Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Atomic Electrostatic Potential as a Descriptor of Aminolysis of Phenyl and Thiophenyl Acetates and Hydrolysis of Acetanilides

Author(s): Evgeny Krylov, Lyudmila Virzum, Matvey Gruzdev* and Ulyana Chervonova

Volume 21, Issue 8, 2024

Published on: 23 January, 2024

Page: [727 - 735] Pages: 9

DOI: 10.2174/0115701786287226240104045123

Price: $65

Abstract

Hydrolysis of acetanilides and aminolysis of phenyl and thiophenyl acetates are related reactions since these are processes of nucleophilic substitution on the carbonyl carbon. Current views of chemical reactivity based on the DFT theory rely upon reactivity indices that are descriptors of both the reaction center and the molecule as a whole, and have not been applied to the given processes before. One of such descriptors is an atomic electrostatic potential. The given parameter was calculated by the DFT theory M06/6-311+G (non-specific solvation, MeCN, SMD, and full optimization) for the structures of substituted phenyl acetates XPhO-C(O)Me, acetanilides XPhNHC(O)Me, thiophenyl acetates ZPhSC(=O)Me, and benzyl amines XPhСH2NH2 (X, Z substituents). It has been found that all relationships between the atomic electrostatic potential, the charge on the reaction center in the Hirshfeld scheme, and logK are symbatic. Consequently, in all of the cases, the rate is determined by the nucleophilic attack on the reaction center, with the activity/selectivity relationship being observed. The fact that the reaction rate is limited by the nucleophilic attack of the reagent is not inconsistent with the views of the reaction being concerted, since it is known that such reactions may be quite concerted though not quite synchronous.

« Previous
Graphical Abstract

[1]
Chattaraj, P.K. Chemical reactivity theory. A density functional view; CRC Press: Boca Raton, 2009.
[http://dx.doi.org/10.1201/9781420065442]
[2]
Ghosh, S.K.; Chattaraj, P.K. Concepts and methods in modern theorethical chemistry. Electronic structure and reactivity; CRC Press: New York, 2013.
[3]
Politzer, P.; Murray, J.S. Theor. Chem. Acc., 2002, 108(3), 134-142.
[http://dx.doi.org/10.1007/s00214-002-0363-9]
[4]
Galabov, B.; Ilieva, S.; Hadjieva, B.; Atanasov, Y.; Schaefer, H.F., III J. Phys. Chem. A, 2008, 112(29), 6700-6707.
[http://dx.doi.org/10.1021/jp8007514] [PMID: 18578479]
[5]
Kurit’sin, L.V.; Kustova, T.P.; Sadovnikov, A.I.; Kalinina, N.V.; Klyuev, M.V. The kinetic of acyl transfer reactions. IvSU; Ivanovo, 2006.
[6]
Cheshmedzhieva, D.; Ilieva, S.; Hadjieva, B.; Trayanova, T.; Galabov, B. Mol. Phys., 2009, 107(8-12), 1187-1192.
[http://dx.doi.org/10.1080/00268970902799890]
[7]
Oh, H.K.; Yang, J.Y.; Lee, H.W.; Lee, I. Bull. Korean Chem. Soc., 1999, 20, 1418-1420.
[http://dx.doi.org/10.5012/bkcs.1999.20.12.1418]
[8]
Oh, H.K.; Kim, S.K.; Lee, I. Bull. Korean Chem. Soc., 1999, 20, 1017-1020.
[http://dx.doi.org/10.5012/bkcs.1999.20.9.1017]
[9]
Dewar, M.J.S. J. Am. Chem. Soc., 1984, 106(1), 209-219.
[http://dx.doi.org/10.1021/ja00313a042]
[10]
Brown, R.S. The amide linkage: Selected structural aspects in chemistry, biochemistry and materials science; Breneman, C.M.; Greenberg, A.; Liebman, J.F., Eds.; Wiley Int: New York, 1999, pp. 85-115.
[11]
Galabov, B.; Cheshmedzhieva, D.; Ilieva, S.; Hadjieva, B. J. Phys. Chem. A, 2004, 108(51), 11457-11462.
[http://dx.doi.org/10.1021/jp046199+]
[12]
Cheshmedzhieva, D.; Ilieva, S.; Hadjieva, B.; Galabov, B. J. Phys. Org. Chem., 2009, 22(6), 619-631.
[http://dx.doi.org/10.1002/poc.1492]
[13]
Hirshfeld, F.L. Theor. Chim. Acta, 1977, 44(2), 129-138.
[http://dx.doi.org/10.1007/BF00549096]
[14]
Fernández, I.; Frenking, G. J. Org. Chem., 2006, 71(6), 2251-2256.
[http://dx.doi.org/10.1021/jo052012e] [PMID: 16526770]
[15]
Douglas, K.T. Acc. Chem. Res., 1986, 19(6), 186-192.
[http://dx.doi.org/10.1021/ar00126a005]
[16]
Klopman, G.M. Reactivity and reaction route; Mir, Moscow,; , 1977.
[17]
Akhnasarova, S.A.; Kafarov, V.V. Optimization of experiment in chemistry and chemical technology; High School: Moscow, 1985.
[18]
Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Van Dam, H.J.J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.L.; de Jong, W.A. Comput. Phys. Commun., 2010, 181(9), 1477-1489.
[http://dx.doi.org/10.1016/j.cpc.2010.04.018]
[19]
Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. J. Phys. Chem. B, 2009, 113(18), 6378-6396.
[http://dx.doi.org/10.1021/jp810292n] [PMID: 19366259]
[20]
Krylov, E.N.; Gruzdev, M.S.; Vizrum, L.V. Butlerov Communications, 2015, 42, 117-123.
[21]
Gruzdev, M.S.; Vizrum, L.V.; Krylov, E.N. Butlerov Communications, 2015, 41, 115-120.
[22]
Krylov, E.N.; Virzum, L.V. Russ. Chem. Bull., 2019, 68(3), 527-531.
[http://dx.doi.org/10.1007/s11172-019-2449-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy