Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Prediction of Drug Pathway-based Disease Classes using Multiple Properties of Drugs

Author(s): Lei Chen* and Linyang Li

Volume 19, Issue 9, 2024

Published on: 29 January, 2024

Page: [859 - 872] Pages: 14

DOI: 10.2174/0115748936284973240105115444

Price: $65

Abstract

Background: Drug repositioning now is an important research area in drug discovery as it can accelerate the procedures of discovering novel effects of existing drugs. However, it is challenging to screen out possible effects for given drugs. Designing computational methods are a quick and cheap way to complete this task. Most existing computational methods infer the relationships between drugs and diseases. The pathway-based disease classification reported in KEGG provides us a new way to investigate drug repositioning as such classification can be applied to drugs. A predicted class of a given drug suggests latent diseases it can treat.

Objective: The purpose of this study is to set up efficient multi-label classifiers to predict the classes of drugs.

Method: We adopt three types of drug information to generate drug features, including drug pathway information, label information and drug network. For the first two types, drugs are first encoded into binary vectors, which are further processed by singular value decomposition. For the third type, the network embedding algorithm, Mashup, is employed to yield drug features. Above features are combined and fed into RAndom k-labELsets (RAKEL) to construct multi-label classifiers, where support vector machine is selected as the base classification algorithm.

Results: The ten-fold cross-validation results show that the classifiers provide high performance with accuracy higher than 0.95 and absolute true higher than 0.92. The case study indicates the novel effects of three drugs, i.e., they may treat new diseases.

Conclusion: The proposed classifiers have high performance and are superiority to the classifiers with other classic algorithms and drug information. Furthermore, they have the ability to discover new effects of drugs.

[1]
Pan SY, Zhou SF, Gao SH, et al. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med 2013; 2013: 1-25.
[http://dx.doi.org/10.1155/2013/627375] [PMID: 23634172]
[2]
Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: A machine-learning approach through data integration. J Chem inform 2013; 5(1): 30.
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[3]
Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: A brief overview. J Pharm Pharmacol 2020; 72(9): 1145-51.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[4]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[5]
Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. J Cheminform 2020; 12(1): 46.
[http://dx.doi.org/10.1186/s13321-020-00450-7] [PMID: 33431024]
[6]
Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[7]
Wu G, Liu J, Wang C. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. BMC Med Genomics 2017; 10(S5): 79.
[http://dx.doi.org/10.1186/s12920-017-0311-0] [PMID: 29297383]
[8]
Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther 2009; 86(5): 507-10.
[http://dx.doi.org/10.1038/clpt.2009.103] [PMID: 19571805]
[9]
Wu C, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol 2013; 7(S5): S6.
[http://dx.doi.org/10.1186/1752-0509-7-S5-S6] [PMID: 24564976]
[10]
Luo H, Wang J, Li M, et al. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016; 32(17): 2664-71.
[http://dx.doi.org/10.1093/bioinformatics/btw228] [PMID: 27153662]
[11]
Wang W, Yang S, Zhang X, Li J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 2014; 30(20): 2923-30.
[http://dx.doi.org/10.1093/bioinformatics/btu403] [PMID: 24974205]
[12]
Huang YF, Yeh HY, Soo VW. Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med Genomics 2013; 6(S3) (Suppl. 3): S4.
[http://dx.doi.org/10.1186/1755-8794-6-S3-S4] [PMID: 24565337]
[13]
Yang Y, Chen L. Identification of drug–disease associations by using multiple drug and disease networks. Curr Bioinform 2022; 17(1): 48-59.
[http://dx.doi.org/10.2174/1574893616666210825115406]
[14]
Chen L, Chen K, Zhou B. Inferring drug-disease associations by a deep analysis on drug and disease networks. Math Biosci Eng 2023; 20(8): 14136-57.
[http://dx.doi.org/10.3934/mbe.2023632] [PMID: 37679129]
[15]
Jiang H, Huang Y. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network. BMC Bioinformat 2022; 23(1): 9.
[http://dx.doi.org/10.1186/s12859-021-04553-2] [PMID: 34983364]
[16]
Kawichai T, Suratanee A, Plaimas K. Meta-path based gene ontology profiles for predicting drug-disease associations IEEE Access 2021; 9: 41809-20.
[http://dx.doi.org/10.1109/ACCESS.2021.3065280]
[17]
Zhang ML, Zhao BW, Su XR, He YZ, Yang Y, Hu L. RLFDDA: A meta-path based graph representation learning model for drug–disease association prediction. BMC Bioinformatics 2022; 23(1): 516.
[http://dx.doi.org/10.1186/s12859-022-05069-z] [PMID: 36456957]
[18]
Li Z, Huang Q, Chen X, et al. Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network. Front Chem 2020; 7: 924.
[http://dx.doi.org/10.3389/fchem.2019.00924] [PMID: 31998700]
[19]
Wang Z, Zhou M, Arnold C. Toward heterogeneous information fusion: Bipartite graph convolutional networks for in silico drug repurposing. Bioinformatics 2020; 36(S1): i525-33.
[http://dx.doi.org/10.1093/bioinformatics/btaa437] [PMID: 32657387]
[20]
Zhao BW, You ZH, Wong L, Zhang P, Li HY, Wang L. MGRL: Predicting drug-disease associations based on multi-graph representation learning. Front Genet 2021; 12: 657182.
[http://dx.doi.org/10.3389/fgene.2021.657182] [PMID: 34054920]
[21]
Wang Y, Chen S, Deng N, Wang Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One 2013; 8(11): e78518.
[http://dx.doi.org/10.1371/journal.pone.0078518] [PMID: 24244318]
[22]
Gao CQ, Zhou YK, Xin XH, Min H, Du PF. DDA-SKF: Predicting drug–disease associations using similarity kernel fusion. Front Pharmacol 2022; 12: 784171.
[http://dx.doi.org/10.3389/fphar.2021.784171] [PMID: 35095495]
[23]
Lu L, Yu H. DR2DI: A powerful computational tool for predicting novel drug-disease associations. J Comput Aided Mol Des 2018; 32(5): 633-42.
[http://dx.doi.org/10.1007/s10822-018-0117-y] [PMID: 29687309]
[24]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999; 27(1): 29-34.
[http://dx.doi.org/10.1093/nar/27.1.29] [PMID: 9847135]
[25]
Tsoumakas G, Vlahavas I. Random k-Labelsets: An Ensemble Method for Multilabel Classification. Berlin, Heidelberg: Springer Berlin Heidelberg 2007.
[26]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[27]
Zhou JP, Chen L, Guo ZH. iATC-NRAKEL: an efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 2020; 36(5): 1391-6.
[http://dx.doi.org/10.1093/bioinformatics/btz757] [PMID: 31593226]
[28]
Tang S, Chen L. iATC-NFMLP: Identifying classes of anatomical therapeutic chemicals based on drug networks, fingerprints and multilayer perceptron. Curr Bioinform 2022; 17(9): 814-24.
[http://dx.doi.org/10.2174/1574893617666220318093000]
[29]
Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 2017; 8(1): 573.
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[30]
Hattori M, Tanaka N, Kanehisa M, Goto S. SIMCOMP/SUBCOMP: Chemical structure search servers for network analyses. Nucleic Acids Res 2010; 38: W652-6.
[http://dx.doi.org/10.1093/nar/gkq367] [PMID: 20460463]
[31]
Ullmann JR. An algorithm for subgraph isomorphism. J Assoc Comput Mach 1976; 23(1): 31-42.
[http://dx.doi.org/10.1145/321921.321925]
[32]
Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. 2016; pp. 855-64.
[http://dx.doi.org/10.1145/2939672.2939754]
[33]
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining 2014; 701-10.
[http://dx.doi.org/10.1145/2623330.2623732]
[34]
Cho H, Berger B, Peng J. Compact integration of multi-network topology for functional analysis of genes. Cell Syst 2016; 3(6): 540-548.e5.
[http://dx.doi.org/10.1016/j.cels.2016.10.017] [PMID: 27889536]
[35]
Tong H, Faloutsos C, Pan J. Fast random walk with restart and its applications. Sixth International Conference on Data Mining (ICDM’06). 18-22 December 2006; Hong Kong, China. 2006.
[http://dx.doi.org/10.1109/ICDM.2006.70]
[36]
Zhou JP, Chen L, Wang T, Liu M. iATC-FRAKEL: A simple multi-label web server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 2020; 36(11): 3568-9.
[http://dx.doi.org/10.1093/bioinformatics/btaa166] [PMID: 32154836]
[37]
Chen L, Li Z, Zeng T, et al. Predicting gene phenotype by multi-label multi-class model based on essential functional features. Mol Genet Genomics 2021; 296(4): 905-18.
[http://dx.doi.org/10.1007/s00438-021-01789-8] [PMID: 33914130]
[38]
Weng H. Multi-label symptom analysis and modeling of TCM diagnosis of hypertension. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 03-06 December 2018; Madrid, Spain. 2018.
[http://dx.doi.org/ 10.1109/BIBM.2018.8621173]
[39]
Zufferey D, Hofer T, Hennebert J, Schumacher M, Ingold R, Bromuri S. Performance comparison of multi-label learning algorithms on clinical data for chronic diseases. Comput Biol Med 2015; 65: 34-43.
[http://dx.doi.org/10.1016/j.compbiomed.2015.07.017] [PMID: 26275389]
[40]
Wang Y, Jing R, Hua Y, et al. Classification of multi-family enzymes by multi-label machine learning and sequence-based descriptors. Anal Methods 2014; 6(17): 6832-40.
[http://dx.doi.org/10.1039/C4AY01240B]
[41]
Li X, Lu L, Chen L. Identification of protein functions in mouse with a label space partition method. Math Biosci Eng 2022; 19(4): 3820-42.
[http://dx.doi.org/10.3934/mbe.2022176] [PMID: 35341276]
[42]
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence.
[43]
Chen L, Chen Y. RMTLysPTM: Recognizing multiple types of lysine PTM sites by deep analysis on sequences. Brief Bioinform 2024; 25(1): bbad450.
[http://dx.doi.org/10.1093/bib/bbad450]
[44]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[45]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6.
[http://dx.doi.org/10.1021/ci00057a005]
[46]
Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010; 50(5): 742-54.
[http://dx.doi.org/10.1021/ci100050t] [PMID: 20426451]
[47]
Davis AP, Grondin CJ, Johnson RJ, et al. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res 2021; 49(D1): D1138-43.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[48]
Li J, Kim SG, Blenis J. Rapamycin: One drug, many effects. Cell Metab 2014; 19(3): 373-9.
[http://dx.doi.org/10.1016/j.cmet.2014.01.001] [PMID: 24508508]
[49]
Law BK. Rapamycin: An anti-cancer immunosuppressant? Crit Rev Oncol Hematol 2005; 56(1): 47-60.
[http://dx.doi.org/10.1016/j.critrevonc.2004.09.009] [PMID: 16039868]
[50]
Food and Drug Administration FDA Approved Drug Products: FYARRO (sirolimus protein-bound particles for injectable suspension) (albumin-bound), for intravenous use. 2021; pp. 1137-43. Available from: https://www.fyarro.com/
[51]
Peters T, Traboulsi D, Tibbles LA, Mydlarski PR. Sirolimus: A therapeutic advance for dermatologic disease. Skin Therapy Lett 2014; 19(4): 1-4.
[PMID: 25188522]
[52]
Blagosklonny MV. Cancer prevention with rapamycin. Oncotarget 2023; 14(1): 342-50.
[http://dx.doi.org/10.18632/oncotarget.28410] [PMID: 37057884]
[53]
Atmaca M, Kuloglu M, Tezcan E, Ustundag B. Nizatidine treatment and its relationship with leptin levels in patients with olanzapine‐induced weight gain. Hum Psychopharmacol 2003; 18(6): 457-61.
[http://dx.doi.org/10.1002/hup.514] [PMID: 12923824]
[54]
Atmaca M, Kuloglu M, Tezcan E, Ustundag B, Kilic N. Nizatidine for the treatment of patients with quetiapine‐induced weight gain. Hum Psychopharmacol 2004; 19(1): 37-40.
[http://dx.doi.org/10.1002/hup.477] [PMID: 14716710]
[55]
Assunção SSM, Ruschel SI, Rosa LCR, et al. Weight gain management in patients with schizophrenia during treatment with olanzapine in association with nizatidine. Rev Bras Psiquiatr 2006; 28(4): 270-6.
[http://dx.doi.org/10.1590/S1516-44462006000400005] [PMID: 17242805]
[56]
Hiluy JC. Effectiveness of pharmacologic interventions in the management of weight gain in patients with severe mental illness: A systematic review and meta-analysis. Prim Care Companion CNS Disord 2019; 21(6): 19r02483.
[http://dx.doi.org/10.4088/PCC.19r02483]
[57]
Magnoni S, Stocchetti N, Colombo G, et al. Alpha-melanocyte-stimulating hormone is decreased in plasma of patients with acute brain injury. J Neurotrauma 2003; 20(3): 251-60.
[http://dx.doi.org/10.1089/089771503321532833] [PMID: 12820679]
[58]
Zierath D, Tanzi P, Cain K, Shibata D, Becker K. Plasma α-melanocyte stimulating hormone predicts outcome in ischemic stroke. Stroke 2011; 42(12): 3415-20.
[http://dx.doi.org/10.1161/STROKEAHA.111.627331] [PMID: 21960572]
[59]
Stanislaus V, Kam A, Murphy L, et al. A feasibility and safety study of afamelanotide in acute stroke patients – an open label, proof of concept, phase iia clinical trial. BMC Neurol 2023; 23(1): 281.
[http://dx.doi.org/10.1186/s12883-023-03338-9] [PMID: 37496004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy