Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Effect of Toll-like Receptor-3 Antagonist on Viral Asthma Exacerbations Via a TLR3/dsRNA Complex Pathway

Author(s): Swamita Arora, Mohit Agrawal, Kantrol Kumar Sahu, Sanjar Alam, Wasim Akram, Mohammad Khalid, Shivendra Kumar*, Sunam Saha, Kuldeep Singh and Hema Chaudhary

Volume 22, Issue 3, 2024

Published on: 19 January, 2024

Article ID: e190124225826 Pages: 11

DOI: 10.2174/0122113525282849231228125935

Price: $65

Abstract

Background: The Toll-like receptor-3 (TLR3) ligand Poly(I:C) has been shown to induce a viral aggravation of severe asthma by identifying double-stranded RNA (dsRNA). This study aimed to evaluate the therapeutic role of the TLR3/dsRNA complex inhibitor-calbiochem compound in the treatment of Poly(I:C)-induced viral asthma exacerbations through the ovalbumin- induced asthma model in Swiss albino mice.

Methods: Poly(I:C) and Ovalbumin drugs were injected in mice to sensitize (i.p. on 0, 7, and 14th day) and challenge (i.n. on the 21st and 22nd days). In contrast, the treatment drug TLR3/dsRNA complex inhibitor-calbiochem was given on the 21st and 22nd days intraperitoneally within the study period. In-vivo measurements were carried out in BALF and serum for pro-inflammatory cytokines, inflammatory leukocyte counts, lactate dehydrogenase (LDH) and nitrite levels, lungs/body weight index, and lung tissue histopathology using H and E staining in mice airways.

Results: High levels of cytokines (NF-κB, IL-1β, IL-5, RANTES, MIP-2, and MCP-1) are seen in groups exposed to OVA and Poly (I:C). Further, inflammatory leukocyte cell counts, lungbody weight (LW/BW) index, airway hyperresponsiveness (AHR), and lung tissue damage suggest exacerbations in mice airways. On the other hand, TLR3/dsRNA complex inhibitor-calbiochem and dexamethasone significantly reversed these changes toward normal levels.

Conclusions: These results suggest that the novel compound TLR3/dsRNA complex inhibitorcalbiochem has a better therapeutic role than dexamethasone for managing inflammatory characteristics in asthmatic mice lungs and is a potent target for viral asthma exacerbations.

Graphical Abstract

[1]
Shastri, M.D.; Allam, V.S.R.R.; Shukla, S.D.; Jha, N.K.; Paudel, K.R.; Peterson, G.M.; Patel, R.P.; Hansbro, P.M.; Chellappan, D.K.; Dua, K. Interleukin-13: A pivotal target against influenza-induced exacerbation of chronic lung diseases. Life Sci., 2021, 283, 119871-119871.
[http://dx.doi.org/10.1016/j.lfs.2021.119871] [PMID: 34352260]
[2]
Starkhammar, M.; Kumlien Georén, S.; Dahlén, S.E.; Cardell, L.O.; Adner, M. TNFα-blockade stabilizes local airway hyperresponsiveness during TLR-induced exacerbations in murine model of asthma. Respir. Res., 2015, 16(1), 129.
[http://dx.doi.org/10.1186/s12931-015-0292-5] [PMID: 25567521]
[3]
Busse, W.W.; Lemanske, R.F., Jr; Gern, J.E. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet, 2010, 376(9743), 826-834.
[http://dx.doi.org/10.1016/S0140-6736(10)61380-3] [PMID: 20816549]
[4]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976]
[5]
Dahl, M.E.; Dabbagh, K.; Liggitt, D.; Kim, S.; Lewis, D.B. Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells. Nature Immunology, 2004, 5(3), 337-343.
[6]
Ritter, M.; Mennerich, D.; Weith, A.; Seither, P. Characterization of Toll-like receptors in primary lung epithelial cells: Strong impact of the TLR3 ligand poly (I:C) on the regulation of Toll-like receptors, adaptor proteins and inflammatory response. J. Inflamm. (Lond.), 2005, 2(1), 16.
[http://dx.doi.org/10.1186/1476-9255-2-16] [PMID: 16316467]
[7]
Mukherjee, S.; Patra, R.; Behzadi, P.; Masotti, A.; Paolini, A.; Sarshar, M. Toll-like receptor-guided therapeutic intervention of human cancers: Molecular and immunological perspectives. Front. Immunol., 2023, 14, 1244345.
[http://dx.doi.org/10.3389/fimmu.2023.1244345] [PMID: 37822929]
[8]
Aoyagi, T.; Newstead, M.W.; Zeng, X.; Kunkel, S.L.; Kaku, M.; Standiford, T.J. IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia. Mucosal Immunol., 2017, 10(4), 1043-1055.
[http://dx.doi.org/10.1038/mi.2016.107] [PMID: 27966554]
[9]
Torres, D.; Dieudonné, A.; Ryffel, B.; Vilain, E.; Si-Tahar, M.; Pichavant, M.; Lassalle, P.; Trottein, F.; Gosset, P. Double-stranded RNA exacerbates pulmonary allergic reaction through TLR3: Implication of airway epithelium and dendritic cells. J. Immunol., 2010, 185(1), 451-459.
[http://dx.doi.org/10.4049/jimmunol.0902833] [PMID: 20505141]
[10]
Edwards, M.R.; Saglani, S.; Schwarze, J.; Skevaki, C.; Smith, J.A.; Ainsworth, B.; Almond, M.; Andreakos, E.; Belvisi, M.G.; Chung, K.F.; Cookson, W.; Cullinan, P.; Hawrylowicz, C.; Lommatzsch, M.; Jackson, D.; Lutter, R.; Marsland, B.; Moffatt, M.; Thomas, M.; Virchow, J.C.; Xanthou, G.; Edwards, J.; Walker, S.; Johnston, S.L. Addressing unmet needs in understanding asthma mechanisms. Eur. Respir. J., 2017, 49(5), 1602448-1602448.
[http://dx.doi.org/10.1183/13993003.02448-2016] [PMID: 28461300]
[11]
Szczęsny, G.; Veihelmann, A.; Massberg, S.; Nolte, D.; Messmer, K. Long-term anaesthesia using inhalatory isoflurane in different strains of mice—the haemodynamic effects. Lab. Anim., 2004, 38(1), 64-69.
[http://dx.doi.org/10.1258/00236770460734416] [PMID: 14979990]
[12]
Yosri, H.; Elkashef, W.F.; Said, E.; Gameil, N.M. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int. Immunopharmacol., 2017, 50, 305-312.
[http://dx.doi.org/10.1016/j.intimp.2017.07.012] [PMID: 28738246]
[13]
Arora, S.; Gupta, S.; Akram, W.; Altyar, A.E.; Tagde, P. Effect of TLR3/dsRNA complex inhibitor on Poly (I:C)-induced airway inflammation in Swiss albino mice. Environ. Sci. Pollut. Res. Int., 2022, 30(10), 28118-28132.
[http://dx.doi.org/10.1007/s11356-022-23987-6] [PMID: 36394807]
[14]
Warden, A.S.; Azzam, M.; DaCosta, A.; Mason, S.; Blednov, Y.A.; Messing, R.O.; Mayfield, R.D.; Harris, R.A. Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice. Brain Behav. Immun., 2019, 77, 55-65.
[http://dx.doi.org/10.1016/j.bbi.2018.12.004] [PMID: 30550931]
[15]
Wirotesangthong, M.; Inagaki, N.; Tanaka, H.; Thanakijcharoenpath, W.; Nagai, H. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells. Int. Immunopharmacol., 2008, 8(3), 453-457.
[http://dx.doi.org/10.1016/j.intimp.2007.11.005] [PMID: 18279799]
[16]
Sun, S.; Zhang, H.; Xue, B.; Wu, Y.; Wang, J.; Yin, Z.; Luo, L. Protective effect of glutathione against lipopolysaccharide-induced inflammation and mortality in rats. Inflamm. Res., 2006, 55(11), 504-510.
[http://dx.doi.org/10.1007/s00011-006-6037-7] [PMID: 17122969]
[17]
Wang, Q.-L.; Yang, L.; Peng, Y.; Gao, M.; Yang, M.-S.; Xing, W.; Xiao, X.-Z. Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediators of inflammation, 2019, 2019
[http://dx.doi.org/10.1155/2019/6453296]
[18]
Zhuang, Y.T.; Xu, D.Y.; Wang, G.Y.; Sun, J.L.; Huang, Y.; Wang, S.Z. IL-6 induced lncRNA MALAT1 enhances TNF-α expression in LPS-induced septic cardiomyocytes via activation of SAA3. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(2), 302-309.
[PMID: 28165557]
[19]
Kumar, P.; Sulakhiya, K.; Barua, C.C.; Mundhe, N. TNF-α IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol. Cell. Biochem., 2017, 431(1-2), 113-122.
[http://dx.doi.org/10.1007/s11010-017-2981-5] [PMID: 28258441]
[20]
Antal, C.; Muller, S.; Wendling, O.; Hérault, Y.; Mark, M. Standardized post‐mortem examination and fixation procedures for mutant and treated mice. Curr. Protoc. Mouse Biol., 2011, 1(1), 17-53.
[http://dx.doi.org/10.1002/9780470942390.mo100118] [PMID: 26068986]
[21]
Kim, D.I.; Song, M.K.; Lee, K. Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulm. Med., 2019, 19(1), 241.
[http://dx.doi.org/10.1186/s12890-019-1001-9] [PMID: 31823765]
[22]
Nguyen, D.; Zhou, T.; Shu, J.; Mao, J. Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. undefined, 2013.
[23]
Fahy, J.V.; Kim, K.W.; Liu, J.; Boushey, H.A. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol., 1995, 95(4), 843-852.
[http://dx.doi.org/10.1016/S0091-6749(95)70128-1] [PMID: 7722165]
[24]
Haynes, L.M.; Moore, D.D.; Kurt-Jones, E.A.; Finberg, R.W.; Anderson, L.J.; Tripp, R.A. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol., 2001, 75(22), 10730-10737.
[http://dx.doi.org/10.1128/JVI.75.22.10730-10737.2001] [PMID: 11602714]
[25]
Zakeri, A.; Yazdi, F.G. Toll-like receptor-mediated involvement of innate immune cells in asthma disease. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1), 3270-3277.
[http://dx.doi.org/10.1016/j.bbagen.2016.08.009] [PMID: 27543676]
[26]
Persson, C.; Uller, L. Theirs but to die and do: Primary lysis of eosinophils and free eosinophil granules in asthma. Am. J. Respir. Crit. Care Med., 2014, 189(6), 628-633.
[http://dx.doi.org/10.1164/rccm.201311-2069OE] [PMID: 24512466]
[27]
Wark, P.A.B.; Johnston, S.L.; Moric, I.; Simpson, J.L.; Hensley, M.J.; Gibson, P.G. Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur. Respir. J., 2002, 19(1), 68-75.
[http://dx.doi.org/10.1183/09031936.02.00226302] [PMID: 11852895]
[28]
Wark, P.A.B.; Grissell, T.; Davies, B.; See, H.; Gibson, P.G. Diversity in the bronchial epithelial cell response to infection with different rhinovirus strains. Respirology, 2009, 14(2), 180-186.
[http://dx.doi.org/10.1111/j.1440-1843.2009.01480.x] [PMID: 19207121]
[29]
Roh, S.S.; Kim, S.H.; Lee, Y.C.; Seo, Y.B. Effects of radix adenophorae and cyclosporine A on an OVA-induced murine model of asthma by suppressing to T cells activity, eosinophilia, and bronchial hyperresponsiveness. Mediators Inflamm., 2008, 2008, 1-11.
[http://dx.doi.org/10.1155/2008/781425] [PMID: 18382613]
[30]
Lee, R.P.; Wang, D.; Kao, S.J.; Chen, H.I. The lung is the major site that produces nitric oxide to induce acute pulmonary oedema in endotoxin shock. Clin. Exp. Pharmacol. Physiol., 2001, 28(4), 315-320.
[http://dx.doi.org/10.1046/j.1440-1681.2001.03446.x] [PMID: 11251647]
[31]
Leusen, J.H.W.; Verhoeven, A.J.; Roos, D. Interactions between the components of the human nadph oxidase: intrigues in the phox family. J. Lab. Clin. Med., 1996, 128(5), 461-476.
[http://dx.doi.org/10.1016/S0022-2143(96)90043-8] [PMID: 8900289]
[32]
Teran, L.M.; Noso, N.; Carroll, M.; Davies, D.E.; Holgate, S.; Schröder, J.M. Eosinophil recruitment following allergen challenge is associated with the release of the chemokine RANTES into asthmatic airways. Journal of immunology, 1996, 157(4), 1806-1812.
[33]
Saetta, M.; Turato, G. Airway pathology in asthma. Eur. Respir. J., 2001, 18(1), 18-23.
[http://dx.doi.org/10.1183/09031936.01.00229501] [PMID: 12392031]
[34]
Carroll, N.; Cooke, C.; James, A. The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics. Eur. Respir. J., 1997, 10(2), 292-300.
[http://dx.doi.org/10.1183/09031936.97.10020292] [PMID: 9042623]
[35]
Lambrecht, B.N.; Hammad, H. The airway epithelium in asthma. Nat. Med., 2012, 18(5), 684-692.
[http://dx.doi.org/10.1038/nm.2737] [PMID: 22561832]
[36]
Stowell, N.C.; Seideman, J.; Raymond, H.A.; Smalley, K.A.; Lamb, R.J.; Egenolf, D.D.; Bugelski, P.J.; Murray, L.A.; Marsters, P.A.; Bunting, R.A.; Flavell, R.A.; Alexopoulou, L.; San Mateo, L.R.; Griswold, D.E.; Sarisky, R.T.; Lamine Mbow, M.; Das, A.M. Long-term activation of TLR3 by Poly (I:C) induces inflammation and impairs lung function in mice. Respir. Res., 2009, 10(1), 43.
[37]
Yamamoto, M.; Sato, S.; Hemmi, H.; Hoshino, K.; Kaisho, T.; Sanjo, H.; Takeuchi, O.; Sugiyama, M.; Okabe, M.; Takeda, K.; Akira, S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 2003, 301(5633), 640-643.
[http://dx.doi.org/10.1126/science.1087262] [PMID: 12855817]
[38]
Borish, L.; Mascali, J.J.; Dishuck, J.; Beam, W.R.; Martin, R.J.; Rosenwasser, L.J. Detection of alveolar macrophage-derived IL-1 beta in asthma. Inhibition with corticosteroids. J. Immunol., 1992, 149(9), 3078-3082.
[http://dx.doi.org/10.4049/jimmunol.149.9.3078] [PMID: 1401932]
[39]
Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 2015, 13(2), 148-159.
[40]
Martin, J.G.; Tamaoka, M. Rat models of asthma and chronic obstructive lung disease. Pulm. Pharmacol. Ther., 2006, 19(6), 377-385.
[http://dx.doi.org/10.1016/j.pupt.2005.10.005] [PMID: 16337418]
[41]
Rossios, C.; Pavlidis, S.; Hoda, U.; Kuo, C.H.; Wiegman, C.; Russell, K.; Sun, K.; Loza, M.J.; Baribaud, F.; Durham, A.L.; Ojo, O.; Lutter, R.; Rowe, A.; Bansal, A.; Auffray, C.; Sousa, A.; Corfield, J.; Djukanovic, R.; Guo, Y.; Sterk, P.J.; Chung, K.F.; Adcock, I.M. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J. Allergy Clin. Immunol., 2018, 141(2), 560-570.
[http://dx.doi.org/10.1016/j.jaci.2017.02.045] [PMID: 28528200]
[42]
Behzadi, P.; Sameer, A. S.; Nissar, S.; Banday, M. Z.; Gajdács, M.; García-Perdomo, H. A.; Akhtar, K.; Pinheiro, M.; Magnusson, P.; Sarshar, M. The Interleukin-1 (IL-1) superfamily cytokines and their single nucleotide polymorphisms. Journal of Immunology Research, 2022, 2022
[43]
Alharbi, K.S.; Fuloria, N.K.; Fuloria, S.; Rahman, S.B.; Al-Malki, W.H.; Javed Shaikh, M.A.; Thangavelu, L.; Singh, S.K.; Rama Raju Allam, V.S.; Jha, N.K.; Chellappan, D.K.; Dua, K.; Gupta, G. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem. Biol. Interact., 2021, 345, 109568-109568.
[http://dx.doi.org/10.1016/j.cbi.2021.109568] [PMID: 34181887]
[44]
Ren, Y.; Ichinose, T.; He, M.; Youshida, S.; Nishikawa, M.; Sun, G. Co-exposure to lipopolysaccharide and desert dust causes exacerbation of ovalbumin-induced allergic lung inflammation in mice via TLR4/MyD88-dependent and -independent pathways. Allergy Asthma Clin. Immunol., 2019, 15(1), 82.
[http://dx.doi.org/10.1186/s13223-019-0396-4] [PMID: 31889961]
[45]
Muir, A.; Soong, G.; Sokol, S.; Reddy, B.; Gomez, M.I.; van Heeckeren, A.; Prince, A. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 2004, 30(6), 777-783.
[http://dx.doi.org/10.1165/rcmb.2003-0329OC] [PMID: 14656745]
[46]
Hubeau, C.; Kubera, J.E.; Masek-Hammerman, K.; Williams, C.M.M. Interleukin-6 neutralization alleviates pulmonary inflammation in mice exposed to cigarette smoke and poly (I:C). Clin. Sci. (Lond.), 2013, 125(10), 483-493.
[http://dx.doi.org/10.1042/CS20130110] [PMID: 23738811]
[47]
Starkhammar, M.; Larsson, O.; Kumlien Georén, S.; Leino, M.; Dahlén, S.E.; Adner, M.; Cardell, L.O. Toll-like receptor ligands LPS and poly (I:C) exacerbate airway hyperresponsiveness in a model of airway allergy in mice, independently of inflammation. PLoS One, 2014, 9(8), e104114.
[http://dx.doi.org/10.1371/journal.pone.0104114] [PMID: 25089623]
[48]
El-Kashef, D.H. Nicorandil alleviates ovalbumin-induced airway inflammation in a mouse model of asthma. Environ. Toxicol. Pharmacol., 2018, 59, 132-137.
[http://dx.doi.org/10.1016/j.etap.2018.03.012] [PMID: 29579542]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy