Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 30, Issue 3, 2024

Published on: 18 January, 2024

Page: [169 - 179] Pages: 11

DOI: 10.2174/0113816128276560231218090436

Price: $65

Abstract

Digital PCR (dPCR) is the latest technique that has become commercially accessible for various types of research. This method uses Taq polymerase in a standard polymerase chain reaction (PCR) to amplify a target DNA fragment from a complex sample, like quantitative PCR (qPCR) and droplet digital PCR (dd- PCR). ddPCR may facilitate microRNA (miRNA) measurement, particularly in liquid biopsy, because it has been proven to be more effective and sensitive, and in this method, ddPCR can provide an unprecedented chance for deoxyribonucleic acid (DNA) methylation research because of its capability to increase sensitivity and precision over conventional PCR-based methods. qPCR has also been found to be a valuable standard technique to measure both copy DNA (cDNA) and genomic DNA (gDNA) levels, although the finding data can be significantly variable and non-reproducible without relevant validation and verification of both primers and samples. The SYBR green quantitative real-time PCR (qPCR) method has been reported as an appropriate technique for quantitative detection and species discrimination, and has been applied profitably in different experiments to determine, quantify, and discriminate species. Although both TaqMan qRT-PCR and SYBR green qRT-PCR are sensitive and rapid, the SYBR green qRT-PCR assay is easy and the TaqMan qRT-PCR assay is specific but expensive due to the probe required. This review aimed to introduce dPCR, qPCR, SYBR green PCR kit, and digital PCR, compare them, and also introduce their advantages in the detection of different diseases.

[1]
Shahrajabian MH, Sun W, Soleymani A, Cheng Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res 2020; 2020(1): 1-11.
[http://dx.doi.org/10.1002/ptr.6888] [PMID: 33350538]
[2]
Shahrajabian MH, Sun W, Cheng Q. The importance of flavonoids and phytochemicals medicinal plants with antiviral activities. Mini Rev Org Chem 2021; 18: 1-26.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[3]
Shahrajabian MH, Sun W, Cheng Q. Different methods for molecular and rapid detection of human novel coronavirus. Curr Pharm Des 2021; 27(25): 2893-903.
[http://dx.doi.org/10.2174/1381612827666210604114411] [PMID: 34086547]
[4]
Shahrajabian MH, Sun W, Cheng Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet Resour Crop Evol 2021; 68(5): 1709-30.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[5]
Sun W, Shahrajabian MH, Cheng Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post- COVID-19 era. Appl Sci 2021; 11(17): 7889.
[http://dx.doi.org/10.3390/app11177889]
[6]
Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clin Microbiol Rev 2006; 19(1): 165-256.
[http://dx.doi.org/10.1128/CMR.19.1.165-256.2006] [PMID: 16418529]
[7]
Paudel D, Jarman R, Limkittikul K, et al. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection. N Am J Med Sci 2011; 3(10): 478-85.
[http://dx.doi.org/10.4297/najms.2011.3478.] [PMID: 22363089]
[8]
Jakkul W, Chaisiri K, Saralamba N, et al. Newly developed SYBR Green-based quantitative real-time PCRs revealed coinfection evidence of Angiostrongylus cantonensis and A. malaysiensis in Achatina fulica existing in Bangkok Metropolitan, Thailand. Food Waterborne Parasitol 2021; 23: e00119.
[http://dx.doi.org/10.1016/j.fawpar.2021.e00119] [PMID: 33817357]
[9]
Wang Y, Li Y, Cui Y, et al. Establishment of a duplex SYBR green I-based real-time polymerase chain reaction assay for the rapid detection of canine circovirus and canine astrovirus. Mol Cell Probes 2020; 54: 101666.
[http://dx.doi.org/10.1016/j.mcp.2020.101666] [PMID: 32919029]
[10]
Wang Y, Cui Y, Li Y, et al. Simultaneous detection of duck circovirus and novel goose parvovirus via SYBR green I-based duplex real-time polymerase chain reaction analysis. Mol Cell Probes 2020; 53: 101648.
[http://dx.doi.org/10.1016/j.mcp.2020.101648] [PMID: 32798710]
[11]
Zheng L, Chai L, Tian R, Zhao Y, Chen HY, Wang Z. Simultaneous detection of porcine reproductive and respiratory syndrome virus and porcine circovirus 3 by SYBR green І-based duplex real-time PCR. Mol Cell Probes 2020; 49: 101474.
[http://dx.doi.org/10.1016/j.mcp.2019.101474] [PMID: 31655106]
[12]
Deprez L, Corbisier P, Kortekaas AM, et al. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomol Detect Quantif 2016; 9: 29-39.
[http://dx.doi.org/10.1016/j.bdq.2016.08.002] [PMID: 27617230]
[13]
Kahyo T, Iwaizumi M, Yamada H, Tao H, Kurachi K, Sugimura H. Application of digital PCR with chip-in-a-tube format to analyze Adenomatous polyposis coli (APC) somatic mosaicism. Clin Chim Acta 2017; 475: 91-6.
[http://dx.doi.org/10.1016/j.cca.2017.10.015] [PMID: 29055690]
[14]
Abachin E, Convers S, Falque S, Esson R, Mallet L, Nougarede N. Comparison of reverse-transcriptase qPCR and droplet digital PCR for the quantification of dengue virus nucleic acid. Biologicals 2018; 52: 49-54.
[http://dx.doi.org/10.1016/j.biologicals.2018.01.001] [PMID: 29398345]
[15]
Bai Y, Qu Y, Wu Z, et al. Absolute quantification and analysis of extracellular vesicle lncRNAs from the peripheral blood of patients with lung cancer based on multi-colour fluorescence chip-based digital PCR. Biosens Bioelectron 2019; 142: 111523.
[http://dx.doi.org/10.1016/j.bios.2019.111523] [PMID: 31336224]
[16]
Lamberts V, Aldea M, Mezquita L, et al. P34.06 The Clinical utility of liquid biopsy by digital droplet PCR in patients with advanced NSCLC. J Thorac Oncol 2021; 16(3): S417.
[http://dx.doi.org/10.1016/j.jtho.2021.01.697]
[17]
Zhong X, Liu X, Lou B, Zhou C, Wang X. Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus’. J Integr Agric 2018; 17(2): 483-7.
[http://dx.doi.org/10.1016/S2095-3119(17)61815-X]
[18]
Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real- time PCR assays. J Clin Microbiol 2004; 42(12): 5636-43.
[http://dx.doi.org/10.1128/JCM.42.12.5636-5643.2004] [PMID: 15583293]
[19]
Li H, Bai R, Zhao Z, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 2018; 38(6): BSR20181170.
[http://dx.doi.org/10.1042/BSR20181170] [PMID: 30341241]
[20]
Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011; 83(22): 8604-10.
[http://dx.doi.org/10.1021/ac202028g] [PMID: 22035192]
[21]
Hall Sedlak R, Jerome KR. The potential advantages of digital PCR for clinical virology diagnostics. Expert Rev Mol Diagn 2014; 14(4): 501-7.
[http://dx.doi.org/10.1586/14737159.2014.910456] [PMID: 24724628]
[22]
Bhat S, Emslie KR. Digital polymerase chain reaction for characterisation of DNA reference materials. Biomol Detect Quantif 2016; 10: 47-9.
[http://dx.doi.org/10.1016/j.bdq.2016.04.001] [PMID: 27990349]
[23]
Raurich S, Weber B, Klose V, Mohnl M, Petri D, Fibi-Smetana S. Optimisation of a droplet digital PCR for strain specific quantification of a probiotic Bifidobacterium animalis strain in poultry feed. J Microbiol Methods 2019; 163: 105646.
[http://dx.doi.org/10.1016/j.mimet.2019.105646] [PMID: 31152751]
[24]
Lindner L, Cayrou P, Jacquot S, Birling MC, Herault Y, Pavlovic G. Reliable and robust droplet digital PCR (ddPCR) and RT-ddPCR protocols for mouse studies. Methods 2021; 191: 95-106.
[http://dx.doi.org/10.1016/j.ymeth.2020.07.004] [PMID: 32721466]
[25]
Xu X, Ma X, Zhang X, et al. Detection of BRAF V600E mutation in fine-needle aspiration fluid of papillary thyroid carcinoma by droplet digital PCR. Clin Chim Acta 2019; 491: 91-6.
[http://dx.doi.org/10.1016/j.cca.2019.01.017] [PMID: 30682328]
[26]
Maggi RG, Richardson T, Breitschwerdt EB, Miller JC. Development and validation of a droplet digital PCR assay for the detection and quantification of Bartonella species within human clinical samples. J Microbiol Methods 2020; 176: 106022.
[http://dx.doi.org/10.1016/j.mimet.2020.106022] [PMID: 32795640]
[27]
Lou Y, Chen C, Long X, et al. Detection and quantification of chimeric antigen receptor transgene copy number by droplet digital PCR versus real-time PCR. J Mol Diagn 2020; 22(5): 699-707.
[http://dx.doi.org/10.1016/j.jmoldx.2020.02.007] [PMID: 32409121]
[28]
Dong L, Wang X, Wang S, et al. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta 2020; 207: 120293.
[http://dx.doi.org/10.1016/j.talanta.2019.120293] [PMID: 31594564]
[29]
Gassa A, Fassunke J, Schueten S, et al. Detection of circulating tumor DNA by digital droplet PCR in resectable lung cancer as a predictive tool for recurrence. Lung Cancer 2021; 151: 91-6.
[http://dx.doi.org/10.1016/j.lungcan.2020.10.019] [PMID: 33257044]
[30]
Jiang Y, Wang H, Hao S, et al. Digital PCR is a sensitive new technique for SARS-CoV-2 detection in clinical applications. Clin Chim Acta 2020; 511: 346-51.
[http://dx.doi.org/10.1016/j.cca.2020.10.032] [PMID: 33159953]
[31]
Sun Y, Ding C, Chen Q, et al. Digital PCR assay for the effective detection of COVID-19 patients with SARS-CoV-2 low viral load. J Virol Methods 2021; 295: 114185.
[http://dx.doi.org/10.1016/j.jviromet.2021.114185] [PMID: 34051244]
[32]
Navarro Sanchez ME, Devard N, Houy C, et al. Multiplex reverse transcriptase droplet digital PCR for the simultaneous quantification of four dengue serotypes: Proof of concept study. Biologicals 2020; 67: 62-8.
[http://dx.doi.org/10.1016/j.biologicals.2020.06.001] [PMID: 32843276]
[33]
Xiang Z, Zou B, Zhang L, et al. Ultra-sensitive and multiplex digital-PCR for quantifying the mutants in cell free DNA by employing invasive reaction as identifier. Sens Actuators B Chem 2020; 320: 128362.
[http://dx.doi.org/10.1016/j.snb.2020.128362]
[34]
Jikumaru A, Ishii S, Fukudome T, et al. Fast, sensitive, and reliable detection of waterborne pathogens by digital PCR after coagulation and foam concentration. J Biosci Bioeng 2020; 130(1): 76-81.
[http://dx.doi.org/10.1016/j.jbiosc.2020.02.004] [PMID: 32147250]
[35]
Bao CY, Hung HC, Chen YW, Fan CY, Huang CJ, Huang W. Requirement of cyclin-dependent kinase function for hepatitis B virus cccDNA synthesis as measured by digital PCR. Ann Hepatol 2020; 19(3): 280-6.
[http://dx.doi.org/10.1016/j.aohep.2019.12.005] [PMID: 31964596]
[36]
Sperduti S, Lazzaretti C, Paradiso E, et al. Quantification of hormone membrane receptor FSHR, GPER and LHCGR transcripts in human primary granulosa lutein cells by real-time quantitative PCR and digital droplet PCR. Gene Rep 2021; 23: 101194.
[http://dx.doi.org/10.1016/j.genrep.2021.101194]
[37]
Assou S, Girault N, Plinet M, et al. Recurrent genetic abnormalities in human pluripotent stem cells: Definition and routine detection in culture supernatant by targeted droplet digital PCR. Stem Cell Reports 2020; 14(1): 1-8.
[http://dx.doi.org/10.1016/j.stemcr.2019.12.004] [PMID: 31902703]
[38]
Park S, Lee H, Shin S, Lee ST, Lee KA, Choi JR. Analytical validation of the droplet digital PCR assay for diagnosis of spinal muscular atrophy. Clin Chim Acta 2020; 510: 787-9.
[http://dx.doi.org/10.1016/j.cca.2020.09.024] [PMID: 32956702]
[39]
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184: 750-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.132] [PMID: 34171259]
[40]
Persson S, Eriksson R, Lowther J, Ellström P, Simonsson M. Comparison between RT droplet digital PCR and RT real-time PCR for quantification of noroviruses in oysters. Int J Food Microbiol 2018; 284: 73-83.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.06.022] [PMID: 30005929]
[41]
Romsos EL, Vallone PM. Estimation of extraction efficiency by droplet digital PCR. Forensic Sci Int Genet Suppl Ser 2019; 7(1): 515-7.
[http://dx.doi.org/10.1016/j.fsigss.2019.10.072]
[42]
Xu L, Qu H, Alonso DG, et al. Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosens Bioelectron 2021; 175: 112908.
[http://dx.doi.org/10.1016/j.bios.2020.112908] [PMID: 33360627]
[43]
Demeke T, Beecher B, Eng M. Assessment of genetically engineered events in heat-treated and non-treated samples using droplet digital PCR and real-time quantitative PCR. Food Control 2020; 115: 107291.
[http://dx.doi.org/10.1016/j.foodcont.2020.107291]
[44]
Morcia C, Ghizzoni R, Delogu C, Andreani L, Carnevali P, Terzi V. Digital PCR: What relevance to plant studies? Biology 2020; 9(12): 433.
[http://dx.doi.org/10.3390/biology9120433] [PMID: 33266157]
[45]
Liu H, Lestari SD. Application of digital PCR (dPCR) in the detection of COVID-19 in food. E3S Web Conf 2021; 271: 02022.
[http://dx.doi.org/10.1051/e3sconf/202127102022]
[46]
Tsakogiannis D, Papacharalampous M, Toska E, et al. Duplex Real-time PCR assay and SYBR green I melting curve analysis for molecular identification of HPV genotypes 16, 18, 31, 35, 51 and 66. Mol Cell Probes 2015; 29(1): 13-8.
[http://dx.doi.org/10.1016/j.mcp.2014.09.003] [PMID: 25281890]
[47]
Walters G, Alexander SI. T cell receptor BV repertoires using real time PCR: A comparison of SYBR green and a dual-labelled HuTrec™ fluorescent probe. J Immunol Methods 2004; 294(1-2): 43-52.
[http://dx.doi.org/10.1016/j.jim.2004.08.015] [PMID: 15604015]
[48]
Sultani M, Mokhtari Azad T, Eshragian M, et al. Multiplex SYBR green real-time PCR assay for detection of respiratory viruses. Jundishapur J Microbiol 2015; 8(8): e19041.
[http://dx.doi.org/10.5812/jjm.19041v2] [PMID: 26468358]
[49]
Rodríguez A, Rodríguez M, Luque MI, Justesen AF, Córdoba JJ. Quantification of ochratoxin A-producing molds in food products by SYBR green and TaqMan real-time PCR methods. Int J Food Microbiol 2011; 149(3): 226-35.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.06.019] [PMID: 21802757]
[50]
Quek MC, Chin NL, Tan SW, Yusof YA, Law CL. Molecular identification of species and production origins of edible bird’s nest using FINS and SYBR green I based real-time PCR. Food Control 2018; 84: 118-27.
[http://dx.doi.org/10.1016/j.foodcont.2017.07.027]
[51]
Tan LL, Ahmed SA, Ng SK, et al. Rapid detection of porcine DNA in processed food samples using a streamlined DNA extraction method combined with the SYBR green real-time PCR assay. Food Chem 2020; 309: 125654.
[http://dx.doi.org/10.1016/j.foodchem.2019.125654] [PMID: 31678669]
[52]
Zheng HH, Zhang SJ, Cui JT, et al. Simultaneous detection of classical swine fever virus and porcine circovirus 3 by SYBR green I-based duplex real-time fluorescence quantitative PCR. Mol Cell Probes 2020; 50: 101524.
[http://dx.doi.org/10.1016/j.mcp.2020.101524] [PMID: 31972226]
[53]
Yang K, Xu L, Liang Y, et al. Simultaneous differentiation and diagnosis of goose parvovirus and astrovirus in clinical samples with duplex SYBR green I real-time PCR. Mol Cell Probes 2020; 52: 101561.
[http://dx.doi.org/10.1016/j.mcp.2020.101561] [PMID: 32173537]
[54]
Li J, Wei Y, Li J, et al. A novel duplex SYBR green real-time PCR with melting curve analysis method for beef adulteration detection. Food Chem 2021; 338: 127932.
[http://dx.doi.org/10.1016/j.foodchem.2020.127932] [PMID: 32932080]
[55]
KrishnanNair Geetha D, Sivaraman B, Rammohan R, Venkatapathy N, Solai Ramatchandirane P. A SYBR green based multiplex real-time PCR assay for rapid detection and differentiation of ocular bacterial pathogens. J Microbiol Methods 2020; 171: 105875.
[http://dx.doi.org/10.1016/j.mimet.2020.105875] [PMID: 32087185]
[56]
Tian RB, Jin Y, Xu T, Zhao Y, Wang ZY, Chen HY. Development of a SYBR green I-based duplex real-time PCR assay for detection of pseudorabies virus and porcine circovirus 3. Mol Cell Probes 2020; 53: 101593.
[http://dx.doi.org/10.1016/j.mcp.2020.101593] [PMID: 32387303]
[57]
Malkamäki S, Näreaho A, Lavikainen A, Oksanen A, Sukura A. A new SYBR green real-time PCR assay for semi-quantitative detection of Echinococcus multilocularis and Echinococcus canadensis DNA on bilberries (Vaccinium myrtillus). Food Waterborne Parasitol 2019; 17: e00068.
[http://dx.doi.org/10.1016/j.fawpar.2019.e00068] [PMID: 32095636]
[58]
Yılmaz R, Bayraç C, Başman A, Köksel H. Development of SYBR green-based real time PCR assays for detection and quantification of adulteration in wheat-based composite breads and their in- house validation. J Cereal Sci 2019; 85: 91-7.
[http://dx.doi.org/10.1016/j.jcs.2018.11.020]
[59]
Sacristán C, Catão-Dias JL, Ewbank AC, et al. Novel and highly sensitive SYBR® green real-time pcr for poxvirus detection in odontocete cetaceans. J Virol Methods 2018; 259: 45-9.
[http://dx.doi.org/10.1016/j.jviromet.2018.06.002] [PMID: 29890240]
[60]
Abera T, Thangavelu A. Development of a two-step SYBR green I based real time RT-PCR assay for detecting and quantifying peste des petits ruminants virus in clinical samples. J Virol Methods 2014; 209: 25-9.
[http://dx.doi.org/10.1016/j.jviromet.2014.08.017] [PMID: 25194891]
[61]
Şakalar E, Abasıyanık MF. The devolopment of duplex real-time PCR based on SYBR green florescence for rapid ıdentification of ruminant and poultry origins in foodstuff. Food Chem 2012; 130(4): 1050-4.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.130]
[62]
Hosmillo MDT, Jeong YJ, Kim HJ, et al. Development of universal SYBR green real-time RT-PCR for the rapid detection and quantitation of bovine and porcine toroviruses. J Virol Methods 2010; 168(1-2): 212-7.
[http://dx.doi.org/10.1016/j.jviromet.2010.06.001] [PMID: 20558206]
[63]
Mohamed N, Nilsson E, Johansson P, et al. Development and evaluation of a broad reacting SYBR-green based quantitative real- time PCR for the detection of different hantaviruses. J Clin Virol 2013; 56(4): 280-5.
[http://dx.doi.org/10.1016/j.jcv.2012.12.001] [PMID: 23290388]
[64]
Jiang W, Wang P, Yu H, et al. Development of a SYBR green I based one-step real-time PCR assay for the detection of Hantaan virus. J Virol Methods 2014; 196: 145-51.
[http://dx.doi.org/10.1016/j.jviromet.2013.11.004] [PMID: 24269331]
[65]
Anthony Johnson AM, Dasgupta I, Sai Gopal DVR. Development of loop-mediated isothermal amplification and SYBR green real- time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species. J Virol Methods 2014; 203: 9-14.
[http://dx.doi.org/10.1016/j.jviromet.2014.03.013] [PMID: 24675064]
[66]
Gibellini D, Vitone F, Schiavone P, Ponti C, La Placa M, Re MC. Quantitative detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA in peripheral blood mononuclear cells by SYBR green real-time PCR technique. J Clin Virol 2004; 29(4): 282-9.
[http://dx.doi.org/10.1016/S1386-6532(03)00169-0] [PMID: 15018857]
[67]
Gibellini D, Vitone F, Gori E, Placa ML, Re MC. Quantitative detection of human immunodeficiency virus type 1 (HIV-1) viral load by SYBR green real-time RT-PCR technique in HIV-1 seropositive patients. J Virol Methods 2004; 115(2): 183-9.
[http://dx.doi.org/10.1016/j.jviromet.2003.09.030] [PMID: 14667534]
[68]
Pafundo S, Gullì M, Marmiroli N. SYBR® green ER™ real-time PCR to detect almond in traces in processed food. Food Chem 2009; 116(3): 811-5.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.040]
[69]
Sariya L, Chatsirivech J, Suksai P, et al. Development of a SYBR green I-based real-time PCR for detection of elephant endotheliotropic herpesvirus 1 infection in Asian elephants (Elephas maximus). J Virol Methods 2012; 185(1): 160-5.
[http://dx.doi.org/10.1016/j.jviromet.2012.06.005] [PMID: 22728215]
[70]
Balboni A, Dondi F, Prosperi S, Battilani M. Development of a SYBR green real-time PCR assay with melting curve analysis for simultaneous detection and differentiation of canine adenovirus type 1 and type 2. J Virol Methods 2015; 222: 34-40.
[http://dx.doi.org/10.1016/j.jviromet.2015.05.009] [PMID: 26028428]
[71]
Donà V, Bernasconi OJ, Kasraian S, Tinguely R, Endimiani A. A SYBR® green-based real-time PCR method for improved detection of mcr-1-mediated colistin resistance in human stool samples. J Glob Antimicrob Resist 2017; 9: 57-60.
[http://dx.doi.org/10.1016/j.jgar.2017.01.007] [PMID: 28400211]
[72]
Cruz-Flores R, Mai HN, Dhar AK. Multiplex SYBR green and duplex TaqMan real-time PCR assays for the detection of Photorhabdus insect-related (Pir) toxin genes pirA and pirB. Mol Cell Probes 2019; 43: 20-8.
[http://dx.doi.org/10.1016/j.mcp.2018.12.004] [PMID: 30576786]
[73]
Liu Q, Yang Z, Hao H, et al. Development of a SYBR green real- time RT-PCR assay for the detection of avian encephalomyelitis virus. J Virol Methods 2014; 206: 46-50.
[http://dx.doi.org/10.1016/j.jviromet.2014.05.015] [PMID: 24880065]
[74]
Park SI, Park DH, Saif LJ, et al. Development of SYBR green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus. J Virol Methods 2009; 159(1): 64-8.
[http://dx.doi.org/10.1016/j.jviromet.2009.03.001] [PMID: 19442847]
[75]
Pawar SS, Meshram CD, Singh NK, Saini M, Mishra BP, Gupta PK. Development of a SYBR green I based duplex real-time PCR for detection of bovine herpesvirus-1 in semen. J Virol Methods 2014; 208: 6-10.
[http://dx.doi.org/10.1016/j.jviromet.2014.07.027] [PMID: 25078112]
[76]
Jor E, Myrmel M, Jonassen CM. SYBR green based real-time RT-PCR assay for detection and genotype prediction of bovine noroviruses and assessment of clinical significance in Norway. J Virol Methods 2010; 169(1): 1-7.
[http://dx.doi.org/10.1016/j.jviromet.2010.03.028] [PMID: 20381534]
[77]
Wang Y, Li Y, Cui Y, et al. Duplex SYBR green I-based real- time PCR assay for the rapid detection of canine kobuvirus and canine astrovirus. J Virol Methods 2021; 290: 114066.
[http://dx.doi.org/10.1016/j.jviromet.2021.114066] [PMID: 33453300]
[78]
Zhong Y, Wang Y, Zhao T, et al. Multiplex real-time SYBR green I PCR assays for simultaneous detection of 15 common enteric pathogens in stool samples. Mol Cell Probes 2020; 53: 101619.
[http://dx.doi.org/10.1016/j.mcp.2020.101619] [PMID: 32562853]
[79]
Cheng W, He X, Jia H, et al. Development of a SYBR green I real-time PCR for detection and quantitation of orthopoxvirus by using Ectromelia virus. Mol Cell Probes 2018; 38: 45-50.
[http://dx.doi.org/10.1016/j.mcp.2017.12.001] [PMID: 29224776]
[80]
Shi H, Li M, Huang X, et al. Development of SYBR green real- time PCR for diagnosis of fasciolosis in sheep. Vet Parasitol 2020; 283: 109193.
[http://dx.doi.org/10.1016/j.vetpar.2020.109193] [PMID: 32731054]
[81]
Xia Y, Shi Z, Wang X, et al. Development and application of SYBR green I real-time quantitative reverse transcription PCR assay for detection of swine Getah virus. Mol Cell Probes 2021; 57: 101730.
[http://dx.doi.org/10.1016/j.mcp.2021.101730] [PMID: 33848593]
[82]
Duzlu O, Yildirim A, Yetismis G, et al. Development and field evaluation of a species-specific mt-COI targeted SYBR-green Real Time PCR for detection and quantification of Haemonchus contortus in cattle in Turkey. Vet Parasitol 2020; 277: 109020.
[http://dx.doi.org/10.1016/j.vetpar.2019.109020] [PMID: 31896019]
[83]
Elsayed Metawlly D, Noby Amer A, Mostafa Mostafa H, El Din Elsawaf G, Abd El Kader O. Low cost detection of hepatitis C virus RNA in HCV infected patients by SYBR green I real-time PCR. Alex J Med 2018; 54(4): 481-5.
[http://dx.doi.org/10.1016/j.ajme.2017.11.004]
[84]
Acevedo AM, Perera CL, Vega A, et al. A duplex SYBR green I-based real-time RT-PCR assay for the simultaneous detection and differentiation of Massachusetts and non-Massachusetts serotypes of infectious bronchitis virus. Mol Cell Probes 2013; 27(5-6): 184-92.
[http://dx.doi.org/10.1016/j.mcp.2013.06.001] [PMID: 23810983]
[85]
Kokkattunivarthil S, Krishnan R, Kezhedath J, Prasad KP, Naik TV. New set of PCR primers for SYBR green-based qPCR detection of IMNV in India. Aquaculture 2018; 495: 726-30.
[http://dx.doi.org/10.1016/j.aquaculture.2018.06.061]
[86]
Liu S, Hou G, Zhuang Q, et al. A SYBR green I real-time RT-PCR assay for detection and differentiation of influenza A(H1N1) virus in swine populations. J Virol Methods 2009; 162(1-2): 184-7.
[http://dx.doi.org/10.1016/j.jviromet.2009.07.035] [PMID: 19682498]
[87]
Santhosh SR, Parida MM, Dash PK, et al. Development and evaluation of SYBR green I-based one-step real-time RT-PCR assay for detection and quantitation of Japanese encephalitis virus. J Virol Methods 2007; 143(1): 73-80.
[http://dx.doi.org/10.1016/j.jviromet.2007.02.011] [PMID: 17403544]
[88]
Meemetta W, Domingos JA, Dong HT, Senapin S. Development of a SYBR green quantitative PCR assay for detection of Lates calcarifer herpesvirus (LCHV) in farmed barramundi. J Virol Methods 2020; 285: 113920.
[http://dx.doi.org/10.1016/j.jviromet.2020.113920] [PMID: 32579895]
[89]
Kumar JS, Saxena D, Parida M. Development and comparative evaluation of SYBR green I-based one-step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients. Mol Cell Probes 2014; 28(5-6): 221-7.
[http://dx.doi.org/10.1016/j.mcp.2014.03.005] [PMID: 24732288]
[90]
del Rio-Lavín A, Jiménez E, Pardo MÁ. SYBR-green real-time PCR assay with melting curve analysis for the rapid identification of Mytilus species in food samples. Food Control 2021; 130: 108257.
[http://dx.doi.org/10.1016/j.foodcont.2021.108257]
[91]
Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M. Detection and differentiation of velogenic and lentogenic Newcastle disease viruses using SYBR green I real-time PCR with nucleocapsid gene-specific primers. J Virol Methods 2009; 160(1-2): 149-56.
[http://dx.doi.org/10.1016/j.jviromet.2009.05.006] [PMID: 19447142]
[92]
Chen G, Tang X, Sun Y, et al. Development of a SYBR green-based real-time quantitative PCR assay to detect PCV3 in pigs. J Virol Methods 2018; 251: 129-32.
[http://dx.doi.org/10.1016/j.jviromet.2017.10.012] [PMID: 29031627]
[93]
Zhang D, Bai C, Ge K, et al. Establishment of an SYBR green-based real-time PCR assay for porcine circovirus type 4 detection. J Virol Methods 2020; 285: 113963.
[http://dx.doi.org/10.1016/j.jviromet.2020.113963] [PMID: 32882322]
[94]
Zheng LL, Cui JT, Han HY, et al. Development of a duplex SYBR green I based real-time PCR assay for detection of porcine epidemic diarrhea virus and porcine bocavirus3/4/5. Mol Cell Probes 2020; 51: 101544.
[http://dx.doi.org/10.1016/j.mcp.2020.101544] [PMID: 32109535]
[95]
Hou CY, Xu T, Zhang LH, et al. Simultaneous detection and differentiation of porcine circovirus 3 and 4 using a SYBR green І-based duplex quantitative PCR assay. J Virol Methods 2021; 293: 114152.
[http://dx.doi.org/10.1016/j.jviromet.2021.114152] [PMID: 33845107]
[96]
Martínez E, Riera P, Sitjà M, Fang Y, Oliveira S, Maldonado J. Simultaneous detection and genotyping of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR and amplicon melting curve analysis using SYBR green. Res Vet Sci 2008; 85(1): 184-93.
[http://dx.doi.org/10.1016/j.rvsc.2007.10.003] [PMID: 18054369]
[97]
Zhou X, Zhang T, Song D, et al. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus. Mol Cell Probes 2017; 33: 36-41.
[http://dx.doi.org/10.1016/j.mcp.2017.02.002] [PMID: 28188840]
[98]
Zhou H, Lei Y, Wang P, Liu M, Hu X. Development of SYBR green real-time PCR and nested RT-PCR for the detection of Potato Mop-top Virus (PMTV) and viral surveys in Progeny tubers derived from PMTV infected Potato tubers. Mol Cell Probes 2019; 47: 101438.
[http://dx.doi.org/10.1016/j.mcp.2019.101438] [PMID: 31422073]
[99]
Pereira-Gómez M, Fajardo Á, Echeverría N, et al. Evaluation of SYBR green real time PCR for detecting SARS-CoV-2 from clinical samples. J Virol Methods 2021; 289: 114035.
[http://dx.doi.org/10.1016/j.jviromet.2020.114035] [PMID: 33285190]
[100]
Mu S, Abdullah SW, Zhang Y, et al. Development of a novel SYBR green I-based quantitative RT-PCR assay for Senecavirus A detection in clinical samples of pigs. Mol Cell Probes 2020; 53: 101643.
[http://dx.doi.org/10.1016/j.mcp.2020.101643] [PMID: 32768439]
[101]
Ma L, Zeng F, Cong F, et al. Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus. J Virol Methods 2019; 265: 66-70.
[http://dx.doi.org/10.1016/j.jviromet.2018.12.010] [PMID: 30593837]
[102]
Ramesh kumar D, Sanjuktha M, Rajan JJS, et al. Development of SYBR green based real time PCR assay for detection of monodon baculovirus in Penaeus monodon. J Virol Methods 2014; 205: 81-6.
[http://dx.doi.org/10.1016/j.jviromet.2014.05.006] [PMID: 24841550]
[103]
Xu MY, Liu SQ, Deng CL, Zhang QY, Zhang B. Detection of Zika virus by SYBR green one-step real-time RT-PCR. J Virol Methods 2016; 236: 93-7.
[http://dx.doi.org/10.1016/j.jviromet.2016.07.014] [PMID: 27444120]
[104]
Snyder RP, Guerin MT, Hargis BM, et al. Exploiting digital droplet PCR and next generation sequencing technologies to determine the relative abundance of individual Eimeria species in a DNA sample. Vet Parasitol 2021; 296: 109443.
[http://dx.doi.org/10.1016/j.vetpar.2021.109443] [PMID: 34147767]
[105]
Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR vs. real-time quantitative PCR to inhibitory substances. Clin Chem 2013; 59(11): 1670-2.
[http://dx.doi.org/10.1373/clinchem.2013.211045] [PMID: 24003063]
[106]
Cao Z, Wu W, Wei H, et al. Using droplet digital PCR in the detection of Mycobacterium tuberculosis DNA in FFPE samples. Int J Infect Dis 2020; 99: 77-83.
[http://dx.doi.org/10.1016/j.ijid.2020.07.045] [PMID: 32738487]
[107]
Smitalova D, Dvorakova D, Racil Z, Romzova M. Digital PCR can provide improved BCR-ABL1 detection in chronic myeloid leukemia patients in deep molecular response and sensitivity of standard quantitative methods using EAC assays. Pract Lab Med 2021; 25: e00210.
[http://dx.doi.org/10.1016/j.plabm.2021.e00210] [PMID: 33778144]
[108]
Nyaruaba R, Mwaliko C, Kering KK, Wei H. Droplet digital PCR applications in the tuberculosis world. Tuberculosis 2019; 117: 85-92.
[http://dx.doi.org/10.1016/j.tube.2019.07.001] [PMID: 31378274]
[109]
Pinheiro LB, Coleman VA, Hindson CM, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 2012; 84(2): 1003-11.
[http://dx.doi.org/10.1021/ac202578x] [PMID: 22122760]
[110]
Demeke T, Eng M. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events. Biomol Detect Quantif 2018; 15: 24-9.
[http://dx.doi.org/10.1016/j.bdq.2018.03.002] [PMID: 29922591]
[111]
Wang X, Tang T, Miao Q, et al. Detection of transgenic rice line TT51-1 in processed foods using conventional PCR, real-time PCR, and droplet digital PCR. Food Control 2019; 98: 380-8.
[http://dx.doi.org/10.1016/j.foodcont.2018.11.032]
[112]
Gou T, Hu J, Wu W, et al. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens Bioelectron 2018; 120: 144-52.
[http://dx.doi.org/10.1016/j.bios.2018.08.030] [PMID: 30173010]
[113]
Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA 2016; 27(1): 742-6.
[http://dx.doi.org/10.3109/19401736.2014.913168] [PMID: 24779593]
[114]
Lin J, Su G, Su W, Zhou C. [Progress in digital PCR technology and application]. Sheng Wu Gong Cheng Xue Bao 2017; 33(2): 170-7.
[PMID: 28956373]
[115]
Netzer R, Ribičić D, Aas M, Cavé L, Dhawan T. Absolute quantification of priority bacteria in aquaculture using digital PCR. J Microbiol Methods 2021; 183: 106171.
[http://dx.doi.org/10.1016/j.mimet.2021.106171] [PMID: 33610596]
[116]
Nishimura N, Takeuchi K, Asaka R, et al. MYD88 L265P mutation detected by digital PCR as a prognostic factor in patients with diffuse large B-cell lymphoma in rituximab era. Leuk Res 2020; 97: 106426.
[http://dx.doi.org/10.1016/j.leukres.2020.106426] [PMID: 32781214]
[117]
Chen B, Jiang Y, Cao X, Liu C, Zhang N, Shi D. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin Chim Acta 2021; 517: 156-61.
[http://dx.doi.org/10.1016/j.cca.2021.02.008] [PMID: 33662358]
[118]
Yu N, Ren J, Huang W, Xing R, Deng T, Chen Y. An effective analytical droplet digital PCR approach for identification and quantification of fur-bearing animal meat in raw and processed food. Food Chem 2021; 355: 129525.
[http://dx.doi.org/10.1016/j.foodchem.2021.129525] [PMID: 33799266]
[119]
Fan HC, Blumenfeld YJ, El-Sayed YY, Chueh J, Quake SR. Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy. Am J Obstet Gynecol 2009; 200(5): 543.e1-7.
[http://dx.doi.org/10.1016/j.ajog.2009.03.002] [PMID: 19375573]
[120]
Morella NM, Yang SC, Hernandez CA, Koskella B. Rapid quantification of bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. J Virol Methods 2018; 259: 18-24.
[http://dx.doi.org/10.1016/j.jviromet.2018.05.007] [PMID: 29859196]
[121]
Schwartz SL, Lowen AC. Droplet digital PCR: A novel method for detection of influenza virus defective interfering particles. J Virol Methods 2016; 237: 159-65.
[http://dx.doi.org/10.1016/j.jviromet.2016.08.023] [PMID: 27590979]
[122]
Pritchard JJG, Hamilton G, Hurst CD, et al. Monitoring of urothelial cancer disease status after treatment by digital droplet PCR liquid biopsy assays. Urol Oncol 2020; 38(9): 737.e1-737.e10.
[http://dx.doi.org/10.1016/j.urolonc.2020.05.012] [PMID: 32532529]
[123]
Varela MF, Monteiro S, Rivadulla E, Santos R, Romalde JL. Development of a novel digital RT-PCR method for detection of human sapovirus in different matrices. J Virol Methods 2018; 254: 21-4.
[http://dx.doi.org/10.1016/j.jviromet.2018.01.005] [PMID: 29407209]
[124]
Dasgupta K, Lessard S, Hann S, Fowler ME, Robling AG, Warman ML. Sensitive detection of Cre-mediated recombination using droplet digital PCR reveals Tg(BGLAP-Cre) and Tg(DMP1-Cre) are active in multiple non-skeletal tissues. Bone 2021; 142: 115674.
[http://dx.doi.org/10.1016/j.bone.2020.115674] [PMID: 33031974]
[125]
Tan SYH, Kwek SYM, Low H, Pang YLJ. Absolute quantification of SARS-CoV-2 with clarity PlusTM digital PCR. Methods 2021; 2021: 26-33.
[http://dx.doi.org/10.1016/j.ymeth.2021.07.005] [PMID: 34273478]
[126]
Wang Y, Cooper R, Bergelson S, Feschenko M. Quantification of residual BHK DNA by a novel droplet digital PCR technology. J Pharm Biomed Anal 2018; 159: 477-82.
[http://dx.doi.org/10.1016/j.jpba.2018.07.022] [PMID: 30048895]
[127]
Borsu L, Intrieri J, Thampi L, et al. Clinical application of picodroplet digital PCR technology for rapid detection of EGFR T790M in next-generation sequencing libraries and DNA from limited tumor samples. J Mol Diagn 2016; 18(6): 903-11.
[http://dx.doi.org/10.1016/j.jmoldx.2016.07.004] [PMID: 27631691]
[128]
Caviglia GP, Abate ML, Olivero A, et al. Absolute quantification of intrahepatic hepatitis B virus covalently-closed-circular DNA by droplet digital PCR technology. J Hepatol 2017; 66(1): S262-3.
[http://dx.doi.org/10.1016/S0168-8278(17)30836-X]
[129]
Pan Y, Ma T, Meng Q, et al. Droplet digital PCR enabled by microfluidic impact printing for absolute gene quantification. Talanta 2020; 211: 120680.
[http://dx.doi.org/10.1016/j.talanta.2019.120680] [PMID: 32070562]
[130]
Powell L, Dhummakupt A, Siems L, et al. Clinical validation of a quantitative HIV-1 DNA droplet digital PCR assay: Applications for detecting occult HIV-1 infection and monitoring cell-associated HIV-1 dynamics across different subtypes in HIV-1 prevention and cure trials. J Clin Virol 2021; 139: 104822.
[http://dx.doi.org/10.1016/j.jcv.2021.104822] [PMID: 33930698]
[131]
Yin H, Wu Z, Shi N, et al. Ultrafast multiplexed detection of SARS-CoV-2 RNA using a rapid droplet digital PCR system. Biosens Bioelectron 2021; 188: 113282.
[http://dx.doi.org/10.1016/j.bios.2021.113282] [PMID: 34020234]
[132]
Martin A, Storto A, Le Hingrat Q, et al. High-sensitivity SARS- CoV-2 group testing by digital PCR among symptomatic patients in hospital settings. J Clin Virol 2021; 141: 104895.
[http://dx.doi.org/10.1016/j.jcv.2021.104895] [PMID: 34246075]
[133]
Lee SS, Park JH, Bae YK. Comparison of two digital PCR methods for EGFR DNA and SARS-CoV-2 RNA quantification. Clin Chim Acta 2021; 521: 9-18.
[http://dx.doi.org/10.1016/j.cca.2021.06.016] [PMID: 34144041]
[134]
Colafigli G, Scalzulli E, Di Prima A, et al. Digital droplet PCR as a predictive tool for successful discontinuation outcome in chronic myeloid leukemia: Is it time to introduce it in the clinical practice? Crit Rev Oncol Hematol 2021; 157: 103163.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103163] [PMID: 33246263]
[135]
Pierboni E, Rondini C, Torricelli M, et al. Digital PCR for analysis of peanut and soybean allergens in foods. Food Control 2018; 92: 128-36.
[http://dx.doi.org/10.1016/j.foodcont.2018.04.039]
[136]
Han J, Lee JY, Bae YK. Application of digital PCR for assessing DNA fragmentation in cytotoxicity response. Biochim Biophys Acta, Gen Subj 2019; 1863(8): 1235-42.
[http://dx.doi.org/10.1016/j.bbagen.2019.05.001] [PMID: 31071410]
[137]
Maremonti E, Brede DA, Olsen AK, Eide DM, Berg ES. Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: Droplet digital PCR analysis. Mutat Res Genet Toxicol Environ Mutagen 2020; 858-860: 503277.
[http://dx.doi.org/10.1016/j.mrgentox.2020.503277] [PMID: 33198926]
[138]
Jiang X, Chen S, Zhu X, Xu X, Liu Y. Development and validation of a droplet digital PCR assay for the evaluation of PML-RARα fusion transcripts in acute promyelocytic leukemia. Mol Cell Probes 2020; 53: 101617.
[http://dx.doi.org/10.1016/j.mcp.2020.101617] [PMID: 32585184]
[139]
He L, Simpson DJ, Gänzle MG. Detection of enterohaemorrhagic Escherichia coli in food by droplet digital PCR to detect simultaneous virulence factors in a single genome. Food Microbiol 2020; 90: 103466.
[http://dx.doi.org/10.1016/j.fm.2020.103466] [PMID: 32336350]
[140]
Bogožalec Košir A, Cvelbar T, Kammel M, Grunert HP, Zeichhardt H, Milavec M. Digital PCR method for detection and quantification of specific antimicrobial drug-resistance mutations in human cytomegalovirus. J Virol Methods 2020; 281: 113864.
[http://dx.doi.org/10.1016/j.jviromet.2020.113864] [PMID: 32380093]
[141]
Sun W, Shahrajabian MH. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Curr Org Synth 2023; 20.
[http://dx.doi.org/10.2174/1570179420666230607124949] [PMID: 37287298]
[142]
Cui H, Shahrajabian MH, Kuang Y, Zhang HY, Sun W. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept Lett 2023; 30(7): 531-40.
[http://dx.doi.org/10.2174/0929866530666230525162545] [PMID: 37231716]
[143]
Shahrajabian MH, Sun W. Various techniques for molecular and rapid detection infectious and epidemic diseases. Lett Org Chem 2023; 20(9): 779-801.
[http://dx.doi.org/10.2174/1570178620666230331095720]
[144]
Shahrajabian MH, Sun W. Sun, The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett Drug Des Discov 2023; 20: 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[145]
Shahrajabian MH, Sun W. Survey on multi-omics and multi- omics data analysis, integration and application. Curr Pharm Anal 2023; 19(4): 267-81.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[146]
Minato T, Ito S, Li B, et al. Liquid biopsy with droplet digital PCR targeted to specific mutations in plasma cell-free tumor DNA can detect ovarian cancer recurrence earlier than CA125. Gynecol Oncol Rep 2021; 38: 100847.
[http://dx.doi.org/10.1016/j.gore.2021.100847] [PMID: 34557579]
[147]
Sefrioui D, Mauger F, Leclere L, et al. Comparison of the quantification of KRAS mutations by digital PCR and E-ice-COLD-PCR in circulating-cell-free DNA from metastatic colorectal cancer patients. Clin Chim Acta 2017; 465: 1-4.
[http://dx.doi.org/10.1016/j.cca.2016.12.004] [PMID: 27940131]
[148]
Shahrajabian MH, Sun W. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis. Lett Drug Des Discov 2023; 20: 1570180820666230228115450.
[http://dx.doi.org/10.2174/1570180820666230228115450]
[149]
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023; 28(4): 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[150]
Jahne MA, Brinkman NE, Keely SP, Zimmerman BD, Wheaton EA, Garland JL. Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Res 2020; 169: 115213.
[http://dx.doi.org/10.1016/j.watres.2019.115213] [PMID: 31671297]
[151]
Liao Y, Chen Y, Kou X, Xiao Y, Ye J, Wu A. Diagnostic test accuracy of droplet digital PCR for the detection of EGFR mutation (T790M) in plasma: Systematic review and meta-analysis. Clin Chim Acta 2020; 503: 190-6.
[http://dx.doi.org/10.1016/j.cca.2019.11.023] [PMID: 31805270]
[152]
Shahrajabian MH, Petropoulos SA, Sun W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023; 9(2): 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[153]
Shahrajabian MH, Sun W. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammatory properties. Lett Drug Des Discov 2023; 20(11): 1707-43.
[http://dx.doi.org/10.2174/1570180819666220816115506]
[154]
Shahrajabian MH, Sun W. Importance thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett Drug Des Discov 2024; 21(2): 209-25.
[http://dx.doi.org/10.2174/1570180819666220902115521]
[155]
Sun W, Shahrajabian MH, Lin M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022; 8(12): 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[156]
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023; 12(13): 2469.
[http://dx.doi.org/10.3390/plants12132469] [PMID: 37447031]
[157]
Shahrajabian MH, Sun W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023; 2(3): 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[158]
Shahrajabian MH, Sun W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr Org Synth 2023; 20.
[http://dx.doi.org/10.2174/1570179420666230803102253] [PMID: 37534487]
[159]
Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023; 12(17): 3101.
[http://dx.doi.org/10.3390/plants12173101] [PMID: 37687348]
[160]
Shahrajabian MH, Sun W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev Med Chem 2023; 23.
[http://dx.doi.org/10.2174/1389557523666230816090054] [PMID: 37587815]
[161]
Shahrajabian MH, Kuang Y, Cui H, Fu L, Sun W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr Org Chem 2023; 27(9): 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy