-2010-101017] [PMID: 20847430]
[86]
Burwell LS, Brookes PS. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 2008; 10(3): 579-600.
[http://dx.doi.org/10.1089/ars.2007.1845] [PMID: 18052718]
[87]
Wu H, Ye M, Yang J, et al. Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cell Physiol Biochem 2015; 35(6): 2320-32.
[http://dx.doi.org/10.1159/000374035] [PMID: 25896165]
[88]
Takarabe K, Okazaki Y, Higuchi S, Murayama J, Natsuaki M, Itoh T. Nicorandil attenuates reperfusion injury after long cardioplegic arrest. Asian Cardiovasc Thorac Ann 2007; 15(3): 204-9.
[http://dx.doi.org/10.1177/021849230701500306] [PMID: 17540988]
[89]
Steensrud T, Nordhaug D, Elvenes OP, Korvald C, Sørlie DG. Superior myocardial protection with nicorandil cardioplegia. Eur J Cardiothorac Surg 2003; 23(5): 670-7.
[http://dx.doi.org/10.1016/S1010-7940(03)00070-8] [PMID: 12754016]
[90]
Qian G, Zhang Y, Dong W, Jiang ZC, Li T, Cheng LQ, et al. Effects of nicorandil administration on infarct size in patients with ST-Segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: The CHANGE trial. J Am Heart Assoc 2022; 11(18): e026232.2022.
[91]
Kobara M, Amano T, Toba H, Nakata T. Nicorandil suppresses ischemia-induced norepinephrine release and ventricular arrhythmias in hypertrophic hearts. Cardiovasc Drugs Ther 2023; 37(1): 53-62.
[http://dx.doi.org/10.1007/s10557-022-07369-1] [PMID: 35895166]
[92]
Pearce L, Carr RD, Yellon DM, Davidson SM. Nicorandil-an effective multitarget drug for cardioprotection? Cardiovasc Drugs Ther 2023; 37(1): 5-8.
[http://dx.doi.org/10.1007/s10557-022-07397-x] [PMID: 36301452]
[93]
Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2019; 73(1): 89-99.
[http://dx.doi.org/10.1016/j.jacc.2018.09.086] [PMID: 30621955]
[94]
Liang LN, Zhong X, Zhou Y, et al. Cardioprotective effect of nicorandil against myocardial injury following cardiac arrest in swine. Am J Emerg Med 2017; 35(8): 1082-9.
[http://dx.doi.org/10.1016/j.ajem.2017.02.051] [PMID: 28285861]
[95]
Gaudry M, Vairo D, Marlinge M, Gaubert M, Guiol C, Mottola G, et al. Adenosine and its receptors: An expected tool for the diagnosis and treatment of coronary artery and ischemic heart diseases. Int J Mol Sci 2020; 21(15): 1-14.
[96]
Jakobsen Ø, Muller S, Aarsæther E, Steensrud T, Sørlie DG. Adenosine instead of supranormal potassium in cardioplegic solution improves cardioprotection. Eur J Cardiothorac Surg 2007; 32(3): 493-500.
[http://dx.doi.org/10.1016/j.ejcts.2007.05.020] [PMID: 17613242]
[97]
Ye JX, Chen DZ. Novel cardioprotective strategy combining three different preconditioning methods to prevent ischemia/reperfusion injury in aged hearts in an improved rabbit model. Exp Ther Med 2015; 10(4): 1339-47.
[http://dx.doi.org/10.3892/etm.2015.2680] [PMID: 26622489]
[98]
Law WR, Ross JD, Jonjev ZS. Adenosine attenuates C-terminal but not N-terminal proteolysis of cTnI during cardioplegic arrest. J Surg Res 2005; 123(1): 126-33.
[http://dx.doi.org/10.1016/j.jss.2004.06.020] [PMID: 15652960]
[99]
Jakobsen Ø, Næsheim T, Aas KN, Sørlie D, Steensrud T. Adenosine instead of supranormal potassium in cardioplegia: It is safe, efficient, and reduces the incidence of postoperative atrial fibrillation. A randomized clinical trial. J Thorac Cardiovasc Surg 2013; 145(3): 812-8.
[http://dx.doi.org/10.1016/j.jtcvs.2012.07.058] [PMID: 22964356]
[100]
Habazettl H, Voigtländer J, Leiderer R, Messmer K. Efficacy of myocardial initial reperfusion with 2,3 butanedione monoxime after cardioplegic arrest is time-dependent. Cardiovasc Res 1998; 37(3): 684-90.
[http://dx.doi.org/10.1016/S0008-6363(97)00263-0] [PMID: 9659452]
[101]
Olivencia-Yurvati AH, Blair JL, Baig M, Mallet RT. Pyruvate-enhanced cardioprotection during surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2003; 17(6): 715-20.
[http://dx.doi.org/10.1053/j.jvca.2003.09.007] [PMID: 14689411]
[102]
Uyar I. Mansuroğlu D, Kirali K, et al. Aspartate and glutamate-enriched cardioplegia in left ventricular dysfunction. J Card Surg 2005; 20(4): 337-44.
[http://dx.doi.org/10.1111/j.1540-8191.2005.200355.x] [PMID: 15985134]
[103]
Hall AR, Hausenloy DJ. Mitochondrial respiratory inhibition by 2,3-butanedione monoxime (BDM): Implications for culturing isolated mouse ventricular cardiomyocytes. Physiol Rep 2016; 4(1): 1-8.
[104]
Sharp WW, Beiser DG, Fang YH, et al. Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model. Crit Care Med 2015; 43(2): e38-47.
[http://dx.doi.org/10.1097/CCM.0000000000000817] [PMID: 25599491]
[105]
Ong SB, Kwek XY, Katwadi K, Hernandez-Resendiz S, Crespo-Avilan GE, Ismail NI, et al. Targeting mitochondrial fission using Mdivi-1 in a clinically relevant large animal model of acute myocardial infarction: A pilot study. Int J Mol Sci 2019; 20(16): 1-14.
[http://dx.doi.org/10.3390/ijms20163972]
[106]
Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, et al. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res 2022; 118(1): 282-94.
[http://dx.doi.org/10.1093/cvr/cvaa343] [PMID: 33386841]
[107]
Garcia NA, Moncayo-Arlandi J, Vazquez A, et al. Hydrogen sulfide improves cardiomyocyte function in a cardiac arrest model. Ann Transplant 2017; 22: 285-95.
[http://dx.doi.org/10.12659/AOT.901410] [PMID: 28484204]
[108]
Osipov RM, Robich MP, Feng J, et al. Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass. Interact Cardiovasc Thorac Surg 2010; 10(4): 506-12.
[http://dx.doi.org/10.1510/icvts.2009.219535] [PMID: 20051450]
[109]
Ozeren M, Sucu N, Tamer L, et al. Caffeic acid phenethyl ester (CAPE) supplemented St. Thomas’ hospital cardioplegic solution improves the antioxidant defense system of rat myocardium during ischemia-reperfusion injury. Pharmacol Res 2005; 52(3): 258-63.
[http://dx.doi.org/10.1016/j.phrs.2005.04.002] [PMID: 15890527]
[110]
Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 1999; 83(5): 3-12.
[http://dx.doi.org/10.1016/S0002-9149(99)00042-9] [PMID: 10078537]
[111]
Szabó G, Radovits T, Veres G, et al. Vardenafil protects against myocardial and endothelial injuries after cardiopulmonary bypass. Eur J Cardiothorac Surg 2009; 36(4): 657-64.
[http://dx.doi.org/10.1016/j.ejcts.2009.03.065] [PMID: 19523842]
[112]
Sahara M, Sata M, Morita T, Nakajima T, Hirata Y, Nagai R. A phosphodiesterase-5 inhibitor vardenafil enhances angiogenesis through a protein kinase G-dependent hypoxia-inducible factor-1/vascular endothelial growth factor pathway. Arterioscler Thromb Vasc Biol 2010; 30(7): 1315-24.
[http://dx.doi.org/10.1161/ATVBAHA.109.201327] [PMID: 20413734]
[113]
Ocaranza MP, Riquelme JA, García L, et al. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat Rev Cardiol 2020; 17(2): 116-29.
[http://dx.doi.org/10.1038/s41569-019-0244-8] [PMID: 31427727]
[114]
Sasaki S, Higashi Y, Nakagawa K, Matsuura H, Kajiyama G, Oshima T. Effects of angiotensin-(1-7) on forearm circulation in normotensive subjects and patients with essential hypertension. Hypertension 2001; 38(1): 90-4.
[http://dx.doi.org/10.1161/01.HYP.38.1.90] [PMID: 11463766]
[115]
Gonzalez L, Novoa U, Moya J, et al. Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension. Biochem Pharmacol 2018; 156: 357-70.
[http://dx.doi.org/10.1016/j.bcp.2018.08.045] [PMID: 30179588]
[116]
Simões e Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1⿿7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107: 154-62.
[http://dx.doi.org/10.1016/j.phrs.2016.03.018] [PMID: 26995300]
[117]
Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, et al. ACE2 and vasoactive peptides: Novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis 2015; 9(4): 217-37.
[http://dx.doi.org/10.1177/1753944715597623] [PMID: 26275770]
[118]
Sotomayor-Flores C, Rivera-Mejías P, Vásquez-Trincado C, et al. Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ 2020; 27(9): 2586-604.
[http://dx.doi.org/10.1038/s41418-020-0522-3] [PMID: 32152556]
[119]
Ocaranza MP, Lavandero S, Jalil JE, et al. Angiotensin-(1–9) regulates cardiac hypertrophy in vivo and in vitro. J Hypertens 2010; 28(5): 1054-64.
[http://dx.doi.org/10.1097/HJH.0b013e328335d291] [PMID: 20411619]
[120]
Guo L, Yin A, Zhang Q, Zhong T, O’Rourke ST, Sun C. Angiotensin-(1–7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Physiol Heart Circ Physiol 2017; 312(5): H980-91.
[http://dx.doi.org/10.1152/ajpheart.00768.2016] [PMID: 28411231]
[121]
Senger NC, Parletta A, Marques BVD, et al. Angiotensin-(1-7) prevents T3-induced cardiomyocyte hypertrophy by upregulating FOXO3/SOD1/catalase and downregulating NF-ĸB. J Cell Physiol 2021; 236(4): 3059-72.
[http://dx.doi.org/10.1002/jcp.30069] [PMID: 32964425]
[122]
Ferreira AJ, Santos RAS, Almeida AP. Angiotensin-(1-7): Cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 2001; 38(3): 665-8.
[http://dx.doi.org/10.1161/01.HYP.38.3.665] [PMID: 11566952]
[123]
Medina D, Arnold AC. Angiotensin-(1-7): Translational avenues in cardiovascular control. Am J Hypertens 2019; 32(12): 1133-42.
[http://dx.doi.org/10.1093/ajh/hpz146] [PMID: 31602467]
[124]
Santos RAS, e Silva ACS, Maric C, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[125]
Westermeier F, Bustamante M, Pavez M, et al. Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101: 41-55.
[http://dx.doi.org/10.1016/j.phrs.2015.06.018] [PMID: 26238180]
[126]
Miller AJ, Bingaman SS, Mehay D, Medina D, Arnold AC. Angiotensin-(1-7) improves integrated cardiometabolic function in aged mice. Int J Mol Sci 2020; 21(14): 1-13.
[127]
Wang L, Luo D, Liao X, et al. Ang-(1-7) offers cytoprotection against ischemia-reperfusion injury by restoring intracellular calcium homeostasis. J Cardiovasc Pharmacol 2014; 63(3): 259-64.
[http://dx.doi.org/10.1097/FJC.0000000000000043] [PMID: 24193198]
[128]
Norambuena-Soto I, Ocaranza MP, Cancino-Arenas N, et al. Angiotensin-(1–9) prevents vascular remodeling by decreasing vascular smooth muscle cell dedifferentiation through a FoxO1-dependent mechanism. Biochem Pharmacol 2020; 180: 114190.
[http://dx.doi.org/10.1016/j.bcp.2020.114190] [PMID: 32768401]
[129]
Cha SA, Park BM, Gao S, Kim SH. Stimulation of ANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sci 2013; 93(24): 934-40.
[http://dx.doi.org/10.1016/j.lfs.2013.10.020] [PMID: 24177599]
[130]
Mendoza-Torres E, Riquelme JA, Vielma A, et al. Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacol Res 2018; 135: 112-21.
[http://dx.doi.org/10.1016/j.phrs.2018.07.022] [PMID: 30048754]
[131]
Kittana N. Angiotensin‐converting enzyme 2–Angiotensin 1‐7/1‐9 system: novel promising targets for heart failure treatment. Fundam Clin Pharmacol 2018; 32(1): 14-25.
[http://dx.doi.org/10.1111/fcp.12318] [PMID: 28833476]
[132]
Coutinho DCO, Santos-Miranda A, Joviano-Santos JV, et al. Diminazene Aceturate, an angiotensin converting enzyme 2 (ACE2) activator, promotes cardioprotection in ischemia/reperfusion-induced cardiac injury. Peptides 2022; 151: 170746.
[http://dx.doi.org/10.1016/j.peptides.2022.170746] [PMID: 35033621]
[133]
Qi Y, Zhang J, Cole-Jeffrey CT, et al. Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension 2013; 62(4): 746-52.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01337] [PMID: 23959549]
[134]
Menasché P. Cardioplegic solution challenges. Ital Heart J 2000; 1 (Suppl. 3): S40-2.
[PMID: 11003021]
[135]
Dahle GO, Salminen PR, Moen CA, et al. Carvedilol-enriched cold oxygenated blood cardioplegia improves left ventricular diastolic function after weaning from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2016; 30(4): 859-68.
[http://dx.doi.org/10.1053/j.jvca.2016.03.152] [PMID: 27521963]
[136]
Zhang Y, Xu S. Increased vulnerability of hypertrophied myocardium to ischemia and reperfusion injury. Relation to cardiac renin-angiotensin system. Chin Med J 1995; 108(1): 28-32.
[http://dx.doi.org/10.4103/0366-6999.172561] [PMID: 7712835]
[137]
Smolenski RT, Jayakumar J, Seymour AML, Yacoub MH. Energy metabolism and mechanical recovery after cardioplegia in moderately hypertrophied rats. Mol Cell Biochem 1998; 180(1/2): 137-43.
[http://dx.doi.org/10.1023/A:1006807510648] [PMID: 9546640]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy