Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater

Author(s): Pradip Bawane*, Shirish Deshpande and Santosh Yele

Volume 25, Issue 12, 2024

Published on: 22 January, 2024

Page: [1564 - 1584] Pages: 21

DOI: 10.2174/0113892010265978231109085224

Price: $65

conference banner
Abstract

The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.

Graphical Abstract

[1]
Fredriksson, K.; Dube, A.; Milton, D.J. Balasundaram, MS Lonar Lake, India: An impact crater in basalt. Science, 1973, 180, 862-864.
[2]
Maloof, A.C.; Stewart, S.T.; Weiss, B.P.; Soule, S.A.; Swanson-Hysell, N.L.; Louzada, K.L. Geology of lonar crater, India. Bulletin, 2010, 122, 109-126.
[3]
Jourdan, F.; Moynier, F.; Koeberl, C.; Eroglu, S. 40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts. Geology, 2011, 39(7), 671-674.
[http://dx.doi.org/10.1130/G31888.1]
[4]
Nayak, V.K. Glassy objects (impactite glasses?) a possible new evidence for meteoritic origin of the Lonar Crater, Maharashtra State, India. Earth Planet. Sci. Lett., 1972, 14(1), 1-6.
[http://dx.doi.org/10.1016/0012-821X(72)90070-2]
[5]
Anil Kumar, P.; Srinivas, T.N.R.; Madhu, S.; Sravan, R.; Singh, S.; Naqvi, S.W.A.; Mayilraj, S.; Shivaji, S. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella. Int. J. Syst. Evol. Microbiol., 2012, 62(Pt_9), 2252-2258.
[http://dx.doi.org/10.1099/ijs.0.038604-0] [PMID: 22081718]
[6]
Anil Kumar, P.; Srinivas, T.N.R.; Madhu, S.; Manorama, R.; Shivaji, S. Indibacter alkaliphilus gen. nov., sp. nov., an alkaliphilic bacterium isolated from a haloalkaline lake. Int. J. Syst. Evol. Microbiol., 2010, 60(4), 721-726.
[http://dx.doi.org/10.1099/ijs.0.014076-0] [PMID: 20371870]
[7]
Antony, C.P.; Kumaresan, D.; Ferrando, L.; Boden, R.; Moussard, H.; Scavino, A.F.; Shouche, Y.S.; Murrell, J.C. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J., 2010, 4(11), 1470-1480.
[http://dx.doi.org/10.1038/ismej.2010.70] [PMID: 20555363]
[8]
Antony, C.P.; Shimpi, G.G.; Cockell, C.S.; Patole, M.S.; Shouche, Y.S. Molecular characterization of prokaryotic communities associated with Lonar Crater basalts. Geomicrobiol. J., 2014, 31(6), 519-528.
[http://dx.doi.org/10.1080/01490451.2013.849314]
[9]
Antony, C.P.; Murrell, J.C.; Shouche, Y.S. Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol. Ecol., 2012, 81(1), 43-51.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01274.x] [PMID: 22150151]
[10]
Srinivas, A.; Rahul, K.; Sasikala, C.; Subhash, Y.; Ramaprasad, E.V.V.; Ramana, C.V. Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake. Int. J. Syst. Evol. Microbiol., 2012, 62(Pt_10), 2405-2409.
[http://dx.doi.org/10.1099/ijs.0.036210-0] [PMID: 22140168]
[11]
Zavarzin, G.A.; Zhilina, T.N.; Kevbrin, V.V. Alkaliphilic microbial community and its functional diversity. Mикpoбиoлoгия, 1999, 68, 579-599.
[12]
Joshi, A.; Thite, S.; Lodha, T.; Joseph, N.; Mengade, P. Genomic insights of an alkaliphilic bacterium Halalkalibacter alkaliphilus sp. nov. isolated from an Indian Soda Lake. Antonie van Leeuwenhoek, 2023, 116(5), 435-445.
[http://dx.doi.org/10.1007/s10482-023-01816-1] [PMID: 36811745]
[13]
Surakasi, V.P.; Antony, C.P.; Sharma, S.; Patole, M.S.; Shouche, Y.S. Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake. J. Basic Microbiol., 2010, 50(5), 465-474.
[http://dx.doi.org/10.1002/jobm.201000001] [PMID: 20586073]
[14]
Wani, A.A.; Surakasi, V.P.; Siddharth, J.; Raghavan, R.G.; Patole, M.S.; Ranade, D.; Shouche, Y.S. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: An impact crater in a basalt area. Res. Microbiol., 2006, 157(10), 928-937.
[http://dx.doi.org/10.1016/j.resmic.2006.08.005] [PMID: 17070674]
[15]
Chakraborty, J.; Rajput, V.; Sapkale, V.; Kamble, S.; Dharne, M. Spatio-temporal resolution of taxonomic and functional microbiome of Lonar soda lake of India reveals metabolic potential for bioremediation. Chemosphere, 2021, 264(Pt 2), 128574.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128574] [PMID: 33059288]
[16]
Paul, D.; Kumbhare, S.V.; Mhatre, S.S.; Chowdhury, S.P.; Shetty, S.A.; Marathe, N.P.; Bhute, S.; Shouche, Y.S. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock. Front. Microbiol., 2016, 6, 1553.
[http://dx.doi.org/10.3389/fmicb.2015.01553] [PMID: 26834712]
[17]
Shang, Y.; Wu, X.; Wang, X.; Wei, Q.; Ma, S.; Sun, G.; Zhang, H.; Wang, L.; Dou, H.; Zhang, H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci. Total Environ., 2022, 805, 150294.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150294] [PMID: 34536882]
[18]
Satpathy, K.K.; Mohanty, A.K.; Natesan, U.; Prasad, M.V.R.; Sarkar, S.K. Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients. Environ. Monit. Assess., 2010, 164(1-4), 153-171.
[http://dx.doi.org/10.1007/s10661-009-0882-0] [PMID: 19404759]
[19]
Maldhure, A.; Rodge, A.; Kothe, A.; Nagarnaik, P.; Khadse, G.; Bafana, A.; Kumar, M.; Labhasetwar, P. Identification of environmental stress parameters to study the natural colour change of water in highly saline inland Crater Lake at Lonar, India. Environ. Monit. Assess., 2023, 195(4), 524.
[http://dx.doi.org/10.1007/s10661-023-11068-1] [PMID: 36995487]
[20]
Bhattacharjee, R.; Choubey, A.; Das, N.; Ohri, A.; Gaur, S. Detecting the carotenoid pigmentation due to haloarchaea microbes in the lonar lake, maharashtra, india using sentinel-2 images. Photonirvachak, 2021, 49(2), 305-316.
[http://dx.doi.org/10.1007/s12524-020-01219-z]
[21]
Junare, N.; Garode, A.M. Bacteriological and physico-chemical analysis of lonar lake water-a unique hypervelocity nature impact crater in basaltic rock in the world; IJSRST, 2018.
[22]
Khobragade, K.S.; Pawar, V.B. Physico Chemical analysis of Lonar Lake with reference to Bacteriological Study. Int J Mod Sci Eng Technol, 2016, 3, 15-22.
[23]
Martins, R.; Davids, W.; Al-Soud, W.; Levander, F.; Rådström, P.; Hatti-Kaul, R. Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles, 2001, 5(2), 135-144.
[http://dx.doi.org/10.1007/s007920100183] [PMID: 11354457]
[24]
Gessesse, A.; Gashe, B.A. Production of alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkalinesoda lake. J. Appl. Microbiol., 1997, 83(4), 402-406.
[http://dx.doi.org/10.1046/j.1365-2672.1997.00242.x]
[25]
Haile, G.; Gessesse, A. Properties of alkaline protease C45 produced by alkaliphilic Bacillus Sp. isolated from Chitu, Ethiopian Soda Lake. J. Biotechnol. Biomater., 2012, 2(3), 136.
[http://dx.doi.org/10.4172/2155-952X.1000136]
[26]
Gosavi, S.M.; Phuge, S.K. First report on microplastics contamination in a meteorite impact Crater Lake from India. Environ. Sci. Pollut. Res. Int., 2023, 30(23), 64755-64770.
[http://dx.doi.org/10.1007/s11356-023-27074-2] [PMID: 37079229]
[27]
Gaikwad, R.W.; Sasane, V.V. Assessment of ground water quality in and around Lonar lake and possible water treatment. Int. J. Environ. Sci., 2013, 3, 1263-1270.
[28]
Yannawar, V.B.; Bhosle, A.B. Cultural Eutrophication of Lonar Lake, Maharashtra, India. Int. J. Innov. Appl. Stud., 2013, 3, 504-510.
[29]
Duckworth, A.W.; Grant, W.D.; Jones, B.E.; Steenbergen, R. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol., 1996, 19(3), 181-191.
[http://dx.doi.org/10.1111/j.1574-6941.1996.tb00211.x]
[30]
Vargas, V.A.; Delgado, O.D.; Hatti-Kaul, R.; Mattiasson, B. Lipase-producing microorganisms from a Kenyan alkaline soda lake. Biotechnol. Lett., 2004, 26(2), 81-86.
[http://dx.doi.org/10.1023/B:BILE.0000012898.50608.12] [PMID: 15000472]
[31]
Sieber, J.R.; McInerney, M.J.; Gunsalus, R.P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol., 2012, 66(1), 429-452.
[http://dx.doi.org/10.1146/annurev-micro-090110-102844] [PMID: 22803797]
[32]
Kalwasińska, A.; Felföldi, T.; Szabó, A.; Deja-Sikora, E.; Kosobucki, P.; Walczak, M. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie van Leeuwenhoek, 2017, 110(7), 945-962.
[http://dx.doi.org/10.1007/s10482-017-0866-y] [PMID: 28382378]
[33]
Davies, J. Specialized microbial metabolites: Functions and origins. J. Antibiot., 2013, 66(7), 361-364.
[http://dx.doi.org/10.1038/ja.2013.61] [PMID: 23756686]
[34]
Jadhav Raju, D. Modified silicified ecology at crate n.d.,
[35]
Shwarup Mahto, S.; Kushwaha, A.P. An assessment of inter-seasonal surface water level fluctuation of Lonar Crater lake, Maharashtra, India Using multi-temporal Satellite dataset. AJRS, 2018, 6(1), 6-14.
[http://dx.doi.org/10.11648/j.ajrs.20180601.12]
[36]
Deshmukh, K.B.; Pathak, A.P.; Karuppayil, M.S. Bacterial diversity of lonar soda lake of India. Indian J. Microbiol., 2011, 51(1), 107-111.
[http://dx.doi.org/10.1007/s12088-011-0159-5] [PMID: 22282637]
[37]
Sorokin, D.Y.; Kuenen, J.G.; Muyzer, G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front. Microbiol., 2011, 2, 44.
[http://dx.doi.org/10.3389/fmicb.2011.00044] [PMID: 21747784]
[38]
Tambekar, D.H.; Pawar, A.L.; Dudhane, M.N. Lonar Lake water: Past and present. Nature. Environ Pollut Technol, 2010, 9, 217-221.
[39]
Oremland, R.S.; Stolz, J.F.; Hollibaugh, J.T. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol. Ecol., 2004, 48(1), 15-27.
[http://dx.doi.org/10.1016/j.femsec.2003.12.016] [PMID: 19712427]
[40]
Joshi, A.A.; Kanekar, P.P.; Kelkar, A.S.; Shouche, Y.S.; Vani, A.A.; Borgave, S.B.; Sarnaik, S.S. Cultivable bacterial diversity of alkaline Lonar lake, India. Microb. Ecol., 2008, 55(2), 163-172.
[http://dx.doi.org/10.1007/s00248-007-9264-8] [PMID: 17604989]
[41]
Sorokin, D.Y.; Foti, M.; Pinkart, H.C.; Muyzer, G. Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl. Environ. Microbiol., 2007, 73(2), 451-455.
[http://dx.doi.org/10.1128/AEM.02087-06] [PMID: 17114324]
[42]
Guan, T.W.; Lin, Y.J.; Ou, M.Y.; Chen, K.B. Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China. PLoS One, 2020, 15(7), e0236006.
[http://dx.doi.org/10.1371/journal.pone.0236006] [PMID: 32649724]
[43]
Anil Kumar, P.; Srinivas, T.N.R.; Pavan Kumar, P.; Madhu, S.; Shivaji, S. Nitritalea halalkaliphila gen. nov., sp. nov., an alkaliphilic bacterium of the family ‘Cyclobacteriaceae’, phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol., 2010, 60(10), 2320-2325.
[http://dx.doi.org/10.1099/ijs.0.020230-0] [PMID: 19933591]
[44]
Kumar, S.; Karan, R.; Kapoor, S.; Singh, S.P.; Khare, S.K. Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz. J. Microbiol., 2012, 43(4), 1595-1603.
[http://dx.doi.org/10.1590/S1517-83822012000400044] [PMID: 24031991]
[45]
Basak, P.; Majumder, N.S.; Nag, S.; Bhattacharyya, A.; Roy, D.; Chakraborty, A.; SenGupta, S.; Roy, A.; Mukherjee, A.; Pattanayak, R.; Ghosh, A.; Chattopadhyay, D.; Bhattacharyya, M. Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microb. Ecol., 2015, 69(3), 500-511.
[http://dx.doi.org/10.1007/s00248-014-0498-y] [PMID: 25256302]
[46]
Bagade, A.V.; Paul, D.; Rikame, T.; Giri, A.P.; Dhotre, D.; Pawar, S. Diversity of arsenic resistant bacteria from Lonar lake: A meteorite impact alkaline crater lake in India. Arsen. Res. Glob. Sustain., 2016, 113-114.
[http://dx.doi.org/10.1201/b20466-55]
[47]
Nunoura, T.; Takaki, Y.; Kazama, H.; Hirai, M.; Ashi, J.; Imachi, H.; Takai, K. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ., 2012, 27(4), 382-390.
[http://dx.doi.org/10.1264/jsme2.ME12032] [PMID: 22510646]
[48]
Khadka, R. Diversity of methane and short chain hydrocarbon degrading bacteria with an emphasis on methane biofilter systems., Doctoral thesis, University of Calgary, Calgary, Canada, 2018.
[49]
Paul Antony, C.; Kumaresan, D.; Hunger, S.; Drake, H.L.; Murrell, J.C.; Shouche, Y.S. Microbiology of Lonar Lake and other soda lakes. ISME J., 2013, 7(3), 468-476.
[http://dx.doi.org/10.1038/ismej.2012.137] [PMID: 23178675]
[50]
Pawar, A.L. Methylotrophic activities of Acenatobactor spp. from Lonar lake. Int. J. of Life. Sci., 2013, A12, 101-106.
[51]
Surakasi, V.P.; Wani, A.A.; Shouche, Y.S.; Ranade, D.R. Phylogenetic analysis of methanogenic enrichment cultures obtained from Lonar Lake in India: isolation of Methanocalculus sp. and Methanoculleus sp. Microb. Ecol., 2007, 54(4), 697-704.
[http://dx.doi.org/10.1007/s00248-007-9228-z] [PMID: 17483868]
[52]
Shetty, S.A.; Marathe, N.P.; Munot, H.; Antony, C.P.; Dhotre, D.P.; Murrell, J.C.; Shouche, Y.S. Draft genome sequence of Methylophaga lonarensis MPLT, a haloalkaliphilic (non-methane-utilizing) methylotroph. Genome Announc., 2013, 1(3), e00202-e00213.
[http://dx.doi.org/10.1128/genomeA.00202-13] [PMID: 23661481]
[53]
Singh, R.; Chaudhary, S.; Yadav, S.; Patil, S.A. Bioelectrocatalytic sulfide oxidation by a haloalkaliphilic electroactive microbial community dominated by Desulfobulbaceae. Electrochim. Acta, 2022, 423, 140576.
[http://dx.doi.org/10.1016/j.electacta.2022.140576]
[54]
Joshi, A.; Thite, S.; Dhotre, D.; Moorthy, M.; Joseph, N.; Ramana, V.V.; Shouche, Y. Nitrincola tapanii sp. nov., a novel alkaliphilic bacterium from An Indian Soda Lake. Int. J. Syst. Evol. Microbiol., 2020, 70(2), 1106-1111.
[http://dx.doi.org/10.1099/ijsem.0.003883] [PMID: 31751193]
[55]
Cadillo-Quiroz, H.; Yashiro, E.; Yavitt, J.B.; Zinder, S.H. Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl. Environ. Microbiol., 2008, 74(7), 2059-2068.
[http://dx.doi.org/10.1128/AEM.02222-07] [PMID: 18281434]
[56]
Sultanpuram, V.R.; Mothe, T.; Mohammed, F. Streptomyces alkalithermotolerans sp. nov., a novel alkaliphilic and thermotolerant actinomycete isolated from a soda lake. Antonie van Leeuwenhoek, 2015, 107(2), 337-344.
[http://dx.doi.org/10.1007/s10482-014-0332-z] [PMID: 25391353]
[57]
Sharma, T.K.; Mawlankar, R.; Sonalkar, V.V.; Shinde, V.K.; Zhan, J.; Li, W.J.; Rele, M.V.; Dastager, S.G.; Kumar, L.S. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India. Antonie van Leeuwenhoek, 2016, 109(2), 225-235.
[http://dx.doi.org/10.1007/s10482-015-0626-9] [PMID: 26597560]
[58]
McInerney, M.J.; Struchtemeyer, C.G.; Sieber, J.; Mouttaki, H.; Stams, A.J.M.; Schink, B.; Rohlin, L.; Gunsalus, R.P. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. N. Y. Acad. Sci., 2008, 1125(1), 58-72.
[http://dx.doi.org/10.1196/annals.1419.005] [PMID: 18378587]
[59]
Dhundale, V.R.; Hemke, V.M. Phylogenetic analysis of Bacilli from haloalkaline Lonar Soda crater. Int J Pharm Bio Sci, 2015, 6, 279-290.
[60]
Bhosale, H.J.; Raut, S.; Kadam, T.A. Antifungal activity of Streptomyces longisporoflavus isolated from Lonar Lake against Alternaria solani. Int. J. Scientif. Res. in Biol. Sci., 2018, 5(3), 21-26.
[http://dx.doi.org/10.26438/ijsrbs/v5i3.2126]
[61]
Switzer Blum, J.; Burns Bindi, A.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol., 1998, 171(1), 19-30.
[http://dx.doi.org/10.1007/s002030050673] [PMID: 9871015]
[62]
Sultanpuram, V.R.; Mothe, T.; Mohammed, F. Salisediminibacterium haloalkalitolerans sp. nov., isolated from Lonar soda lake, India, and a proposal for reclassification of Bacillus locisalis as Salisediminibacterium locisalis comb. nov., and the emended description of the genus Salisediminibacterium and of the species Salisediminibacterium halotolerans. Arch. Microbiol., 2015, 197(4), 553-560.
[http://dx.doi.org/10.1007/s00203-015-1081-8] [PMID: 25638045]
[63]
Kharat, K.R.; Kharat, A.; Hardikar, B.P. Antimicrobial and cytotoxic activity of Streptomyces sp. from Lonar Lake. Afr. J. Biotechnol., 2009, 8.
[64]
Pathak, A.P.; Rathod, M.G. Production and characterization of alkaline protease by Bacillus pasteurii: a Lonar soda lake isolate. Innov Res Chem, 2013, 1, 22-26.
[65]
Rathod, M.G.; Pathak, A.P. Optimized production, characterization and application of alkaline proteases from taxonomically assessed microbial isolates from Lonar soda lake, India. Biocatal. Agric. Biotechnol., 2016, 7, 164-173.
[http://dx.doi.org/10.1016/j.bcab.2016.06.002]
[66]
Rekadwad, B.N.; Khobragade, C.N. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India. Data Brief, 2016, 7, 1306-1313.
[http://dx.doi.org/10.1016/j.dib.2016.03.103] [PMID: 27141529]
[67]
Kumar, S.; Paul, D.; Shouche, Y.; Suryavanshi, M. Data on genome sequencing, assembly, annotation and genomic analysis of Rhodococcus rhodochrous strain SPC17 isolated from Lonar Lake. Data Brief, 2020, 29, 105336.
[http://dx.doi.org/10.1016/j.dib.2020.105336] [PMID: 32154356]
[68]
Sisinthy, S.; Chakraborty, D.; Adicherla, H.; Gundlapally, S.R. Emended description of the family Chromatiaceae, phylogenetic analyses of the genera Alishewanella, Rheinheimera and Arsukibacterium, transfer of Rheinheimera longhuensis LH2-2T to the genus Alishewanella and description of Alishewanella alkalitolerans sp. nov. from Lonar Lake, India. Antonie van Leeuwenhoek, 2017, 110(9), 1227-1241.
[http://dx.doi.org/10.1007/s10482-017-0896-5] [PMID: 28612170]
[69]
Bagade, A.; Nandre, V.; Paul, D.; Patil, Y.; Sharma, N.; Giri, A.; Kodam, K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. Environ. Pollut., 2020, 261, 114124.
[http://dx.doi.org/10.1016/j.envpol.2020.114124] [PMID: 32078878]
[70]
Chakraborty, J.; Sapkale, V.; Shah, M.; Rajput, V.; Mehetre, G.; Agawane, S.; Kamble, S.; Dharne, M. Metagenome sequencing to unveil microbial community composition and prevalence of antibiotic and metal resistance genes in hypersaline and hyperalkaline Lonar Lake, India. Ecol. Indic., 2020, 110, 105827.
[http://dx.doi.org/10.1016/j.ecolind.2019.105827]
[71]
Joshi, A.; Thite, S.; Karodi, P.; Joseph, N.; Lodha, T. Alkalihalobacterium elongatum gen. nov. sp. nov.: An antibiotic-producing bacterium isolated from Lonar Lake and reclassification of the genus Alkalihalobacillus into seven novel genera. Front. Microbiol., 2021, 12, 722369.
[http://dx.doi.org/10.3389/fmicb.2021.722369] [PMID: 34707580]
[72]
Govindaraju, A.; Good, N.M.; Zytnick, A.M.; Martinez-Gomez, N.C. Employing methylotrophs for a green economy: One-carbon to fuel them all and through metabolism redesign them. Curr. Opin. Microbiol., 2022, 67, 102145.
[http://dx.doi.org/10.1016/j.mib.2022.102145] [PMID: 35525169]
[73]
Trotsenko, Y.A. Metabolic features of methane-and methanol-utilizing bacteria. Acta Biotechnol., 1983, 3(3), 269-277.
[http://dx.doi.org/10.1002/abio.370030311]
[74]
Chistoserdova, L. Applications of methylotrophs: can single carbon be harnessed for biotechnology? Curr. Opin. Biotechnol., 2018, 50, 189-194.
[http://dx.doi.org/10.1016/j.copbio.2018.01.012] [PMID: 29414059]
[75]
Trotsenko, Y.A.; Torgonskaya, M.L. Current trends in methylotrophy-based biotechnology. Adv. Biotechnol. Microbiol., 2018, 9, 555763.
[76]
Pham, D.N.; Nguyen, A.D.; Lee, E.Y. Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology. Chem. Eng. J., 2022, 449, 137769.
[http://dx.doi.org/10.1016/j.cej.2022.137769]
[77]
Kumar, M.; Tomar, R.S.; Lade, H.; Paul, D. Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol., 2016, 32(7), 120.
[http://dx.doi.org/10.1007/s11274-016-2074-8] [PMID: 27263015]
[78]
Kumar, M.; Kour, D.; Yadav, A.N.; Saxena, R.; Rai, P.K.; Jyoti, A.; Tomar, R.S. Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia, 2019, 74(3), 287-308.
[http://dx.doi.org/10.2478/s11756-019-00190-6]
[79]
Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; Singh, H.B.; Krishanani, K.K.; Minhas, P.S. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci., 2017, 8, 172.
[http://dx.doi.org/10.3389/fpls.2017.00172] [PMID: 28232845]
[80]
Sapp, A.; Huguet-Tapia, J.C.; Sánchez-Lamas, M.; Antelo, G.T.; Primo, E.D.; Rinaldi, J.; Klinke, S.; Goldbaum, F.A.; Bonomi, H.R.; Christner, B.C.; Otero, L.H. Draft genome sequence of Methylobacterium sp. strain V23, isolated from accretion ice of the Antarctic subglacial Lake Vostok. Genome Announc., 2018, 6(10), e00145-e18.
[http://dx.doi.org/10.1128/genomeA.00145-18] [PMID: 29519839]
[81]
Yadav, A.N. Agriculturally important microbiomes: Biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed. J. Sci. Tech. Res., 2017, 1(4), 861-864.
[http://dx.doi.org/10.26717/BJSTR.2017.01.000321]
[82]
Cao, Y.R.; Wang, Q.; Jin, R.X.; Tang, S.K.; Jiang, Y.; He, W.X.; Lai, H.X.; Xu, L.H.; Jiang, C.L. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie van Leeuwenhoek, 2011, 99(3), 629-634.
[http://dx.doi.org/10.1007/s10482-010-9535-0] [PMID: 21222033]
[83]
Subramani, R.; Aalbersberg, W. Culturable rare Actinomycetes: Diversity, isolation and marine natural product discovery. Appl. Microbiol. Biotechnol., 2013, 97(21), 9291-9321.
[http://dx.doi.org/10.1007/s00253-013-5229-7] [PMID: 24057404]
[84]
Bramhachari, P.V.; Raju, G. Current advances in biotechnologydriven marine microbial metagenomics. In: Marine OMICS; 1st Ed.; CRC Press. , 2016; pp. 705-726.
[85]
Timmermans, M.; Paudel, Y.; Ross, A. Investigating the biosynthesis of natural products from marine Proteobacteria: A survey of molecules and strategies. Mar. Drugs, 2017, 15(8), 235.
[http://dx.doi.org/10.3390/md15080235] [PMID: 28762997]
[86]
Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Chevalier, P.; Fleury, Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs, 2013, 11(10), 3632-3660.
[http://dx.doi.org/10.3390/md11103632] [PMID: 24084784]
[87]
Buijs, Y.; Bech, P.K.; Vazquez-Albacete, D.; Bentzon-Tilia, M.; Sonnenschein, E.C.; Gram, L.; Zhang, S.D. Marine Proteobacteria as a source of natural products: Advances in molecular tools and strategies. Nat. Prod. Rep., 2019, 36(9), 1333-1350.
[http://dx.doi.org/10.1039/C9NP00020H] [PMID: 31490501]
[88]
Sharma, A.; Verma, H.K.; Joshi, S.; Panwar, M.S.; Mandal, C.C. A link between cold environment and cancer. Tumour Biol., 2015, 36(8), 5953-5964.
[http://dx.doi.org/10.1007/s13277-015-3270-0] [PMID: 25736923]
[89]
Chaudhary, H.S.; Soni, B.; Shrivastava, A.R.; Shrivastava, S. Diversity and versatility of actinomycetes and its role in antibiotic production. J. Appl. Pharm. Sci., 2013, 3, S83-S94.
[http://dx.doi.org/10.7324/JAPS.2013.38.S14]
[90]
Wanjari, H.V.; Dabhade, D.S. Lonar crater lake of INDIA: An abundant source of highaly economic important spirulina. IJRBAT, 2015, 2, 241-249.
[91]
Prakash, I. Application of observational method in the successful construction of underground structures, sardar sarovar (Narmada) project, Gujarat India. Seventh International Conference on Case Histories in Geotechnical EngineeringAt, Missouri USA2013,
[92]
Oli, A.K.; Shivshetty, N.; Kelmani, C.R.; Biradar, P.A. Actinomycetes in medical and pharmaceutical industries. In: Actinobacteria; Springer, 2022; pp. 291-320.
[93]
Gessesse, A.; Gashe, B.A. Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnol. Lett., 1997, 19(5), 479-481.
[http://dx.doi.org/10.1023/A:1018308513853]
[94]
Kumazawa, T.; Nishimura, A.; Asai, N.; Adachi, T. Isolation of immune-regulatory tetragenococcus halophilus from miso. PLoS One, 2018, 13(12), e0208821.
[http://dx.doi.org/10.1371/journal.pone.0208821] [PMID: 30586377]
[95]
Hegazy, G.E.; Abu-Serie, M.M.; Abo-Elela, G.M.; Ghozlan, H.; Sabry, S.A.; Soliman, N.A.; Abdel-Fattah, Y.R. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Sci. Rep., 2020, 10(1), 5986.
[http://dx.doi.org/10.1038/s41598-020-62663-y] [PMID: 32249805]
[96]
Nag, S.; DasSarma, P.; Crowley, D.J.; Hamawi, R.; Tepper, S.; Anton, B.P.; Guzmán, D.; DasSarma, S. Genomic analysis of haloarchaea from diverse environments, including permian halite, reveals diversity of ultraviolet radiation survival and DNA photolyase gene variants. Microorganisms, 2023, 11(3), 607.
[http://dx.doi.org/10.3390/microorganisms11030607] [PMID: 36985181]
[97]
Chen, Y.H.; Lu, C.W.; Shyu, Y.T.; Lin, S.S. Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches. Sci. Rep., 2017, 7(1), 13037.
[http://dx.doi.org/10.1038/s41598-017-13450-9] [PMID: 29026163]
[98]
Charlesworth, JC Burns, BP Untapped resources: Biotechnological potential of peptides and secondary metabolites in archaea. Archaea, 2015, 2015
[http://dx.doi.org/10.1155/2015/282035]
[99]
Amoozegar, M.A.; Siroosi, M.; Atashgahi, S.; Smidt, H.; Ventosa, A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology (Reading), 2017, 163(5), 623-645.
[http://dx.doi.org/10.1099/mic.0.000463] [PMID: 28548036]
[100]
De Simeis, D.; Serra, S. Actinomycetes: A Never-Ending Source of Bioactive Compounds—An Overview on Antibiotics Production. Antibiotics, 2021, 10(5), 483.
[http://dx.doi.org/10.3390/antibiotics10050483] [PMID: 33922100]
[101]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[102]
Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. Front. Microbiol., 2016, 6, 1541.
[http://dx.doi.org/10.3389/fmicb.2015.01541] [PMID: 26858692]
[103]
Bawazir, A.M.A.; Shantaram, M. Ecology and distribution of actinomycetes in nature—a review. Int. J. Curr. Res., 2018, 10, 71664-71668.
[104]
Kumar, A.; Naraian, R. Producers of bioactive compounds. In: New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier, 2019; pp. 205-221.
[105]
Rodríguez-Frías, F.; Quer, J.; Tabernero, D.; Cortese, M.F.; Garcia-Garcia, S.; Rando-Segura, A.; Pumarola, T. Microorganisms as shapers of human civilization, from pandemics to even our genomes: Villains or friends? A historical approach. Microorganisms, 2021, 9(12), 2518.
[http://dx.doi.org/10.3390/microorganisms9122518] [PMID: 34946123]
[106]
Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs, 2021, 19(7), 365.
[http://dx.doi.org/10.3390/md19070365] [PMID: 34201951]
[107]
Nair, S.; Abraham, J. Natural products from actinobacteria for drug discovery. In: Adv. Pharma. Biot; , 2020; pp. 333-363.
[http://dx.doi.org/10.1007/978-981-15-2195-9_23]
[108]
Betancur, L.A.; Naranjo-Gaybor, S.J.; Vinchira-Villarraga, D.M.; Moreno-Sarmiento, N.C.; Maldonado, L.A.; Suarez-Moreno, Z.R.; Acosta-González, A.; Padilla-Gonzalez, G.F.; Puyana, M.; Castellanos, L.; Ramos, F.A. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS One, 2017, 12(2), e0170148.
[http://dx.doi.org/10.1371/journal.pone.0170148] [PMID: 28225766]
[109]
Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol., 2021, 19(1), 72.
[http://dx.doi.org/10.1186/s43141-021-00156-9] [PMID: 33982192]
[110]
Genilloud, O. Actinomycetes: Still a source of novel antibiotics. Nat. Prod. Rep., 2017, 34(10), 1203-1232.
[http://dx.doi.org/10.1039/C7NP00026J] [PMID: 28820533]
[111]
Hug, J.; Bader, C.; Remškar, M.; Cirnski, K.; Müller, R. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics, 2018, 7(2), 44.
[http://dx.doi.org/10.3390/antibiotics7020044] [PMID: 29789481]
[112]
Genilloud, O.; González, I.; Salazar, O.; Martín, J.; Tormo, J.R.; Vicente, F. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol., 2011, 38(3), 375-389.
[http://dx.doi.org/10.1007/s10295-010-0882-7] [PMID: 20931260]
[113]
Sharma, R.; Prakash, O.; Sonawane, M.S.; Nimonkar, Y.; Golellu, P.B.; Sharma, R. Diversity and distribution of phenol oxidase producing fungi from soda lake and description of curvularia lonarensis sp. nov. Front. Microbiol., 2016, 7, 1847.
[http://dx.doi.org/10.3389/fmicb.2016.01847] [PMID: 27920761]
[114]
Dudhagara, P.; Ghelani, A.; Patel, R.; Chaudhari, R.; Bhatt, S. Bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP) based assessment of prokaryotic diversity in metagenome of Lonar soda lake, India. Genom. Data, 2015, 4, 8-11.
[http://dx.doi.org/10.1016/j.gdata.2015.01.010] [PMID: 26484168]
[115]
Dudhagara, P.; Ghelani, A.; Bhatt, S. Structural characterization of mycobiome from the metagenome of Lonar Lake sediment using next generation sequencing. Indian J. Sci., 2015, 12, 11-16.
[116]
Dudhagara, P.; Ghelani, A.; Bhavsar, S.; Bhatt, S. Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India. Data Brief, 2015, 4, 266-268.
[http://dx.doi.org/10.1016/j.dib.2015.06.001] [PMID: 26217800]
[117]
Gonçalves, M.F.M.; Vicente, T.F.L.; Esteves, A.C.; Alves, A. Novel halotolerant species of Emericellopsis and Parasarocladium associated with macroalgae in an estuarine environment. Mycologia, 2020, 112(1), 154-171.
[http://dx.doi.org/10.1080/00275514.2019.1677448] [PMID: 31829905]
[118]
Grum-Grzhimaylo, A.A.; Georgieva, M.L.; Bondarenko, S.A.; Debets, A.J.M.; Bilanenko, E.N. On the diversity of fungi from soda soils. Fungal Divers., 2016, 76(1), 27-74.
[http://dx.doi.org/10.1007/s13225-015-0320-2]
[119]
De Zotti, M.; Biondi, B.; Peggion, C.; Park, Y.; Hahm, K.S.; Formaggio, F.; Toniolo, C. Synthesis, preferred conformation, protease stability, and membrane activity of heptaibin, a medium-length peptaibiotic. J. Pept. Sci., 2011, 17(8), 585-594.
[http://dx.doi.org/10.1002/psc.1364] [PMID: 21495119]
[120]
Baranova, A.A.; Georgieva, M.L.; Bilanenko, E.N.; Andreev, Y.A.; Rogozhin, E.A.; Sadykova, V.S. Antimicrobial potential of alkalophilic micromycetes Emericellopsis alkalina. Appl. Biochem. Microbiol., 2017, 53(6), 703-710.
[http://dx.doi.org/10.1134/S0003683817060035]
[121]
Kuvarina, A.E.; Gavryushina, I.A.; Kulko, A.B.; Ivanov, I.A.; Rogozhin, E.A.; Georgieva, M.L.; Sadykova, V.S. The emericellipsins a–e from an alkalophilic fungus emericellopsis alkalina show potent activity against multidrug-resistant pathogenic fungi. J. Fungi, 2021, 7(2), 153.
[http://dx.doi.org/10.3390/jof7020153] [PMID: 33669976]
[122]
Niu, X.; Thaochan, N.; Hu, Q. Diversity of linear non-ribosomal peptide in biocontrol fungi. J. Fungi, 2020, 6(2), 61.
[http://dx.doi.org/10.3390/jof6020061] [PMID: 32408496]
[123]
Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep., 2011, 28(2), 290-344.
[http://dx.doi.org/10.1039/c0np00061b] [PMID: 21229157]
[124]
Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal peptides as therapeutic agents. Front. Cell. Infect. Microbiol., 2020, 10, 105.
[http://dx.doi.org/10.3389/fcimb.2020.00105] [PMID: 32257965]
[125]
Ishiyama, D.; Satou, T.; Senda, H.; Fujimaki, T.; Honda, R.; Kanazawa, S. Heptaibin, a novel antifungal peptaibol antibiotic from Emericellopsis sp. BAUA8289. J. Antibiot., 2000, 53(7), 728-732.
[http://dx.doi.org/10.7164/antibiotics.53.728] [PMID: 10994817]
[126]
Prakash, O.; Mahabare, K.; Yadav, K.K.; Sharma, R. Fungi from extreme environments: A potential source of laccases group of extremozymes. In: Fungi in Extreme Environments; Ecological Role and Biotechnological Significance, 2019; pp. 441-462.
[127]
Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res., 2002, 106(9), 996-1004.
[http://dx.doi.org/10.1017/S0953756202006342]
[128]
Solomon, L.; Tomii, V.P.; Dick, A.A. Importance of fungi in the petroleum, agro-allied, agriculture and pharmaceutical industries. NY Sci J, 2019, 12, 8-15.
[129]
Deshmukh, S.K.; Misra, J.K.; Tewari, J.P.; Papp, T. Fungi: applications and management strategies; CRC Press, 2018.
[http://dx.doi.org/10.1201/9781315369471]
[130]
Chandra, P. Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Fact., 2020, 19(1), 169.
[http://dx.doi.org/10.1186/s12934-020-01428-8]
[131]
Barrera, V.A.; Martin, M.E.; Aulicino, M.; Martínez, S.; Chiessa, G.; Saparrat, M.C.N.; Gasoni, A.L. Carbon-substrate utilization profiles by Cladorrhinum (Ascomycota). Rev. Argent. Microbiol., 2019, 51(4), 302-306.
[http://dx.doi.org/10.1016/j.ram.2018.09.005] [PMID: 30981496]
[132]
Gasoni, L.; Stegman de Gurfinkel, B. Biocontrol of Rhizoctonia solani by the endophytic fungus Cladorrhinum foecundissimum in cotton plants. Australas. Plant Pathol., 2009, 38(4), 389-391.
[http://dx.doi.org/10.1071/AP09013]
[133]
Hibbett, D.S.; Ohman, A.; Glotzer, D.; Nuhn, M.; Kirk, P.; Nilsson, R.H. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol. Rev., 2011, 25(1), 38-47.
[http://dx.doi.org/10.1016/j.fbr.2011.01.001]
[134]
Chaudhari, P.R.; Satyanarayan, S.; Verma, S.; Kotangale, J.P.; Wate, S.R. Limnological studies on brackish water Crater lake at Lonar, Maharashtra. INDIAN J Environ Prot, 2007, 27, 97.
[135]
Soria-Mercado, I.E.; Villarreal-Gómez, L.J.; Rivas, G.G.; Sánchez, N.E.A. Bioactive compounds from bacteria associated to marine algae. In: Biotechnology; IntechOpen. , 2012; pp. 25-44.
[136]
Axenov-Gribanov, D V; Kostka, D V; Vasilieva, UA; Shatilina, ZM; Krasnova, ME; Pereliaeva, E V Cultivable actinobacteria first found in baikal endemic algae is a new source of natural products with antibiotic activity. Int J Microbiol, 2020, 2020
[http://dx.doi.org/10.1155/2020/5359816]
[137]
Wiese, J.; Thiel, V.; Nagel, K.; Staufenberger, T.; Imhoff, J.F. Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar. Biotechnol., 2009, 11(2), 287-300.
[http://dx.doi.org/10.1007/s10126-008-9143-4] [PMID: 18855068]
[138]
Braña, A.F.; Fiedler, H.P.; Nava, H.; González, V.; Sarmiento-Vizcaíno, A.; Molina, A.; Acuña, J.L.; García, L.A.; Blanco, G. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. Microb. Ecol., 2015, 69(3), 512-524.
[http://dx.doi.org/10.1007/s00248-014-0508-0] [PMID: 25319239]
[139]
Gómez-Zorita, S.; Trepiana, J.; González-Arceo, M.; Aguirre, L.; Milton-Laskibar, I.; González, M.; Eseberri, I.; Fernández-Quintela, A.; Portillo, M.P. Anti-obesity effects of microalgae. Int. J. Mol. Sci., 2019, 21(1), 41.
[http://dx.doi.org/10.3390/ijms21010041] [PMID: 31861663]
[140]
Santos, M.C.; Bicas, J.L. Natural blue pigments and bikaverin. Microbiol. Res., 2021, 244, 126653.
[http://dx.doi.org/10.1016/j.micres.2020.126653] [PMID: 33302226]
[141]
Namazi, N.; Irandoost, P.; Larijani, B.; Azadbakht, L. The effects of supplementation with conjugated linoleic acid on anthropometric indices and body composition in overweight and obese subjects: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2019, 59(17), 2720-2733.
[http://dx.doi.org/10.1080/10408398.2018.1466107] [PMID: 29672124]
[142]
Babu, B.; Wu, J.T. Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton 1. J. Phycol., 2008, 44(6), 1447-1454.
[http://dx.doi.org/10.1111/j.1529-8817.2008.00596.x] [PMID: 27039859]
[143]
Linington, R.G.; González, J.; Ureña, L.D.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the panamanian marine Cyanobacterium Oscillatoria sp. J. Nat. Prod., 2007, 70(3), 397-401.
[http://dx.doi.org/10.1021/np0605790] [PMID: 17328572]
[144]
Gutiérrez, M.; Pereira, A.R.; Debonsi, H.M.; Ligresti, A.; Di Marzo, V.; Gerwick, W.H. Cannabinomimetic lipid from a marine cyanobacterium. J. Nat. Prod., 2011, 74(10), 2313-2317.
[http://dx.doi.org/10.1021/np200610t] [PMID: 21999614]
[145]
Thajuddin, N.; Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci., 2005, 47-57.
[146]
Singh, R.; Parihar, P.; Singh, M.; Bajguz, A.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front. Microbiol., 2017, 8, 515.
[http://dx.doi.org/10.3389/fmicb.2017.00515] [PMID: 28487674]
[147]
Alharbi, S.A. Production of a natural biodegradable polymer of Polyhydroxy alkanoates from bacteria and its biodegradation compared to commercial product., A thesis submitted for the Requirements of the Degree of Doctor of Philosophy (Biology/ Microbiology). 2020.
[148]
Amadu, A.A.; deGraft-Johnson, K.A.A.; Ameka, G.K. Industrial applications of cyanobacteria. In: Cyanobacteria; intechopen. , 2021.
[149]
Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments, 2020, 7(2), 13.
[http://dx.doi.org/10.3390/environments7020013]
[150]
Abed, R.M.M.; Dobretsov, S.; Sudesh, K. Applications of cyanobacteria in biotechnology. J. Appl. Microbiol., 2009, 106(1), 1-12.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03918.x] [PMID: 19191979]
[151]
Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; Smid, E.J.; Hutkins, R. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol., 2017, 44, 94-102.
[http://dx.doi.org/10.1016/j.copbio.2016.11.010] [PMID: 27998788]
[152]
Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol., 2006, 100(6), 1171-1185.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x] [PMID: 16696665]
[153]
Watanabe, F.; Bito, T. Vitamin B 12 sources and microbial interaction. Exp. Biol. Med., 2018, 243(2), 148-158.
[http://dx.doi.org/10.1177/1535370217746612] [PMID: 29216732]
[154]
Tani, A.; Ogura, Y.; Hayashi, T.; Kimbara, K. Complete genome sequence of Methylobacterium aquaticum strain 22A, isolated from Racomitrium japonicum moss. Genome Announc., 2015, 3(2), e00266-e15.
[http://dx.doi.org/10.1128/genomeA.00266-15] [PMID: 25858842]
[155]
Iguchi, H.; Yurimoto, H.; Sakai, Y. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms, 2015, 3(2), 137-151.
[http://dx.doi.org/10.3390/microorganisms3020137] [PMID: 27682083]
[156]
Helliwell, K.E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytol., 2017, 216(1), 62-68.
[http://dx.doi.org/10.1111/nph.14669] [PMID: 28656633]
[157]
Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med., 2007, 232(10), 1266-1274.
[http://dx.doi.org/10.3181/0703-MR-67] [PMID: 17959839]
[158]
Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B₁₂-containing plant food sources for vegetarians. Nutrients, 2014, 6(5), 1861-1873.
[http://dx.doi.org/10.3390/nu6051861] [PMID: 24803097]
[159]
Leak, D. Methylotrophs, Industrial Applications. In: Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation; Wiley, 2002.
[160]
Gellissen, G.; Melber, K. Methylotrophic yeast hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittelforschung, 1996, 46(9), 943-948.
[PMID: 8876947]
[161]
Dudko, D.; Holtmann, D.; Buchhaupt, M. Methylotrophic bacteria with cobalamin-dependent mutases in primary metabolism as potential strains for vitamin B12 production. Antonie van Leeuwenhoek, 2023, 116(3), 207-220.
[http://dx.doi.org/10.1007/s10482-022-01795-9] [PMID: 36385348]
[162]
Simó-Cabrera, L.; García-Chumillas, S.; Hagagy, N.; Saddiq, A.; Tag, H.; Selim, S. AbdElgawad, H.; Arribas Agüero, A.; Monzó Sánchez, F.; Cánovas, V.; Pire, C.; Martínez-Espinosa, R.M. Haloarchaea as cell factories to produce bioplastics. Mar. Drugs, 2021, 19(3), 159.
[http://dx.doi.org/10.3390/md19030159] [PMID: 33803653]
[163]
Sy, A.; Timmers, A.C.J.; Knief, C.; Vorholt, J.A. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol., 2005, 71(11), 7245-7252.
[http://dx.doi.org/10.1128/AEM.71.11.7245-7252.2005] [PMID: 16269765]
[164]
Yurimoto, H.; Shiraishi, K.; Sakai, Y. Physiology of methylotrophs living in the phyllosphere. Microorganisms, 2021, 9(4), 809.
[http://dx.doi.org/10.3390/microorganisms9040809] [PMID: 33921272]
[165]
Riahi, L.; Cherif, H.; Miladi, S.; Neifar, M.; Bejaoui, B.; Chouchane, H.; Masmoudi, A.S.; Cherif, A. Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L’Hér. under semi-controlled conditions. Ind. Crops Prod., 2020, 154, 112721.
[http://dx.doi.org/10.1016/j.indcrop.2020.112721]
[166]
Sh A Hagaggi, N. Studies on the extremo-lipase produced by the halotolerant Oceanobacillus iheyensis strain QCS. NRMJ, 2020, 4(4), 907-920.
[http://dx.doi.org/10.21608/nrmj.2020.107542]
[167]
Cherif, H.; Sghaier, I.; Hassen, W. Halomonas desertis G11, Pseudomonas rhizophila S211 and Oceanobacillus iheyensis E9 as biological control agents against wheat fungal pathogens: PGPB consorcia optimization through mixture design and response surface analysis. Int. Clin. Pathol. J., 2022, 9, 20-28.
[168]
Tambekar, D.H.; Dhundale, V.R. Screening of antimicrobial potentials of haloalkaliphilic bacteria isolated from lonar lake. Int. J. Pharm. Chem. Biol. Sci., 2013, 3(3), 820-825.
[169]
Torbaghan, M.E.; Lakzian, A.; Astaraei, A.R.; Fotovat, A.; Besharati, H. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J. Soil Sci. Plant Nutr., 2017, 17(4), 1058-1087.
[http://dx.doi.org/10.4067/S0718-95162017000400016]
[170]
Kiplimo, D.; Mugweru, J.; Kituyi, S.; Kipnyargis, A.; Mwirichia, R. Diversity of esterase and lipase producing haloalkaliphilic bacteria from Lake Magadi in Kenya. J. Basic Microbiol., 2019, 59(12), 1173-1184.
[http://dx.doi.org/10.1002/jobm.201900353] [PMID: 31621083]
[171]
Santhaseelan, H.; Dinakaran, V.T.; Dahms, H.U.; Ahamed, J.M.; Murugaiah, S.G.; Krishnan, M.; Hwang, J.S.; Rathinam, A.J. Recent antimicrobial responses of halophilic microbes in clinical pathogens. Microorganisms, 2022, 10(2), 417.
[http://dx.doi.org/10.3390/microorganisms10020417] [PMID: 35208871]
[172]
Tambekar, D.H. T.D.H.; Tiwari AA, T.A.A.; Tambekar SD, T.S.D. Studies on production of antimicrobial substances from Bacillus species isolated from Lonar Lake. Indian J. Appl. Res., 2011, 4(8), 502-506.
[http://dx.doi.org/10.15373/2249555X/August2014/131]
[173]
Shinde, V.A.; Patil, R.B.; Pawar, P.V. Comparative study of antimicrobial potentials of phospholipid compound produced by halophilic and alkaliphiles Bacillus subtilis isolated from alkaline meteorite crater Lonar lake, India. Int. J. Life Sci., 2017, 5, 420-424.
[174]
Loni, P.P.; Patil, J.U.; Phugare, S.S.; Bajekal, S.S. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J. Basic Microbiol., 2014, 54(10), 1080-1089.
[http://dx.doi.org/10.1002/jobm.201300533] [PMID: 24442594]
[175]
Passera, A.; Venturini, G.; Battelli, G.; Casati, P.; Penaca, F.; Quaglino, F.; Bianco, P.A. Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiol. Res., 2017, 198, 16-26.
[http://dx.doi.org/10.1016/j.micres.2017.02.001] [PMID: 28285658]
[176]
Shivlata, L.; Satyanarayana, T. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Front. Microbiol., 2015, 6, 1014.
[http://dx.doi.org/10.3389/fmicb.2015.01014] [PMID: 26441937]
[177]
Stainsby, F.M.; Soddell, J.; Seviour, R.; Upton, J.; Goodfellow, M. Dispelling the “Nocardia amarae” myth: A phylogenetic and phenotypic study of mycolic acid-containing actinomycetes isolated from activated sludge foam. Water Sci. Technol., 2002, 46(1-2), 81-90.
[http://dx.doi.org/10.2166/wst.2002.0460] [PMID: 12216692]
[178]
Ashish, C.; Manish, B. Isolation and characterization of l-asparginase producing isolate from lonar lake, buldhana district, MS, India. Res. J. Recent Sci., 2014, 2277, 2502.
[179]
Patil, S.N.; Aglave, B.A.; Pethkar, A.V.; Gaikwad, V.B. Stenotrophomonas koreensis a novel biosurfactant producer for abatement of heavy metals from the environment. Afr. J. Microbiol. Res., 2012, 6, 5173-5178.
[180]
Kulkarni, A.; Wakte, P.S. Development of microphos technology by using alkaliphilic actinomycetes from the soil of Lonar lake. J. Pharmacogn. Phytochem., 2021, 10, 338-342.
[181]
Borgave, S.B.; Joshi, A.A.; Kelkar, A.S.; Kanekar, P.P. Screening of alkaliphilic, haloalkaliphilic bacteria and alkalithermophilic actinomycetes isolated from alkaline soda Lake of Lonar, India for antimicrobial activity. Int. J. Pharm. Biol. Sci., 2012, 3, 258-274.
[182]
Rathod, D.; Golinska, P.; Wypij, M.; Dahm, H.; Rai, M. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med. Microbiol. Immunol., 2016, 205(5), 435-447.
[http://dx.doi.org/10.1007/s00430-016-0462-1] [PMID: 27278909]
[183]
Bennur, T.; Kumar, A.R.; Zinjarde, S.; Javdekar, V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol. Res., 2015, 174, 33-47.
[http://dx.doi.org/10.1016/j.micres.2015.03.010] [PMID: 25946327]
[184]
Marathe, K.; Pandit, S.; Chaudhari, A.; Maheshwari, V. Screening of alkaliphilic-salt tolerant actinomycetes isolated from alkaline soda lake for protease inhibitor activity. Adv Pharmacol Toxicol, 2015, 16, 39.
[185]
Deshmukh, S.K.; Verekar, S.A. Keratinophilic fungi from the vicinity of meteorite crater soils of Lonar (India). Mycopathologia, 2006, 162(4), 303-306.
[http://dx.doi.org/10.1007/s11046-006-0044-7] [PMID: 17039278]
[186]
Kumar, J.; Singh, I.; Kushwaha, R.K.S. Keratinophilic fungi: Diversity, environmental and biotechnological implications. In: Progress in Mycology; Springer, 2021; pp. 419-436.
[187]
Conrado, R.; Gomes, T.C.; Roque, G.S.C.; De Souza, A.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics, 2022, 11(11), 1604.
[http://dx.doi.org/10.3390/antibiotics11111604] [PMID: 36421247]
[188]
Sawant, S.S.; Salunke, B.K.; Kim, B.S. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresour. Technol., 2015, 194, 247-255.
[http://dx.doi.org/10.1016/j.biortech.2015.07.019] [PMID: 26207871]
[189]
Tsukimoto, M.; Nagaoka, M.; Shishido, Y.; Fujimoto, J.; Nishisaka, F.; Matsumoto, S.; Harunari, E.; Imada, C.; Matsuzaki, T. Bacterial production of the tunicate-derived antitumor cyclic depsipeptide didemnin B. J. Nat. Prod., 2011, 74(11), 2329-2331.
[http://dx.doi.org/10.1021/np200543z] [PMID: 22035372]
[190]
Sakai, R.; Stroh, J.G.; Sullins, D.W.; Rinehart, K.L. Seven new didemnins from the marine tunicate Trididemnum solidum. J. Am. Chem. Soc., 1995, 117(13), 3734-3748.
[http://dx.doi.org/10.1021/ja00118a010]
[191]
Rinehart, K.L., Jr; Gloer, J.B.; Hughes, R.G., Jr; Renis, H.E.; McGovren, J.P.; Swynenberg, E.B. Didemnins: Antiviral and antitumor depsipeptides from a Caribbean tunicate. Science, 1981, 212, 933-935.
[http://dx.doi.org/10.1126/science.7233187]
[192]
Xu, Y.; Kersten, R.D.; Nam, S.J.; Lu, L.; Al-Suwailem, A.M.; Zheng, H.; Fenical, W.; Dorrestein, P.C.; Moore, B.S.; Qian, P.Y. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J. Am. Chem. Soc., 2012, 134(20), 8625-8632.
[http://dx.doi.org/10.1021/ja301735a] [PMID: 22458477]
[193]
Wilson, M.Z.; Wang, R.; Gitai, Z.; Seyedsayamdost, M.R. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. Proc. Natl. Acad. Sci., 2016, 113(6), 1630-1635.
[http://dx.doi.org/10.1073/pnas.1518034113] [PMID: 26802120]
[194]
D’Alvise, P.W.; Lillebø, S.; Wergeland, H.I.; Gram, L.; Bergh, Ø. Protection of cod larvae from vibriosis by Phaeobacter spp.: A comparison of strains and introduction times. Aquaculture, 2013, 384-387, 82-86.
[http://dx.doi.org/10.1016/j.aquaculture.2012.12.013]
[195]
Brinkhoff, T.; Bach, G.; Heidorn, T.; Liang, L.; Schlingloff, A.; Simon, M. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol., 2004, 70(4), 2560-2565.
[http://dx.doi.org/10.1128/AEM.70.4.2560-2565.2003] [PMID: 15066861]
[196]
Um, S.; Pyee, Y.; Kim, E.H.; Lee, S.; Shin, J.; Oh, D.C. Thalassospiramide G, a new γ-amino-acid-bearing peptide from the marine bacterium Thalassospira sp. Mar. Drugs, 2013, 11(12), 611-622.
[http://dx.doi.org/10.3390/md11030611] [PMID: 23442790]
[197]
Oh, D.C.; Strangman, W.K.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Thalassospiramides A and B, immunosuppressive peptides from the marine bacterium Thalassospira sp. Org. Lett., 2007, 9(8), 1525-1528.
[http://dx.doi.org/10.1021/ol070294u] [PMID: 17373804]
[198]
Zhang, W.; Lu, L.; Lai, Q.; Zhu, B.; Li, Z.; Xu, Y.; Shao, Z.; Herrup, K.; Moore, B.S.; Ross, A.C.; Qian, P.Y. Family-wide structural characterization and genomic comparisons decode the diversity-oriented biosynthesis of thalassospiramides by marine Proteobacteria. J. Biol. Chem., 2016, 291(53), 27228-27238.
[http://dx.doi.org/10.1074/jbc.M116.756858] [PMID: 27875306]
[199]
Lu, L.; Meehan, M.J.; Gu, S.; Chen, Z.; Zhang, W.; Zhang, G.; Liu, L.; Huang, X.; Dorrestein, P.C.; Xu, Y.; Moore, B.S.; Qian, P.Y. Mechanism of action of thalassospiramides, a new class of calpain inhibitors. Sci. Rep., 2015, 5(1), 8783.
[http://dx.doi.org/10.1038/srep08783] [PMID: 25740631]
[200]
Ross, A.C.; Xu, Y.; Lu, L.; Kersten, R.D.; Shao, Z.; Al-Suwailem, A.M.; Dorrestein, P.C.; Qian, P.Y.; Moore, B.S. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. J. Am. Chem. Soc., 2013, 135(3), 1155-1162.
[http://dx.doi.org/10.1021/ja3119674] [PMID: 23270364]
[201]
Shiozawa, H.; Kagasaki, T.; Kinoshita, T.; Haruyama, H.; Domon, H.; Utsui, Y.; Kodama, K.; Takahashi, S. Thiomarinol, a new hybrid antimicrobial antibiotic produced by a marine bacterium. Fermentation, isolation, structure, and antimicrobial activity. J. Antibiot., 1993, 46(12), 1834-1842.
[http://dx.doi.org/10.7164/antibiotics.46.1834] [PMID: 8294241]
[202]
Speitling, M.; Smetanina, O.F.; Kuznetsova, T.A.; Laatsch, H. Bromoalterochromides A and A′ unprecedented chromopeptides from a marine Pseudoalteromonas maricaloris strain KMM 636T. J. Antibiot., 2007, 60(1), 36-42.
[http://dx.doi.org/10.1038/ja.2007.5] [PMID: 17390587]
[203]
Barona-Gómez, F.; Wong, U.; Giannakopulos, A.E.; Derrick, P.J.; Challis, G.L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc., 2004, 126(50), 16282-16283.
[http://dx.doi.org/10.1021/ja045774k] [PMID: 15600304]
[204]
Griffiths, G.L.; Sigel, S.P.; Payne, S.M.; Neilands, J.B. Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem., 1984, 259(1), 383-385.
[http://dx.doi.org/10.1016/S0021-9258(17)43671-4] [PMID: 6706943]
[205]
Butterton, J.R.; Choi, M.H.; Watnick, P.I.; Carroll, P.A.; Calderwood, S.B. Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J. Bacteriol., 2000, 182(6), 1731-1738.
[http://dx.doi.org/10.1128/JB.182.6.1731-1738.2000] [PMID: 10692380]
[206]
Jalal, M.A.F.; Hossain, M.B.; Van der Helm, D.; Sanders-Loehr, J.; Actis, L.A.; Crosa, J.H. Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J. Am. Chem. Soc., 1989, 111(1), 292-296.
[http://dx.doi.org/10.1021/ja00183a044]
[207]
Soengas, R.G.; Anta, C.; Espada, A.; Paz, V.; Ares, I.R.; Balado, M.; Rodríguez, J.; Lemos, M.L.; Jiménez, C. Structural characterization of vanchrobactin, a new catechol siderophore produced by the fish pathogen Vibrio anguillarum serotype O2. Tetrahedron Lett., 2006, 47(39), 7113-7116.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.104]
[208]
Yamamoto, S.; Okujo, N.; Yoshida, T.; Matsuura, S.; Shinoda, S. Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J. Biochem., 1994, 115(5), 868-874.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124432] [PMID: 7961600]
[209]
Burkholder, P.R.; Pfister, R.M.; Leitz, F.H. Production of a pyrrole antibiotic by a marine bacterium. Appl. Microbiol., 1966, 14(4), 649-653.
[http://dx.doi.org/10.1128/am.14.4.649-653.1966] [PMID: 4380876]
[210]
Lovell, F.M. The structure of a bromine-rich marine antibiotic. J. Am. Chem. Soc., 1966, 88(19), 4510-4511.
[http://dx.doi.org/10.1021/ja00971a040]
[211]
Durán, N.; Menck, C.F.M. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol., 2001, 27(3), 201-222.
[http://dx.doi.org/10.1080/20014091096747] [PMID: 11596879]
[212]
Lichstein, H.C.; Van De Sand, V.F. Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J. Infect. Dis., 1945, 76(1), 47-51.
[http://dx.doi.org/10.1093/infdis/76.1.47]
[213]
Böttcher, T.; Clardy, J. A chimeric siderophore halts swarming Vibrio. Angew. Chem. Int. Ed., 2014, 53(13), 3510-3513.
[http://dx.doi.org/10.1002/anie.201310729] [PMID: 24615751]
[214]
Kadi, N.; Oves-Costales, D.; Barona-Gomez, F.; Challis, G.L. A new family of ATP-dependent oligomerization-macrocyclization biocatalysts. Nat. Chem. Biol., 2007, 3(10), 652-656.
[http://dx.doi.org/10.1038/nchembio.2007.23] [PMID: 17704771]
[215]
Schupp, T.; Toupet, C.; Divers, M. Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene, 1988, 64(2), 179-188.
[http://dx.doi.org/10.1016/0378-1119(88)90333-2] [PMID: 2841191]
[216]
Schupp, T.; Waldmeier, U.; Divers, M. Biosynthesis of desferrioxamine B in Streptomyces pilosus: Evidence for the involvement of lysine decarboxylase. FEMS Microbiol. Lett., 1987, 42(2-3), 135-139.
[http://dx.doi.org/10.1111/j.1574-6968.1987.tb02060.x]
[217]
Fudou, R.; Iizuka, T.; Yamanaka, S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J. Antibiot., 2001, 54(2), 149-152.
[http://dx.doi.org/10.7164/antibiotics.54.149] [PMID: 11302487]
[218]
Sun, Y.; Feng, Z.; Tomura, T.; Suzuki, A.; Miyano, S.; Tsuge, T.; Mori, H.; Suh, J.W.; Iizuka, T.; Fudou, R.; Ojika, M. Heterologous production of the marine myxobacterial antibiotic haliangicin and its unnatural analogues generated by engineering of the biochemical pathway. Sci. Rep., 2016, 6(1), 22091.
[http://dx.doi.org/10.1038/srep22091] [PMID: 26915413]
[219]
Ohlendorf, B.; Leyers, S.; Krick, A.; Kehraus, S.; Wiese, M.; König, G.M. Phenylnannolones A-C: biosynthesis of new secondary metabolites from the myxobacterium Nannocystis exedens. ChemBioChem, 2008, 9(18), 2997-3003.
[http://dx.doi.org/10.1002/cbic.200800434] [PMID: 19040244]
[220]
Bouhired, S.M.; Crüsemann, M.; Almeida, C.; Weber, T.; Piel, J.; Schäberle, T.F.; König, G.M. Biosynthesis of phenylnannolone A, a multidrug resistance reversal agent from the halotolerant myxobacterium Nannocystis pusilla B150. ChemBioChem, 2014, 15(5), 757-765.
[http://dx.doi.org/10.1002/cbic.201300676] [PMID: 24677362]
[221]
Sun, Y.; Tomura, T.; Sato, J.; Iizuka, T.; Fudou, R.; Ojika, M. Isolation and biosynthetic analysis of haliamide, a new PKS-NRPS hybrid metabolite from the marine myxobacterium Haliangium ochraceum. Molecules, 2016, 21(1), 59.
[http://dx.doi.org/10.3390/molecules21010059] [PMID: 26751435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy