Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

Bibliometric Analysis and Systemic Review of Cantharidin Research Worldwide

Author(s): Tianmu He, Cancan Duan, Wenzhong Feng, Jingwen Ao, Dingyang Lu, Xiaofei Li* and Jianyong Zhang*

Volume 25, Issue 12, 2024

Published on: 13 November, 2023

Page: [1585 - 1601] Pages: 17

DOI: 10.2174/0113892010244101231024111850

Price: $65

Abstract

Background: Cantharidin (CTD), a natural toxic compound from blister beetle Mylabris, has been used for cancer treatment for millenary. CTD and its analogs have become mainstream adjuvant drugs with radiotherapy and chemotherapy in clinical applications. However, the detailed pharmacology mechanism of CTD was not fully elucidated.

Methods: Publications of CTD were collected from the Web of Science Core Collection database from 1991 to 2023 using CiteSpace, VOSviewer, and Scimago Graphica software.

Results: A total of 1,611 publications of CTD were mainly published in China and the United States. The University of Newcastle has published the most researches. Mcclusey, Adam, Sakoff, Jennette, and Zhang, Yalin had the most CTD publications with higher H. Notably, CTD researches were mainly published in Bioorganic & Medicinal Chemistry Letters and the Journal of Biological Chemistry. Cluster profile results revealed that protein phosphatase 2A (PP2A), human gallbladder carcinoma, Aidi injection, and cell apoptosis were the hotspots. Concentration on the pharmacology function of PP2A subunit regulation, hepatotoxicity, nephrotoxicity, and cardiotoxicity mechanism should be strengthened in the future.

Conclusion: Bibliometric analysis combined with a systemic review of CTD research first revealed that PP2A and CTD analogs were the knowledge base of CTD, and PP2A subunit regulation and toxic mechanism could be the frontiers of CTD.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Lyman, G.H.; Abella, E.; Pettengell, R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit. Rev. Oncol. Hematol., 2014, 90(3), 190-199.
[http://dx.doi.org/10.1016/j.critrevonc.2013.12.006] [PMID: 24434034]
[3]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[4]
Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A.M.; Majoral, J.P. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev., 2018, 47(2), 514-532.
[http://dx.doi.org/10.1039/C7CS00550D] [PMID: 29154385]
[5]
Wang, G.; Dong, J.; Deng, L. Overview of Cantharidin and its Analogues. Curr. Med. Chem., 2018, 25(17), 2034-2044.
[http://dx.doi.org/10.2174/0929867324666170414165253] [PMID: 28413963]
[6]
Wang, G.S. Medical uses of mylabris in ancient China and recent studies. J. Ethnopharmacol., 1989, 26(2), 147-162.
[http://dx.doi.org/10.1016/0378-8741(89)90062-7] [PMID: 2689797]
[7]
Li, Y.M.; Casida, J.E. Cantharidin-binding protein: identification as protein phosphatase 2A. Proc. Natl. Acad. Sci. USA, 1992, 89(24), 11867-11870.
[http://dx.doi.org/10.1073/pnas.89.24.11867] [PMID: 1334551]
[8]
Xiao, Z.; Wang, C.; Zhou, R.; Hu, S.; Yi, N.; Feng, J.; Zhou, M.; Liu, S.; Chen, L.; Ding, J.; Gong, Q.; Tang, F.; Li, X. Can Aidi injection improve overall survival in patients with non-small cell lung cancer? A systematic review and meta-analysis of 25 randomized controlled trials. Complement. Ther. Med., 2018, 37, 50-60.
[http://dx.doi.org/10.1016/j.ctim.2018.01.011] [PMID: 29609937]
[9]
He, T.M.; Liu, J.X.; Duan, C.C.; Li, X.F.; Zhang, J.Y. Effective material basis and mechanism analysis of compound banmao capsule against tumors using integrative network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-21.
[http://dx.doi.org/10.1155/2021/6653460] [PMID: 34055017]
[10]
Liu, M.; Xu, C.; Sun, Y. Efficacy and safety of sodium cantharidinate and vitamin B6 injection for the treatment of digestive system neoplasms: A meta-analysis of randomized controlled trials. Drug Des. Devel. Ther., 2018, 13, 183-203.
[http://dx.doi.org/10.2147/DDDT.S190674] [PMID: 30643386]
[11]
Till, J.S.; Majmudar, B.N. Cantharidin poisoning. South. Med. J., 1981, 74(4), 444-447.
[http://dx.doi.org/10.1097/00007611-198104000-00019] [PMID: 7221663]
[12]
Zhang, Y.; Zhou, X.; Zhang, J.; Guan, C.; Liu, L. Cantharides poisoning: A retrospective analysis from 1996 to 2016 in China. Regul. Toxicol. Pharmacol., 2018, 96, 142-145.
[http://dx.doi.org/10.1016/j.yrtph.2018.05.007] [PMID: 29753762]
[13]
Zhang, Y.Y.; Yu, Y.L.; Zhang, J.; Guan, C.H.; Ren, L.; Liu, L. Research progress on multiple organ damage and mechanism of cantharidin poisoning. Fa Yi Xue Za Zhi, 2020, 36(4), 545-548.
[PMID: 33047541]
[14]
An, P.; Lu, D.; Zhang, L.; Lan, H.; Yang, H.; Ge, G.; Liu, W.; Shen, W.; Ding, X.; Tang, D.; Zhang, W.; Luan, X.; Cheng, H.; Zhang, H. Synergistic antitumor effects of compound-composed optimal formula from Aidi injection on hepatocellular carcinoma and colorectal cancer. Phytomedicine, 2022, 103, 154231.
[http://dx.doi.org/10.1016/j.phymed.2022.154231] [PMID: 35691079]
[15]
Schöpe, P.C.; Zinnow, V.; Ishfaq, M.A.; Smith, J.; Herrmann, P.; Shoemaker, R.H.; Walther, W.; Stein, U. Cantharidin and its analogue norcantharidin inhibit metastasis—inducing genes S100A4 and MACC1. Int. J. Mol. Sci., 2023, 24(2), 1179.
[http://dx.doi.org/10.3390/ijms24021179] [PMID: 36674695]
[16]
Du, L.; Feng, Y.; He, Z.; Huang, L.; Wang, Q.; Wen, C.; Zhang, Y. Norcantharidin ameliorates the development of murine lupus via inhibiting the generation of IL-17 producing cells. Acta Pharmacol. Sin., 2022, 43(6), 1521-1533.
[http://dx.doi.org/10.1038/s41401-021-00773-7] [PMID: 34552214]
[17]
Li, S.; Wu, X.; Fan, G.; Du, K.; Deng, L. Exploring cantharidin and its analogues as anticancer agents: A review. Curr. Med. Chem., 2022.
[PMID: 36330637]
[18]
Ma, L.; Sun, X.; Ji, W.; Zhang, B.; Li, J.; Fu, W.; Zhang, X.; Qian, W.; Sheng, E.; Zhu, D. Supramolecular self-assembled AIE molecules are used in the search for target proteins in norcantharidin. Anal. Chim. Acta, 2023, 1239, 340642.
[http://dx.doi.org/10.1016/j.aca.2022.340642] [PMID: 36628744]
[19]
Zhai, B.T.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Zou, J.B.; Cheng, J.X.; Fan, Y.; Guo, D.Y.; Tian, H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J. Nanobiotechnology, 2022, 20(1), 509.
[http://dx.doi.org/10.1186/s12951-022-01703-3] [PMID: 36463199]
[20]
Liu, Q.; Sun, H.; Li, X.; Sheng, H.; Zhu, L. Strategies for solubility and bioavailability enhancement and toxicity reduction of norcantharidin. Molecules, 2022, 27(22), 7740.
[http://dx.doi.org/10.3390/molecules27227740] [PMID: 36431851]
[21]
Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA, 2004, 101(S1), 5303-5310.
[http://dx.doi.org/10.1073/pnas.0307513100] [PMID: 14724295]
[22]
Dong, Q.; Liang, Q.; Chen, Y.; Li, J.; Lu, L.; Huang, X.; Zhou, Q. Bibliometric and visual analysis of vascular calcification research. Front. Pharmacol., 2021, 12, 690392.
[http://dx.doi.org/10.3389/fphar.2021.690392] [PMID: 34335257]
[23]
He, T.; Ao, J.; Duan, C.; Yan, R.; Li, X.; Liu, L.; Zhang, J.; Li, X. Bibliometric and visual analysis of nephrotoxicity research worldwide. Front. Pharmacol., 2022, 13, 940791.
[http://dx.doi.org/10.3389/fphar.2022.940791] [PMID: 36188597]
[24]
Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol., 2006, 57(3), 359-377.
[http://dx.doi.org/10.1002/asi.20317]
[25]
van Eck, N.J.; Ludo, W. VOS: A new method for visualizing similarities between objects. In: Advances in Data Analysis; , 2007; pp. 299-306.
[26]
Li, W.; Xie, L.; Chen, Z.; Zhu, Y.; Sun, Y.; Miao, Y.; Xu, Z.; Han, X. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci., 2010, 101(5), 1226-1233.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01523.x] [PMID: 20331621]
[27]
Liu, X.H.; Blazsek, I.; Comisso, M.; Legras, S.; Marion, S.; Quittet, P.; Anjo, A.; Wang, G.S.; Misset, J.L. Effects of norcantharidin, a protein phosphatase type-2A inhibitor, on the growth of normal and malignant haemopoietic cells. Eur. J. Cancer, 1995, 31(6), 953-963.
[http://dx.doi.org/10.1016/0959-8049(95)00050-X] [PMID: 7646929]
[28]
Chen, Y.N.; Chen, J.C.; Yin, S.C.; Wang, G.S.; Tsauer, W.; Hsu, S.F.; Hsu, S.L. Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int. J. Cancer, 2002, 100(2), 158-165.
[http://dx.doi.org/10.1002/ijc.10479] [PMID: 12115564]
[29]
Kok, S.H.; Cheng, S.J.; Hong, C.Y.; Lee, J.J.; Lin, S.K.; Kuo, Y.S.; Chiang, C.P.; Kuo, M.Y.P. Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett., 2005, 217(1), 43-52.
[http://dx.doi.org/10.1016/j.canlet.2004.07.045] [PMID: 15596295]
[30]
Huang, W.W.; Ko, S.W.; Tsai, H.Y.; Chung, J.G.; Chiang, J.H.; Chen, K.T.; Chen, Y.C.; Chen, H.Y.; Chen, Y.F.; Yang, J.S. Cantharidin induces G2/M phase arrest and apoptosis in human colorectal cancer colo 205 cells through inhibition of CDK1 activity and caspase-dependent signaling pathways. Int. J. Oncol., 2011, 38(4), 1067-1073.
[PMID: 21271215]
[31]
Shirasu, K.; Nakajima, H.; Rajasekhar, V.K.; Dixon, R.A.; Lamb, C. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell, 1997, 9(2), 261-270.
[PMID: 9061956]
[32]
Morris, T.; Stables, M.; Hobbs, A.; de Souza, P.; Colville-Nash, P.; Warner, T.; Newson, J.; Bellingan, G.; Gilroy, D.W. Effects of low-dose aspirin on acute inflammatory responses in humans. J. Immunol., 2009, 183(3), 2089-2096.
[http://dx.doi.org/10.4049/jimmunol.0900477] [PMID: 19597002]
[33]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[34]
Newman, D.J. Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. Adv. Pharmacol., 2020, 87, 113-158.
[http://dx.doi.org/10.1016/bs.apha.2019.07.001] [PMID: 32089231]
[35]
Wei, G.; Wang, Y.; Yang, G.; Wang, Y.; Ju, R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics, 2021, 11(13), 6370-6392.
[http://dx.doi.org/10.7150/thno.57828] [PMID: 33995663]
[36]
Nakatani, T.; Konishi, T.; Miyahara, K.; Noda, N. Three novel cantharidin-related compounds from the Chinese blister beetle, Mylabris phalerata Pall. Chem. Pharm. Bull. (Tokyo), 2004, 52(7), 807-809.
[http://dx.doi.org/10.1248/cpb.52.807] [PMID: 15256700]
[37]
Yang, M.; Shen, C.; Zhu, S.J. Chinese patent medicine Aidi injection for cancer care: An overview of systematic reviews and metaanalyses. J Ethnopharmacol, 2022, 282, 114656.
[38]
Shou, L.M.; Zhang, Q.Y.; Li, W.; Xie, X.; Chen, K.; Lian, L.; Li, Z.Y.; Gong, F.R.; Dai, K.S.; Mao, Y.X.; Tao, M. Cantharidin and norcantharidin inhibit the ability of MCF-7 cells to adhere to platelets via protein kinase C pathway-dependent downregulation of α2 integrin. Oncol. Rep., 2013, 30(3), 1059-1066.
[http://dx.doi.org/10.3892/or.2013.2601] [PMID: 23835679]
[39]
McCluskey, A.; Ackland, S.P.; Bowyer, M.C.; Baldwin, M.L.; Garner, J.; Walkom, C.C.; Sakoff, J.A. Cantharidin analogues: synthesis and evaluation of growth inhibition in a panel of selected tumour cell lines. Bioorg. Chem., 2003, 31(1), 68-79.
[http://dx.doi.org/10.1016/S0045-2068(02)00524-2] [PMID: 12697169]
[40]
Hart, M.E.; Chamberlin, A.R.; Walkom, C.; Sakoff, J.A.; McCluskey, A. Modified norcantharidins. Bioorg. Med. Chem. Lett., 2004, 14(8), 1969-1973.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.093] [PMID: 15050639]
[41]
Hill, T.A.; Stewart, S.G.; Sauer, B.; Gilbert, J.; Ackland, S.P.; Sakoff, J.A.; McCluskey, A. Heterocyclic substituted cantharidin and norcantharidin analogues—synthesis, protein phosphatase (1 and 2A) inhibition, and anti-cancer activity. Bioorg. Med. Chem. Lett., 2007, 17(12), 3392-3397.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.093] [PMID: 17451951]
[42]
Bajsa, J.; McCluskey, A.; Gordon, C.P.; Stewart, S.G.; Hill, T.A.; Sahu, R.; Duke, S.O.; Tekwani, B.L. The antiplasmodial activity of norcantharidin analogs. Bioorg. Med. Chem. Lett., 2010, 20(22), 6688-6695.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.004] [PMID: 20888768]
[43]
Campbell, B.E.; Tarleton, M.; Gordon, C.P.; Sakoff, J.A.; Gilbert, J.; McCluskey, A.; Gasser, R.B. Norcantharidin analogues with nematocidal activity in Haemonchus contortus. Bioorg. Med. Chem. Lett., 2011, 21(11), 3277-3281.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.031] [PMID: 21536433]
[44]
He, T.; Wang, Q.; Ao, J.; Chen, K.; Li, X.; Zhang, J.; Duan, C. Endoplasmic reticulum stress contributes to autophagy and apoptosis in cantharidin-induced nephrotoxicity. Food Chem. Toxicol., 2022, 163, 112986.
[http://dx.doi.org/10.1016/j.fct.2022.112986] [PMID: 35398186]
[45]
He, T.; Liu, J.; Wang, X.; Duan, C.; Li, X.; Zhang, J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem. Toxicol., 2020, 146, 111845.
[http://dx.doi.org/10.1016/j.fct.2020.111845] [PMID: 33152469]
[46]
Xiao, Z.; Jiang, Y.; Chen, X.F.; Wang, C.Q.; Xu, W.; Liu, Y.; Hu, S.S.; Huang, X.R.; Shan, L.J.; Tang, Y.H.; Yang, Y.B.; Feng, J.H.; Xiao, X.; Li, X.F. The Hepatorenal Toxicity and Tumor Response of Chemotherapy With or Without Aidi Injection in Advanced Lung Cancer: A Meta-Analysis of 80 Randomized Controlled Trials. Clin. Ther., 2020, 42(3), 515-543.e31.
[http://dx.doi.org/10.1016/j.clinthera.2020.01.011] [PMID: 32088021]
[47]
Zhou, Q.; Wu, F.; Zhao, M.; Yang, M. Bibliometric Evaluation of 2012–2020 Publications on Ferroptosis in Cancer Treatment. Front. Cell Dev. Biol., 2022, 9, 793347.
[http://dx.doi.org/10.3389/fcell.2021.793347] [PMID: 35118077]
[48]
Wlodarchak, N.; Xing, Y. PP2A as a master regulator of the cell cycle. Crit. Rev. Biochem. Mol. Biol., 2016, 51(3), 162-184.
[http://dx.doi.org/10.3109/10409238.2016.1143913] [PMID: 26906453]
[49]
Honkanen, R.E. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett., 1993, 330(3), 283-286.
[http://dx.doi.org/10.1016/0014-5793(93)80889-3] [PMID: 8397101]
[50]
Liu, D.; Chen, Z. The effects of cantharidin and cantharidin derivates on tumour cells. Anticancer. Agents Med. Chem., 2009, 9(4), 392-396.
[http://dx.doi.org/10.2174/1871520610909040392] [PMID: 19442040]
[51]
Naz, F.; Wu, Y.; Zhang, N.; Yang, Z.; Yu, C. Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways. Molecules, 2020, 25(14), 3279.
[http://dx.doi.org/10.3390/molecules25143279] [PMID: 32707651]
[52]
Zhou, J.; Ren, Y.; Tan, L.; Song, X.; Wang, M.; Li, Y.; Cao, Z.; Guo, C. Norcantharidin: research advances in pharmaceutical activities and derivatives in recent years. Biomed. Pharmacother., 2020, 131, 110755.
[http://dx.doi.org/10.1016/j.biopha.2020.110755] [PMID: 33152920]
[53]
Kim, J.A.; Kim, Y.; Kwon, B.M.; Han, D.C. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. J. Biol. Chem., 2013, 288(40), 28713-28726.
[http://dx.doi.org/10.1074/jbc.M113.488346] [PMID: 23983126]
[54]
Zeng, D.; Xiao, Z.; Xu, Q.; Luo, H.; Wen, L.; Tang, C.; Shan, Y.; Tian, J.; Wei, J.; Li, Y. Norcantharidin protects against renal interstitial fibrosis by suppressing TWEAK-mediated Smad3 phosphorylation. Life Sci., 2020, 260, 118488.
[http://dx.doi.org/10.1016/j.lfs.2020.118488] [PMID: 32979359]
[55]
Xiao, Z.; Wen, L.; Zeng, D.; Yin, D.; Zhou, X.; Tang, C.; Li, Y. Protein Phosphatase 2A Inhibiting β-Catenin Phosphorylation Contributes Critically to the Anti-renal Interstitial Fibrotic Effect of Norcantharidin. Inflammation, 2020, 43(3), 878-891.
[http://dx.doi.org/10.1007/s10753-019-01173-0] [PMID: 31940108]
[56]
Li, Y.M.; Mackintosh, C.; Casida, J.E. Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Biochem. Pharmacol., 1993, 46(8), 1435-1443.
[http://dx.doi.org/10.1016/0006-2952(93)90109-A] [PMID: 8240393]
[57]
Zhou, H.; Xu, J.; Wang, S.; Peng, J. Role of cantharidin in the activation of IKKα/IκBα/NF κB pathway by inhibiting PP2A activity in cholangiocarcinoma cell lines. Mol. Med. Rep., 2018, 17(6), 7672-7682.
[http://dx.doi.org/10.3892/mmr.2018.8860] [PMID: 29620225]
[58]
Shan, H.; Cai, Y.; Liu, Y.; Zeng, W.; Chen, H.; Fan, B.; Liu, X.; Xu, Z.; Wang, B.; Xian, L. Cytotoxicity of cantharidin analogues targeting protein phosphatase 2A. Anticancer Drugs, 2006, 17(8), 905-911.
[http://dx.doi.org/10.1097/01.cad.0000217428.90325.35] [PMID: 16940800]
[59]
Wang, C.Q.; Zheng, X.T.; Chen, X.F.; Jiang, H.; Huang, J.; Jiang, Y.; Hu, S.S.; Huang, X.R.; Liu, S.Y.; Gong, Q.H.; Feng, J.H.; Xiao, X.; Li, X.F.; Xiao, Z. The Optimal Adjuvant Strategy of Aidi Injection With Gemcitabine and Cisplatin in Advanced Non–small Cell Lung Cancer: A Meta-analysis of 70 Randomized Controlled Trials. Front. Pharmacol., 2021, 12, 582447.
[http://dx.doi.org/10.3389/fphar.2021.582447] [PMID: 34122057]
[60]
Nazim, U.; Yin, H.; Park, S.Y. Downregulation of c FLIP and upregulation of DR 5 by cantharidin sensitizes TRAIL mediated apoptosis in prostate cancer cells via autophagy flux. Int. J. Mol. Med., 2020, 46(1), 280-288.
[http://dx.doi.org/10.3892/ijmm.2020.4566] [PMID: 32319535]
[61]
Prasad, S.B.; Verma, A.K. Cantharidin-mediated ultrastructural and biochemical changes in mitochondria lead to apoptosis and necrosis in murine Dalton’s lymphoma. Microsc. Microanal., 2013, 19(6), 1377-1394.
[http://dx.doi.org/10.1017/S143192761301324X] [PMID: 24029497]
[62]
Yu, Z.; Li, L.; Wang, C.; He, H.; Liu, G.; Ma, H.; Pang, L.; Jiang, M.; Lu, Q.; Li, P.; Qi, H. Cantharidin Induces Apoptosis and Promotes Differentiation of AML Cells Through Nuclear Receptor Nur77-Mediated Signaling Pathway. Front. Pharmacol., 2020, 11, 1321.
[http://dx.doi.org/10.3389/fphar.2020.01321] [PMID: 32982739]
[63]
Fan, Y.Z.; Zhao, Z.M.; Fu, J.Y.; Chen, C.Q.; Sun, W. Norcantharidin inhibits growth of human gallbladder carcinoma xenografted tumors in nude mice by inducing apoptosis and blocking the cell cycle in vivo. Hepatobiliary Pancreat. Dis. Int., 2010, 9(4), 414-422.
[PMID: 20688607]
[64]
Zhang, J.T.; Sun, W.; Zhang, W.Z.; Ge, C.Y.; Liu, Z.Y.; Zhao, Z.M.; Lu, X.S.; Fan, Y.Z. Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. BMC Cancer, 2014, 14(1), 193.
[http://dx.doi.org/10.1186/1471-2407-14-193] [PMID: 24628713]
[65]
Fan, Y.Z.; Fu, J.Y.; Zhao, Z.M.; Chen, C.Q. Effect of norcantharidin on proliferation and invasion of human gallbladder carcinoma GBC-SD cells. World J. Gastroenterol., 2005, 11(16), 2431-2437.
[http://dx.doi.org/10.3748/wjg.v11.i16.2431] [PMID: 15832413]
[66]
Puerto Galvis, C.E.; Vargas Méndez, L.Y.; Kouznetsov, V.V. Cantharidin-based small molecules as potential therapeutic agents. Chem. Biol. Drug Des., 2013, 82(5), 477-499.
[http://dx.doi.org/10.1111/cbdd.12180] [PMID: 23809227]
[67]
Li, H.; Xia, Z.; Chen, Y.; Yang, F.; Feng, W.; Cai, H.; Mei, Y.; Jiang, Y.; Xu, K.; Feng, D. Cantharidin Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing Autophagy and Inducing Apoptosis in vitro and in vivo. Cell. Physiol. Biochem., 2017, 43(5), 1829-1840.
[http://dx.doi.org/10.1159/000484069] [PMID: 29050003]
[68]
Pan, Y.; Zheng, Q.; Ni, W.; Wei, Z.; Yu, S.; Jia, Q.; Wang, M.; Wang, A.; Chen, W.; Lu, Y. Breaking Glucose Transporter 1/Pyruvate Kinase M2 Glycolytic Loop Is Required for Cantharidin Inhibition of Metastasis in Highly Metastatic Breast Cancer. Front. Pharmacol., 2019, 10, 590.
[http://dx.doi.org/10.3389/fphar.2019.00590] [PMID: 31178738]
[69]
Pang, J.; Huang, F.; Zhang, Y.; Wu, Y.; Ge, X.; Li, S.; Li, X. Sodium cantharidate induces Apoptosis in breast cancer cells by regulating energy metabolism via the protein phosphatase 5-p53 axis. Toxicol. Appl. Pharmacol., 2021, 430, 115726.
[http://dx.doi.org/10.1016/j.taap.2021.115726] [PMID: 34537213]
[70]
Liu, D.; Shi, P.; Yin, X.; Chen, Z.; Zhang, X. Effect of norcantharidin on the human breast cancer Bcap-37 cells. Connect. Tissue Res., 2012, 53(6), 508-512.
[http://dx.doi.org/10.3109/03008207.2012.694928] [PMID: 22606958]
[71]
Zhang, S.; Yang, Y.; Hua, Y.; Hu, C.; Zhong, Y. NCTD elicits proapoptotic and antiglycolytic effects on colorectal cancer cells via modulation of Fam46c expression and inhibition of ERK1/2 signaling. Mol. Med. Rep., 2020, 22(2), 774-782.
[http://dx.doi.org/10.3892/mmr.2020.11151] [PMID: 32468032]
[72]
Zhang, J.; Chen, Q.; Wang, L.; Chen, K.; Mu, W.; Duan, C.; Li, X. Study on the mechanism of cantharidin-induced hepatotoxicity in rat using serum and liver metabolomics combined with conventional pathology methods. J. Appl. Toxicol., 2020, 40(9), 1259-1271.
[http://dx.doi.org/10.1002/jat.3983] [PMID: 32468647]
[73]
Zhou, C.; Qiao, L.; Zhao, L.; Li, Z. Evaluation of the impact of cantharidin on rat CYP enzymes by using a cocktail of probe drugs. Fitoterapia, 2015, 107, 49-53.
[http://dx.doi.org/10.1016/j.fitote.2015.10.008] [PMID: 26498206]
[74]
Yu, Y.; Zhang, Y.; Zhang, J.; Guan, C.; Liu, L.; Ren, L. Cantharidin-induced acute hepatotoxicity: the role of TNF-α IKK-α Bcl-2, Bax and caspase3. J. Appl. Toxicol., 2020, 40(11), 1526-1533.
[http://dx.doi.org/10.1002/jat.4003] [PMID: 32627230]
[75]
Liu, F.; Duan, C.; Zhang, J.; Li, X. Cantharidin-induced LO2 cell autophagy and apoptosis via endoplasmic reticulum stress pathway in vitro. J. Appl. Toxicol., 2020, 40(12), 1622-1635.
[http://dx.doi.org/10.1002/jat.4022] [PMID: 32638414]
[76]
Wu, W.; Su, M.; Li, T.; Wu, K.; Wu, X.; Tang, Z. Cantharidin-induced liver injuries in mice and the protective effect of vitamin C supplementation. Int. Immunopharmacol., 2015, 28(1), 182-187.
[http://dx.doi.org/10.1016/j.intimp.2015.06.003] [PMID: 26071218]
[77]
Jiang, Z.; Chi, J.; Han, B.; Liu, W. Preparation and pharmacological evaluation of norcantharidin-conjugated carboxymethyl chitosan in mice bearing hepatocellular carcinoma. Carbohydr. Polym., 2017, 174, 282-290.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.072] [PMID: 28821069]
[78]
Zhu, S.; Long, R.; Song, T.; Zhang, L.; Dai, Y.; Liu, S.; Zhang, P. UPLC-Q-TOF/MS Based Metabolomics Approach to Study the Hepatotoxicity of Cantharidin on Mice. Chem. Res. Toxicol., 2019, 32(11), 2204-2213.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00233] [PMID: 31617706]
[79]
Liu, F.; Wang, X.; Duan, C.; Zhang, J.; Li, X. Hepatoxicity mechanism of cantharidin-induced liver LO2 cells by LC-MS metabolomics combined traditional approaches. Toxicol. Lett., 2020, 333, 49-61.
[http://dx.doi.org/10.1016/j.toxlet.2020.07.024]
[80]
Martinez-Razo, G.; Dominguez-Lopez, M.L.; de la Rosa, J.M. Norcantharidin toxicity profile: an in vivo murine study. Naunyn Schmiedebergs Arch. Pharmacol., 2022.
[PMID: 36184699]
[81]
He, T.; Xiong, L.; Zhang, Y.; Yan, R.; Yu, M.; Liu, M.; Liu, L.; Duan, C.; Li, X.; Zhang, J. Mice kidney biometabolic process analysis after cantharidin exposure using widely-targeted metabolomics combined with network pharmacology. Food Chem. Toxicol., 2023, 171, 113541.
[http://dx.doi.org/10.1016/j.fct.2022.113541] [PMID: 36464109]
[82]
Zhang, Y.; Liu, L.; Ren, L. RNA-sequencing-based transcriptome analysis of cantharidin-induced myocardial injury. J. Appl. Toxicol., 2020, 40(11), 1491-1497.
[http://dx.doi.org/10.1002/jat.4000] [PMID: 32618016]
[83]
Youyou, Z.; Yalei, Y.; Jie, Z.; Chuhuai, G.; Liang, L.; Liang, R. Molecular biomarkers of cantharidin-induced cardiotoxicity in Sprague-Dawley rats: Troponin T, vascular endothelial growth factor and hypoxia inducible factor-1α. J. Appl. Toxicol., 2020, 40(8), 1153-1161.
[http://dx.doi.org/10.1002/jat.3974] [PMID: 32162354]
[84]
Lan, H.Y.; An, P.; Liu, Q.P.; Chen, Y.Y.; Yu, Y.Y.; Luan, X.; Tang, J.Y.; Zhang, H. Aidi injection induces apoptosis of hepatocellular carcinoma cells through the mitochondrial pathway. J. Ethnopharmacol., 2021, 274, 114073.
[http://dx.doi.org/10.1016/j.jep.2021.114073] [PMID: 33794335]
[85]
Li, L.; Zhu, L.; Zhu, J.; Fan, X.; Ye, X. Mechanisms of inhibiting human leukemia cell lines by serum of rats treated with compound banmao capsule. Oncol. Lett., 2017, 14(4), 4092-4098.
[http://dx.doi.org/10.3892/ol.2017.6688] [PMID: 28989536]
[86]
Huang, X.; Tang, W.; Lin, C.; Sa, Z.; Xu, M.; Liu, J.; Wang, L.; Li, W.; Chen, Y.; Yang, C. Protective mechanism of Astragalus Polysaccharides against Cantharidin-induced liver injury determined in vivo by liquid chromatography/mass spectrometry metabolomics. Basic Clin. Pharmacol. Toxicol., 2021, 129(1), 61-71.
[http://dx.doi.org/10.1111/bcpt.13585] [PMID: 33834601]
[87]
Gao, H.; Kang, N.; Hu, C.; Zhang, Z.; Xu, Q.; Liu, Y.; Yang, S. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine, 2020, 69, 153197.
[http://dx.doi.org/10.1016/j.phymed.2020.153197] [PMID: 32146298]
[88]
Shao, H.; Dong, L.; Feng, Y.; Wang, C.; Tong, H. The protective effect of L-glutamine against acute Cantharidin-induced Cardiotoxicity in the mice. BMC Pharmacol. Toxicol., 2020, 21(1), 71.
[http://dx.doi.org/10.1186/s40360-020-00449-8] [PMID: 33004081]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy