Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Influence of LaMnO3 Nanocrystallite Size on its Optical and Raman Spectra

Author(s): Mohd Abdul Shukur, K. Vijaya Kumar* and G. Narsinga Rao*

Volume 17, Issue 5, 2024

Published on: 17 January, 2024

Page: [491 - 497] Pages: 7

DOI: 10.2174/0126661454260630231221062043

Price: $65

Abstract

In the current study, nanocrystalline LaMnO3 perovskite was prepared by combustion method and annealed at different annealing temperatures. The X-ray diffraction (XRD) patterns provided evidence that the structure formed has a Rhombohedral structure with R3 ̅c space group. The remarkable growth in the crystallite size, reduction in microstrain, and dislocation density were observed with annealing temperature. Ultraviolet-visible spectroscopy was used to determine the optical band gap by the Tauc-plot method. The optical band gap was found to be 3.5 ± 0.4eV and 2.9 ± 0.5eV for 600°C and 1200°C annealed samples, respectively. The observed results were influenced by crystallite size. Raman spectra of the LaMnO3 nanocrystallites revealed five Raman-active modes, like out-of-phase rotation modes and bending mode of MnO6 octahedra. Moreover, the intensity of vibrational modes also varied significantly with annealing temperature.

[1]
Kugel’ KI, Khomskiĭ DI. The Jahn-Teller effect and magnetism: Transition metal compounds. Sov Phys Usp 1982; 25(4): 231-56.
[http://dx.doi.org/10.1070/PU1982v025n04ABEH004537]
[2]
Gehring GA, Gehring KA. Co-operative Jahn-Teller effects. Rep Prog Phys 1975; 38(1): 1-89.
[http://dx.doi.org/10.1088/0034-4885/38/1/001]
[3]
Tang FL, Huang M, Lu WJ, Yu WY. Structural relaxation and Jahn-Teller distortion of LaMnO3 (001) surface. Surf Sci 2009; 603(6): 949-54.
[http://dx.doi.org/10.1016/j.susc.2009.02.017]
[4]
Markovich V, Jung G, Fita I, et al. Magnetotransport in granular LaMnO3+δ manganite with nano-sized particles. J Phys D Appl Phys 2008; 41(18): 185001.
[http://dx.doi.org/10.1088/0022-3727/41/18/185001]
[5]
Hu J, Men J, Ma J, Huang H. Preparation of LaMnO3/graphene thin films and their photocatalytic activity. J Rare Earths 2014; 32(12): 1126-34.
[http://dx.doi.org/10.1016/S1002-0721(14)60193-9]
[6]
Hu J, Liu Y, Men J, Zhang L, Huang H. Ag modified LaMnO3 nanorods-reduced graphene oxide composite applied in the photocatalytic discoloration of direct green. Solid State Sci 2016; 61: 239-45.
[http://dx.doi.org/10.1016/j.solidstatesciences.2016.10.008]
[7]
Gao P, Li N, Wang A, Wang X, Zhang T. Perovskite LaMnO3 hollow nanospheres: The synthesis and the application in catalytic wet air oxidation of phenol. Mater Lett 2013; 92: 173-6.
[http://dx.doi.org/10.1016/j.matlet.2012.10.091]
[8]
Wollan EO, Koehler WC. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x) La, xCa] MnO3. Phys Rev 1955; 100(2): 545-63.
[http://dx.doi.org/10.1103/PhysRev.100.545]
[9]
Manh DH, Phong PT, Thanh TD, Nam DNH, Hong LV, Phuc NX. Size effects and interactions in La0.7Ca0.3] MnO3 nanoparticles. J Alloys Compd 2011; 509(5): 1373-7.
[http://dx.doi.org/10.1016/j.jallcom.2010.10.104]
[10]
Navin K, Kurchania R. The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3] MnO3 nanoparticles. Ceram Int 2018; 44(5): 4973-80.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.091]
[11]
Dediu VV, Ferdeghini C, Matacotta FC, Nozar P, Ruani G. Jahn-Teller dynamics in charge-ordered manganites from Raman spectroscopy. Phys Rev Lett 2000; May 8; 84(19): 4489-92.
[http://dx.doi.org/10.1103/PhysRevLett.84.4489] [PMID: 10990718]
[12]
Martin-Carron L, Andres A, Martínez-Lope M, Casais M, Alonso J. Raman phonons as a probe of disorder, fluctuations and local structure in doped and undoped orthorhombic and rhombohedral manganites. Phys Rev B 2002; 66: 174303.
[http://dx.doi.org/10.1103/PhysRevB.66.174303]
[13]
Hoshina T. Size effect of barium titanate: Fine particles and ceramics. J Ceram Soc Jpn 2013; 121(1410): 156-61.
[http://dx.doi.org/10.2109/jcersj2.121.156]
[14]
Shellaiah M, Sun KW. Review on sensing applications of perovskite nanomaterials. Chemosensors 2020; 8(3): 55.
[http://dx.doi.org/10.3390/chemosensors8030055]
[15]
Bokov D, Turki Jalil A, Chupradit S, et al. Nanomaterial by sol-gel method: Synthesis and application. Adv Mater Sci Eng 2021; 2021: 1-21.
[http://dx.doi.org/10.1155/2021/5102014]
[16]
Oumezzine M, Peña O, Guizouarn T, Lebullenger R, Oumezzine M. Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0,67Ba0,33Mn0,9Cr0,1O3 manganite. J Magn Magn Mater 2012; 324(18): 2821-8.
[http://dx.doi.org/10.1016/j.jmmm.2012.04.017]
[17]
Rosić M, Kljaljević L, Jordanov D, et al. Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1−Gd MnO3 (x=0.05, 0.1, 0.15, 0.2). Ceram Int 2015; 41(10): 14964-72.
[http://dx.doi.org/10.1016/j.ceramint.2015.08.041]
[18]
Lipham ND, Tsoi GM, Wenger LE. Synthesis and characterization of sr-doped lanthanum manganite nanoparticles. IEEE Trans Magn 2007; 43(6): 3088-90.
[http://dx.doi.org/10.1109/TMAG.2007.893850]
[19]
Pawar DK, Pawar SM, Patil PS, Kolekar SS. Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J Alloys Compd 2011; 509(8): 3587-91.
[http://dx.doi.org/10.1016/j.jallcom.2010.12.079]
[20]
D Souza A, Babu PD, Rayaprol S, Murari MS, Mendonca LD, Daivajna M. Size control on the magnetism of La0.7Sr0.3MnO3. J Alloys Compd 2019; 797: 874-82.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.004]
[21]
Arrar A, Benhaliliba M, Boukhachem A, Ayeshamariam A. The green emission from nanospheres based on La1-x Srx MnO2.75 perovskites. J Nanoelectron Optoelectron 2019; 14(2): 169-76.
[http://dx.doi.org/10.1166/jno.2019.2465]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy