Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Free Radicals, Mitochondrial Dysfunction and Sepsis-induced Organ Dysfunction: A Mechanistic Insight

Author(s): Sanni Kumar, Vijay Kumar Srivastava, Sanket Kaushik, Juhi Saxena and Anupam Jyoti*

Volume 30, Issue 3, 2024

Published on: 18 January, 2024

Page: [161 - 168] Pages: 8

DOI: 10.2174/0113816128279655231228055842

Price: $65

Abstract

Sepsis is a complex clinical condition and a leading cause of death worldwide. During Sepsis, there is a derailment in the host response to infection, which can progress to severe sepsis and multiple organ dysfunction or failure, which leads to death. Free radicals, including reactive oxygen species (ROS) generated predominantly in mitochondria, are one of the key players in impairing normal organ function in sepsis. ROS contributing to oxidative stress has been reported to be the main culprit in the injury of the lung, heart, liver, kidney, gastrointestinal, and other organs. Here in the present review, we describe the generation, and essential properties of various types of ROS, their effect on macromolecules, and their role in mitochondrial dysfunction. Furthermore, the mechanism involved in the ROS-mediated pathogenesis of sepsis-induced organ dysfunction has also been discussed.

Next »
[1]
Gomberg M. An instance of trivalent carbon: Triphenylmethyl. J Am Chem Soc 1900; 22(11): 757-71.
[http://dx.doi.org/10.1021/ja02049a006]
[2]
Gerschman R, Gilbert D, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: A mechanism in common. 1954. Nutrition 2001; 17(2): 162.
[PMID: 11683139]
[3]
Commoner B, Townsend J, Pake G. Free radicals in biological materials. Nature 1954; 174(4432): 689-91.
[http://dx.doi.org/10.1038/174689a0] [PMID: 13213980]
[4]
Harman D. The aging process. Proc Natl Acad Sci 1981; 78(11): 7124-8.
[http://dx.doi.org/10.1073/pnas.78.11.7124] [PMID: 6947277]
[5]
McCord JM, Roy RS, Schaffer SW. Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv Myocardiol 1985; 5: 183-9.
[http://dx.doi.org/10.1007/978-1-4757-1287-2_14] [PMID: 2982206]
[6]
Loschen G, Flohé L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 1971; 18(2): 261-4.
[http://dx.doi.org/10.1016/0014-5793(71)80459-3] [PMID: 11946135]
[7]
Mittal CK, Murad F. Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: A physiological regulator of guanosine 3′,5′-monophosphate formation. Proc Natl Acad Sci 1977; 74(10): 4360-4.
[http://dx.doi.org/10.1073/pnas.74.10.4360] [PMID: 22077]
[8]
Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 1978; 82(2): 563-7.
[http://dx.doi.org/10.1111/j.1432-1033.1978.tb12051.x] [PMID: 203456]
[9]
Bergendi L, Beneš L, Ďuračková Z, Ferenčik M. Chemistry, physiology and pathology of free radicals. Life Sci 1999; 65(18-19): 1865-74.
[http://dx.doi.org/10.1016/S0024-3205(99)00439-7] [PMID: 10576429]
[10]
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[11]
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010; 4(8): 118-26.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[12]
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[13]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[14]
Adams L, Franco MC, Estevez AG. Reactive nitrogen species in cellular signaling. Exp Biol Med 2015; 240(6): 711-7.
[http://dx.doi.org/10.1177/1535370215581314] [PMID: 25888647]
[15]
Le Gal K, Schmidt EE, Sayin VI. Cellular redox homeostasis. Antioxidants 2021; 10(9): 1377.
[http://dx.doi.org/10.3390/antiox10091377] [PMID: 34573009]
[16]
Jyoti A, Mishra N, Dhas Y. Ageing: Consequences of excessive free radicals and inflammation. Curr Sci 2016; 111(11): 1787-93.
[http://dx.doi.org/10.18520/cs/v111/i11/1787-1793]
[17]
Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol 2023; 97(10): 2499-574.
[http://dx.doi.org/10.1007/s00204-023-03562-9] [PMID: 37597078]
[18]
Kumar S, Saxena J, Srivastava VK, et al. The interplay of oxidative stress and ROS scavenging: Antioxidants as a therapeutic potential in sepsis. Vaccines 2022; 10(10): 1575.
[http://dx.doi.org/10.3390/vaccines10101575] [PMID: 36298439]
[19]
Irato P, Santovito G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 2021; 10(4): 579.
[http://dx.doi.org/10.3390/antiox10040579] [PMID: 33918542]
[20]
Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019; 2019: 1-17.
[http://dx.doi.org/10.1155/2019/6175804] [PMID: 31467634]
[21]
Aranda-Rivera AK, Cruz-Gregorio A, Arancibia-Hernández YL, Hernández-Cruz EY, Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022; 2(4): 437-78.
[http://dx.doi.org/10.3390/oxygen2040030]
[22]
Liu J, Wu M, Zhang R, Xu ZP. Oxygen-derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes. VIEW 2021; 2(5): 20200139.
[http://dx.doi.org/10.1002/VIW.20200139]
[23]
Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 1997; 272(31): 19095-8.
[http://dx.doi.org/10.1074/jbc.272.31.19095] [PMID: 9235895]
[24]
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185(16): 2853-78.
[http://dx.doi.org/10.1016/j.cell.2022.06.010] [PMID: 35931019]
[25]
Graves DB, Bauer G. Key roles of reactive oxygen and nitrogen species. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application 2018; 71-82.
[http://dx.doi.org/10.1007/978-3-319-67627-2_4]
[26]
Davies MJ. Protein oxidation and peroxidation. Biochem J 2016; 473(7): 805-25.
[http://dx.doi.org/10.1042/BJ20151227] [PMID: 27026395]
[27]
Al-Shehri SS. Reactive oxygen and nitrogen species and innate immune response. Biochimie 2021; 181: 52-64.
[http://dx.doi.org/10.1016/j.biochi.2020.11.022] [PMID: 33278558]
[28]
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54(11): 2450-64.
[http://dx.doi.org/10.1016/j.immuni.2021.10.012] [PMID: 34758337]
[29]
Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol: Pathol Mech Dis 2011; 6: 19-48.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130327]
[30]
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94(2): 329-54.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[31]
Victor VM, Esplugues JV, Hernandez-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in sepsis: A potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets 2009; 9(4): 376-89.
[http://dx.doi.org/10.2174/187152609788922519]
[32]
Alsharabasy AM, Glynn S, Farràs P, Pandit A. Protein nitration induced by Hemin/NO: A complementary mechanism through the catalytic functions of hemin and NO-scavenging. Nitric Oxide 2022; 124: 49-67.
[http://dx.doi.org/10.1016/j.niox.2022.04.005] [PMID: 35513288]
[33]
Galluzzi L, Kepp O, Kroemer G. Mitochondria: Master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13(12): 780-8.
[http://dx.doi.org/10.1038/nrm3479] [PMID: 23175281]
[34]
Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014; 5(1): 66-72.
[http://dx.doi.org/10.4161/viru.26907] [PMID: 24185508]
[35]
Kessas K, Chouari Z, Ghzaiel I, et al. Role of bioactive compounds in the regulation of mitochondrial dysfunctions in brain and age-related neurodegenerative diseases. Cells 2022; 11(2): 257.
[http://dx.doi.org/10.3390/cells11020257] [PMID: 35053373]
[36]
Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 2005; 12(22): 2601-23.
[http://dx.doi.org/10.2174/092986705774370646] [PMID: 16248817]
[37]
Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 2021; 12: 627837.
[http://dx.doi.org/10.3389/fphys.2021.627837] [PMID: 33967820]
[38]
N Kolodkin A, Sharma RP, Colangelo AM, et al. ROS networks: Designs, aging, Parkinson’s disease and precision therapies. NPJ Syst Biol Appl 2020; 6(1): 34.
[http://dx.doi.org/10.1038/s41540-020-00150-w] [PMID: 33106503]
[39]
Voets AM, Huigsloot M, Lindsey PJ, et al. Transcriptional changes in OXPHOS complex I deficiency are related to anti-oxidant pathways and could explain the disturbed calcium homeostasis. Biochim Biophys Acta Mol Basis Dis 2012; 1822(7): 1161-8.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.009] [PMID: 22033105]
[40]
Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol 2022; 322(2): C136-50.
[http://dx.doi.org/10.1152/ajpcell.00389.2021] [PMID: 34936503]
[41]
Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 2010; 67(4): 360-8.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.22] [PMID: 20368511]
[42]
Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360(9328): 219-23.
[http://dx.doi.org/10.1016/S0140-6736(02)09459-X] [PMID: 12133657]
[43]
Yin F, Sancheti H, Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 2012; 17(12): 1714-27.
[http://dx.doi.org/10.1089/ars.2012.4639] [PMID: 22530585]
[44]
Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci 2022; 23(13): 7273.
[http://dx.doi.org/10.3390/ijms23137273] [PMID: 35806275]
[45]
Kong C, Song W, Fu T. Systemic inflammatory response syndrome is triggered by mitochondrial damage (Review). Mol Med Rep 2022; 25(4): 147.
[http://dx.doi.org/10.3892/mmr.2022.12663] [PMID: 35234261]
[46]
Hee JS, Cresswell P. Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits viperin-mediated inhibition of the interferon response in macrophages. PLoS One 2017; 12(2): e0172236.
[http://dx.doi.org/10.1371/journal.pone.0172236] [PMID: 28207838]
[47]
Segal AW. How neutrophils kill microbes. Annu Rev Immunol 2005; 23(1): 197-223.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115653] [PMID: 15771570]
[48]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303(5663): 1532-5.
[49]
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176(2): 231-41.
[http://dx.doi.org/10.1083/jcb.200606027] [PMID: 17210947]
[50]
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191(3): 677-91.
[http://dx.doi.org/10.1083/jcb.201006052] [PMID: 20974816]
[51]
Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One 2012; 7(2): e32366.
[http://dx.doi.org/10.1371/journal.pone.0032366] [PMID: 22389696]
[52]
Kumar S, Gupta E, Gupta N, et al. Functional role of iNOS-Rac2 interaction in neutrophil extracellular traps (NETs) induced cytotoxicity in sepsis. Clin Chim Acta 2021; 513: 43-9.
[http://dx.doi.org/10.1016/j.cca.2020.12.004] [PMID: 33309799]
[53]
Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J Leukoc Biol 2013; 93(2): 185-98.
[http://dx.doi.org/10.1189/jlb.0712349] [PMID: 23066164]
[54]
Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022; 2(2): 48-78.
[http://dx.doi.org/10.3390/oxygen2020006]
[55]
Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15(6): 411-21.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789]
[56]
Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol 2012; 3: 360.
[http://dx.doi.org/10.3389/fimmu.2012.00360] [PMID: 23264775]
[57]
Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 2012; 92(4): 841-9.
[http://dx.doi.org/10.1189/jlb.1211601] [PMID: 22802447]
[58]
Keshari RS, Verma A, Barthwal MK, Dikshit M. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem 2013; 114(3): 532-40.
[http://dx.doi.org/10.1002/jcb.24391] [PMID: 22961925]
[59]
Kumar S, Gupta E, Kaushik S, Jyoti A. Neutrophil extracellular traps: Formation and involvement in disease progression. Iran J Allergy Asthma Immunol 2018; 17(3): 208-20.
[PMID: 29908538]
[60]
Metzler KD, Fuchs TA, Nauseef WM, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: Implications for innate immunity. Blood 2011; 117(3): 953-9.
[http://dx.doi.org/10.1182/blood-2010-06-290171] [PMID: 20974672]
[61]
Shen XF, Cao K, Jiang J, Guan WX, Du JF. Neutrophil dysregulation during sepsis: An overview and update. J Cell Mol Med 2017; 21(9): 1687-97.
[http://dx.doi.org/10.1111/jcmm.13112] [PMID: 28244690]
[62]
Sônego F, Castanheira FVS, Ferreira RG, et al. Paradoxical roles of the neutrophil in sepsis: Protective and deleterious. Front Immunol 2016; 7: 155.
[http://dx.doi.org/10.3389/fimmu.2016.00155] [PMID: 27199981]
[63]
Santana-Garrido Á, Reyes-Goya C, Arroyo-Barrios A, André H, Vázquez CM, Mate A. Hypertension secondary to nitric oxide depletion produces oxidative imbalance and inflammatory/fibrotic outcomes in the cornea of C57BL/6 mice. J Physiol Biochem 2022; 78(4): 915-32.
[http://dx.doi.org/10.1007/s13105-022-00916-2] [PMID: 35943663]
[64]
Kumar S, Gupta E, Kaushik S, Kumar Srivastava V, Mehta S, Jyoti A. Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis. Scand J Immunol 2018; 87(4): e12653.
[http://dx.doi.org/10.1111/sji.12653] [PMID: 29484685]
[65]
Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol 2012; 8(10): 557-66.
[http://dx.doi.org/10.1038/nrneurol.2012.183] [PMID: 22986430]
[66]
Gamal M, Moawad J, Rashed L, Morcos MA, Sharawy N. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis – Induced brain dysfunction. Brain Res 2018; 1685: 19-28.
[http://dx.doi.org/10.1016/j.brainres.2018.02.008] [PMID: 29428597]
[67]
Catalão CHR, Santos-Júnior NN, da Costa LHA, Souza AO, Alberici LC, Rocha MJA. Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration. Mol Neurobiol 2017; 54(9): 7008-18.
[http://dx.doi.org/10.1007/s12035-016-0218-3] [PMID: 27796742]
[68]
Liu H, Wu J, Yao J, Wang H, Li S. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxid Med Cell Longev 2017; 2017: 1-6.
[http://dx.doi.org/10.1155/2017/9718615] [PMID: 29230271]
[69]
Ottesen LH, Harry D, Frost M, et al. Increased formation of S-nitrothiols and nitrotyrosine in cirrhotic rats during endotoxemia. Free Radic Biol Med 2001; 31(6): 790-8.
[http://dx.doi.org/10.1016/S0891-5849(01)00647-5] [PMID: 11557317]
[70]
Hong H, Park TJ, Jang S, et al. Anti-inflammatory activity of 6-O- phospho-7-hydroxycoumarin in LPS-induced RAW 264.7 cells. J Appl Biol Chem 2022; 65(1): 33-41.
[http://dx.doi.org/10.3839/jabc.2022.005]
[71]
Mehta C, Mehta Y. Management of refractory hypoxemia. Ann Card Anaesth 2016; 19(1): 89-96.
[http://dx.doi.org/10.4103/0971-9784.173030] [PMID: 26750680]
[72]
Zeng M, He W, Li L, et al. Ghrelin attenuates sepsis-associated acute lung injury oxidative stress in rats. Inflammation 2015; 38(2): 683-90.
[http://dx.doi.org/10.1007/s10753-014-9977-z] [PMID: 25037094]
[73]
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longevity 2016; 2016
[http://dx.doi.org/10.1155/2016/1245049]
[74]
Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122(7): 2661-71.
[http://dx.doi.org/10.1172/JCI61303] [PMID: 22684106]
[75]
Gan T, Yang Y, Hu F, et al. TLR3 regulated poly I: C-induced neutrophil extracellular traps and acute lung injury partly through p38 MAP kinase. Front Microbiol 2018; 9: 3174.
[http://dx.doi.org/10.3389/fmicb.2018.03174] [PMID: 30622526]
[76]
Tsolaki V, Makris D, Mantzarlis K, Zakynthinos E. Sepsis-induced cardiomyopathy: Oxidative implications in the initiation and resolution of the damage. Oxid Med Cell Longev 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/7393525] [PMID: 29057035]
[77]
Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy. Crit Care Med 2018; 46(4): 625-34.
[http://dx.doi.org/10.1097/CCM.0000000000002851] [PMID: 29227368]
[78]
Martin L, Derwall M, Al Zoubi S, et al. The septic heart: Current understanding of molecular mechanisms and clinical implications. Chest 2019; 155(2): 427-37.
[http://dx.doi.org/10.1016/j.chest.2018.08.1037] [PMID: 30171861]
[79]
Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: Microvascular dysfunction in sepsis-hemodynamics, oxygen transport, and nitric oxide. Crit Care 2003; 7(5): 359-73.
[http://dx.doi.org/10.1186/cc2353] [PMID: 12974969]
[80]
Yan J, Li S, Li S. The role of the liver in sepsis. Int Rev Immunol 2014; 33(6): 498-510.
[http://dx.doi.org/10.3109/08830185.2014.889129] [PMID: 24611785]
[81]
Guo S, Zhang Y, Wang Z, Yu Y, Wang G. Intraperitoneal gardiquimod protects against hepatotoxicity through inhibition of oxidative stress and inflammation in mice with sepsis. J Biochem Mol Toxicol 2017; 31(8): e21923.
[http://dx.doi.org/10.1002/jbt.21923] [PMID: 28422377]
[82]
Cogger VC, Mross PE, Hosie MJ, Ansselin AD, McLean AJ. Le Couteur1, 2, 4, 5, 6 DG. The effect of acute oxidative stress on the ultrastructure of the perfused rat liver. Pharmacol Toxicol 2001; 89(6): 306-11.
[http://dx.doi.org/10.1034/j.1600-0773.2001.d01-165.x] [PMID: 11903956]
[83]
Li Z, Liu T, Feng Y, et al. PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway. Oxid Med Cell Longev 2022; 2022: 1-15.
[http://dx.doi.org/10.1155/2022/1269747]
[84]
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium signaling in liver injury and regeneration. Front Med 2018; 5: 192.
[http://dx.doi.org/10.3389/fmed.2018.00192] [PMID: 30023358]
[85]
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96(5): 1083-99.
[http://dx.doi.org/10.1016/j.kint.2019.05.026] [PMID: 31443997]
[86]
Fani F, Regolisti G, Delsante M, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 2018; 31(3): 351-9.
[http://dx.doi.org/10.1007/s40620-017-0452-4] [PMID: 29273917]
[87]
Kumar S, Gupta E, Srivastava VK, et al. Nitrosative stress and cytokines are linked with the severity of sepsis and organ dysfunction. Br J Biomed Sci 2019; 76(1): 29-34.
[http://dx.doi.org/10.1080/09674845.2018.1543160] [PMID: 30379116]
[88]
Kumar S, Payal N, Srivastava VK, Kaushik S, Saxena J, Jyoti A. Neutrophil extracellular traps and organ dysfunction in sepsis. Clin Chim Acta 2021; 523: 152-62.
[http://dx.doi.org/10.1016/j.cca.2021.09.012] [PMID: 34537216]
[89]
Caloren L. Exploration of rare mitochondrial DNA mutations in lymphocyte subsets of people living with human immunodeficiency virus. University of British Columbia 2023.
[90]
Vallianou NG, Skourtis A, Kounatidis D, et al. The role of the respiratory microbiome in the pathogenesis of aspiration pneumonia: Implications for diagnosis and potential therapeutic choices. Antibiotics 2023; 12(1): 140.
[http://dx.doi.org/10.3390/antibiotics12010140] [PMID: 36671341]
[91]
Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An overview on mitochondrial-based therapies in sepsis-related myocardial dysfunction: Mitochondrial transplantation as a promising approach. Can J Infect Dis Med Microbiol 2022; 2022: 1-17.
[http://dx.doi.org/10.1155/2022/3277274] [PMID: 35706715]
[92]
Kothari N, Keshari RS, Bogra J, et al. Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis. J Crit Care 2011; 26(4): 435.e1-7.
[http://dx.doi.org/10.1016/j.jcrc.2010.09.001] [PMID: 21036525]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy