Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Human Umbilical Cord Mesenchymal Stem Cell Exosome-derived miR-335-5p Alleviated Lipopolysaccharide-induced Acute Lung Injury by Regulating the m6A Level of ITGβ4 Gene

Author(s): Linrui Li, Xi Zhang and Yanping Chen*

Volume 31, Issue 33, 2024

Published on: 17 January, 2024

Page: [5448 - 5467] Pages: 20

DOI: 10.2174/0109298673273833231220062213

Price: $65

Abstract

Background: Acute lung injury (ALI) is a serious complication that may accompany severe pneumonia in children. Derived from human umbilical cord mesenchymal stem cell exosome (HucMSC-Exo) can contribute to the regeneration of damaged lung tissue. This study aims to investigate the impact of HucMSC-Exo on ALI and its potential mechanisms.

Methods: Firstly, RT-qPCR was performed to assess the expression of miR-335-5p. Subsequently, Pearson correlation analysis was performed to examine the correlation between METTL14 and miR-335-5p, as well as the correlation between METTL14 and ITGβ4, while RNA immunoprecipitation (RIP) was used to determine the m6A modification level of ITGβ4. Additionally, molecular biology techniques were employed to evaluate the expression of glycolysis-related factors. Definitively, an LPS-induced ALI model was established to investigate the effect of miR-335-5p on mice lung tissue.

Results: miR-335-5p was found to be highly expressed in HucMSC-Exo. Transfection with miR-335-5p mimics resulted in increased glucose uptake. Pearson correlation analysis revealed a negative correlation between METTL14 and miR-335-5p, as well as between METTL14 and ITGβ4. The m6A level of ITGβ4 was elevated in ALI. Overexpression of METTL14 was found to reduce the expression of ITGβ4 and glucose levels, while overexpression of ITGβ4 reversed the effects of METTL14 overexpression. In vivo, results demonstrated that miR-335-5p could improve the extent of lung tissue lesions and reduce glycolytic levels.

Conclusion: This study revealed the mechanism by which miR-335-5p derived from HucMSC-Exo could alleviate LPS-induced ALI by regulating the m6A modification of ITGβ4, providing a new direction for the treatment of ALI.

[1]
Omran, A.; Ali, Y.; Abdalla, M.O.; El-Sharkawy, S.; Rezk, A.R.; Khashana, A. Salivary interleukin-6 and C-reactive protein/mean platelet volume ratio in the diagnosis of late-onset neonatal pneumonia. J. Immunol. Res., 2021, 2021, 1-7.
[http://dx.doi.org/10.1155/2021/8495889] [PMID: 34708133]
[2]
Panico, F.F.; Troster, E.J.; Oliveira, C.S.; Faria, A.; Lucena, M.; João, P.R.D.; Saad, E.D.; Foronda, F.A.K.; Delgado, A.F.; de Carvalho, W.B. Risk factors for mortality and outcomes in pediatric acute lung injury/acute respiratory distress syndrome. Pediatr. Crit. Care Med., 2015, 16(7), e194-e200.
[http://dx.doi.org/10.1097/PCC.0000000000000490] [PMID: 26181296]
[3]
Kellner, M.; Noonepalle, S.; Lu, Q.; Srivastava, A.; Zemskov, E.; Black, S.M. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv. Exp. Med. Biol., 2017, 967, 105-137.
[http://dx.doi.org/10.1007/978-3-319-63245-2_8] [PMID: 29047084]
[4]
Liang, D.; Liu, C.; Yang, M. Mesenchymal stem cells and their derived exosomes for ALI/ARDS: A promising therapy. Heliyon, 2023, 9(10), e20387.
[http://dx.doi.org/10.1016/j.heliyon.2023.e20387] [PMID: 37842582]
[5]
Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Invest., 2012, 122(8), 2731-2740.
[http://dx.doi.org/10.1172/JCI60331] [PMID: 22850883]
[6]
He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res., 2021, 163, 105224.
[http://dx.doi.org/10.1016/j.phrs.2020.105224] [PMID: 33007416]
[7]
Zhang, H.; Liu, J.; Zhou, Y.; Qu, M.; Wang, Y.; Guo, K.; Shen, R.; Sun, Z.; Cata, J.P.; Yang, S.; Chen, W.; Miao, C. Neutrophil extracellular traps mediate m6 A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int. J. Biol. Sci., 2022, 18(8), 3337-3357.
[http://dx.doi.org/10.7150/ijbs.69141] [PMID: 35637949]
[8]
Yuan, Y.; Wang, W.; Zhang, Y.; Hong, Q.; Huang, W.; Li, L.; Xie, Z.; Chen, Y.; Li, X.; Meng, Y. Apelin-13 attenuates lipopolysaccharide-induced inflammatory responses and acute lung injury by regulating PFKFB3-driven glycolysis induced by NOX4-dependent ROS. J. Inflamm. Res., 2022, 15, 2121-2139.
[http://dx.doi.org/10.2147/JIR.S348850] [PMID: 35386222]
[9]
Kolomaznik, M.; Nova, Z.; Calkovska, A. Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiol. Res., 2017, 66(S2), S147-S157.
[http://dx.doi.org/10.33549/physiolres.933672] [PMID: 28937231]
[10]
Xiao, K.; He, W.; Guan, W.; Hou, F.; Yan, P.; Xu, J.; Zhou, T.; Liu, Y.; Xie, L. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis., 2020, 11(10), 863.
[http://dx.doi.org/10.1038/s41419-020-03034-3] [PMID: 33060560]
[11]
Hsieh, Y.H.; Deng, J.S.; Pan, H.P.; Liao, J.C.; Huang, S.S.; Huang, G.J. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling. Int. Immunopharmacol., 2017, 44, 16-25.
[http://dx.doi.org/10.1016/j.intimp.2016.12.026] [PMID: 28068646]
[12]
Yang, Y.; Yang, F.; Yu, X.; Wang, B.; Yang, Y.; Zhou, X.; Cheng, R.; Xia, S.; Zhou, X. miR-16 inhibits NLRP3 inflammasome activation by directly targeting TLR4 in acute lung injury. Biomed. Pharmacother., 2019, 112, 108664.
[http://dx.doi.org/10.1016/j.biopha.2019.108664] [PMID: 30784935]
[13]
Bae, H.B.; Li, M.; Kim, J.P.; Kim, S.J.; Jeong, C.W.; Lee, H.G.; Kim, W.M.; Kim, H.S.; Kwak, S.H. The effect of epigallocatechin gallate on lipopolysaccharide-induced acute lung injury in a murine model. Inflammation, 2010, 33(2), 82-91.
[http://dx.doi.org/10.1007/s10753-009-9161-z] [PMID: 19838780]
[14]
Wang, T.; Hou, W.; Fu, Z. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice. Biochem. Biophys. Res. Commun., 2017, 485(2), 284-289.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.090] [PMID: 28223218]
[15]
Li, J.; Lu, K.; Sun, F.; Tan, S.; Zhang, X.; Sheng, W.; Hao, W.; Liu, M.; Lv, W.; Han, W. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J. Transl. Med., 2021, 19(1), 96.
[http://dx.doi.org/10.1186/s12967-021-02745-1] [PMID: 33653364]
[16]
Nguyen, N.; Xu, S.; Lam, T.Y.W.; Liao, W.; Wong, W.S.F.; Ge, R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol. Med., 2022, 28(1), 72.
[http://dx.doi.org/10.1186/s10020-022-00500-w] [PMID: 35752760]
[17]
Lou, L.; Wang, M.; He, J.; Yang, S.; Meng, F.; Wang, S.; Jin, X.; Cai, J.; Cai, C.; Urolithin, A. Urolithin A (UA) attenuates ferroptosis in LPS-induced acute lung injury in mice by upregulating Keap1-Nrf2/HO-1 signaling pathway. Front. Pharmacol., 2023, 14, 1067402.
[http://dx.doi.org/10.3389/fphar.2023.1067402] [PMID: 36969874]
[18]
Songyang, Y.; Li, W.; Li, W.; Yang, J.; Song, T. The inhibition of GLUT1-induced glycolysis in macrophage by phloretin participates in the protection during acute lung injury. Int. Immunopharmacol., 2022, 110, 109049.
[http://dx.doi.org/10.1016/j.intimp.2022.109049] [PMID: 35853279]
[19]
Zhong, W.J.; Yang, H.H.; Guan, X.X.; Xiong, J.B.; Sun, C.C.; Zhang, C.Y.; Luo, X.Q.; Zhang, Y.F.; Zhang, J.; Duan, J.X.; Zhou, Y.; Guan, C.X. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model. J. Cell. Physiol., 2019, 234(4), 4641-4654.
[http://dx.doi.org/10.1002/jcp.27261] [PMID: 30256406]
[20]
Nakamura, Y.; Kita, S.; Tanaka, Y.; Fukuda, S.; Obata, Y.; Okita, T.; Nishida, H.; Takahashi, Y.; Kawachi, Y.; Tsugawa-Shimizu, Y.; Fujishima, Y.; Nishizawa, H.; Takakura, Y.; Miyagawa, S.; Sawa, Y.; Maeda, N.; Shimomura, I. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol. Ther., 2020, 28(10), 2203-2219.
[http://dx.doi.org/10.1016/j.ymthe.2020.06.026] [PMID: 32652045]
[21]
Yaghoubi, Y.; Movassaghpour, A.; Zamani, M.; Talebi, M.; Mehdizadeh, A.; Yousefi, M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci., 2019, 233, 116733.
[http://dx.doi.org/10.1016/j.lfs.2019.116733] [PMID: 31394127]
[22]
Ding, D.C.; Chang, Y.H.; Shyu, W.C.; Lin, S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant., 2015, 24(3), 339-347.
[http://dx.doi.org/10.3727/096368915X686841] [PMID: 25622293]
[23]
Lan, T.; Luo, M.; Wei, X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol., 2021, 14(1), 195.
[http://dx.doi.org/10.1186/s13045-021-01208-w] [PMID: 34789315]
[24]
Zhou, J.; Feng, X.; Zhu, J.; Feng, B.; Yao, Q.; Pan, Q.; Yu, J.; Yang, J.; Li, L.; Cao, H. Mesenchymal stem cell treatment restores liver macrophages homeostasis to alleviate mouse acute liver injury revealed by single-cell analysis. Pharmacol. Res., 2022, 179, 106229.
[http://dx.doi.org/10.1016/j.phrs.2022.106229] [PMID: 35470065]
[25]
Jo, H.; Brito, S.; Kwak, B.M.; Park, S.; Lee, M.G.; Bin, B.H. Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int. J. Mol. Sci., 2021, 22(5), 2410.
[http://dx.doi.org/10.3390/ijms22052410] [PMID: 33673711]
[26]
Saito, S.; Nakayama, T.; Hashimoto, N.; Miyata, Y.; Egashira, K.; Nakao, N.; Nishiwaki, S.; Hasegawa, M.; Hasegawa, Y.; Naoe, T. Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuate bleomycin-induced lung damage. Am. J. Pathol., 2011, 179(3), 1088-1094.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.027] [PMID: 21741938]
[27]
Monsel, A.; Zhu, Y.; Gennai, S.; Hao, Q.; Hu, S.; Rouby, J.J.; Rosenzwajg, M.; Matthay, M.A.; Lee, J.W. Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med., 2015, 192(3), 324-336.
[http://dx.doi.org/10.1164/rccm.201410-1765OC] [PMID: 26067592]
[28]
Monsel, A.; Zhu, Y.; Gudapati, V.; Lim, H.; Lee, J.W. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin. Biol. Ther., 2016, 16(7), 859-871.
[http://dx.doi.org/10.1517/14712598.2016.1170804] [PMID: 27011289]
[29]
Islam, D.; Huang, Y.; Fanelli, V.; Delsedime, L.; Wu, S.; Khang, J.; Han, B.; Grassi, A.; Li, M.; Xu, Y.; Luo, A.; Wu, J.; Liu, X.; McKillop, M.; Medin, J.; Qiu, H.; Zhong, N.; Liu, M.; Laffey, J.; Li, Y.; Zhang, H. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury. Am. J. Respir. Crit. Care Med., 2019, 199(10), 1214-1224.
[http://dx.doi.org/10.1164/rccm.201802-0356OC] [PMID: 30521764]
[30]
Mansouri, N.; Willis, G.R.; Fernandez-Gonzalez, A.; Reis, M.; Nassiri, S.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4(21), e128060.
[http://dx.doi.org/10.1172/jci.insight.128060] [PMID: 31581150]
[31]
He, H.; Liu, L.; Chen, Q.; Liu, A.; Cai, S.; Yang, Y.; Lu, X.; Qiu, H. Mesenchymal stem cells overexpressing angiotensin-converting enzyme 2 rescue lipopolysaccharide-induced lung injury. Cell Transplant., 2015, 24(9), 1699-1715.
[http://dx.doi.org/10.3727/096368914X685087] [PMID: 25291359]
[32]
Zeringer, E.; Barta, T.; Li, M.; Vlassov, A.V. Strategies for isolation of exosomes. Cold Spring Harb. Protoc., 2015, 2015(4), pdb.top074476.
[http://dx.doi.org/10.1101/pdb.top074476] [PMID: 25834266]
[33]
Zhang, Z.; Chen, L.; Chen, X.; Qin, Y.; Tian, C.; Dai, X.; Meng, R.; Zhong, Y.; Liang, W.; Shen, C.; Zhang, J.; Zhang, B.; Wei, X. Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSC-EXO) regulate autophagy through AMPK-ULK1 signaling pathway to ameliorate diabetic cardiomyopathy. Biochem. Biophys. Res. Commun., 2022, 632, 195-203.
[http://dx.doi.org/10.1016/j.bbrc.2022.10.001] [PMID: 36240643]
[34]
Wang, Z.; Yu, Y.; Jin, L.; Tan, X.; Liu, B.; Zhang, Z.; Wang, Z.; Long, C.; Shen, L.; Wei, G.; He, D. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β- catenin pathway. Eur. J. Pharmacol., 2023, 952, 175523.
[http://dx.doi.org/10.1016/j.ejphar.2023.175523] [PMID: 36736526]
[35]
Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88(1), 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[36]
Krishnan, A.; Muthusamy, S.; Fernandez, F.B.; Kasoju, N. Mesenchymal stem cell-derived extracellular vesicles in the management of COVID19-associated lung injury: A review on publications, clinical trials and patent landscape. Tissue Eng. Regen. Med., 2022, 19(4), 659-673.
[http://dx.doi.org/10.1007/s13770-022-00441-9] [PMID: 35384633]
[37]
Liu, J.S.; Du, J.; Cheng, X.; Zhang, X.Z.; Li, Y.; Chen, X.L. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury. J. Chin. Med. Assoc., 2019, 82(12), 895-901.
[http://dx.doi.org/10.1097/JCMA.0000000000000189] [PMID: 31800531]
[38]
Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. ABES, 2023, 8(2), 140-146. http://jomardpublishing.com/UploadFiles/Files/journals/ABES/v8n2/NasibovaA.pdf
[39]
Khalilov, R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. ABES, 2023, 8(1), 5-18. http://jomardpublishing.com/UploadFiles/Files/journals/ABES/V8N1/Khalilov.pdf
[40]
Yang, J.; Chen, Y.; Jiang, K.; Yang, Y.; Zhao, G.; Guo, S.; Deng, G. MicroRNA-106a provides negative feedback regulation in lipopolysaccharide-induced inflammation by targeting TLR4. Int. J. Biol. Sci., 2019, 15(11), 2308-2319.
[http://dx.doi.org/10.7150/ijbs.33432] [PMID: 31595149]
[41]
Li, P.; Yao, Y.; Ma, Y.; Chen, Y. MiR-150 attenuates LPS-induced acute lung injury via targeting AKT3. Int. Immunopharmacol., 2019, 75, 105794.
[http://dx.doi.org/10.1016/j.intimp.2019.105794] [PMID: 31398659]
[42]
Liang, Q.; He, J.; Yang, Q.; Zhang, Q.; Xu, Y. MicroRNA-335-5p alleviates inflammatory response, airway fibrosis, and autophagy in childhood asthma through targeted regulation of autophagy related 5. Bioengineered, 2022, 13(1), 1791-1801.
[http://dx.doi.org/10.1080/21655979.2021.1996315] [PMID: 34699311]
[43]
Yang, H.; Xu, Z.; Peng, Y.; Wang, J.; Xiang, Y. Integrin β4 as a potential diagnostic and therapeutic tumor marker. Biomolecules, 2021, 11(8), 1197.
[http://dx.doi.org/10.3390/biom11081197] [PMID: 34439865]
[44]
Lu, S.; Simin, K.; Khan, A.; Mercurio, A.M. Analysis of integrin beta4 expression in human breast cancer: association with basal-like tumors and prognostic significance. Clin. Cancer Res., 2008, 14(4), 1050-1058.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4116] [PMID: 18281537]
[45]
Tang, K.; Cai, Y.; Joshi, S.; Tovar, E.; Tucker, S.C.; Maddipati, K.R.; Crissman, J.D.; Repaskey, W.T.; Honn, K.V. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol. Cancer, 2015, 14(1), 111.
[http://dx.doi.org/10.1186/s12943-015-0382-5] [PMID: 26037302]
[46]
Basora, N.; Herring-Gillam, F.E.; Boudreau, F.; Perreault, N.; Pageot, L.P.; Simoneau, M.; Bouatrouss, Y.; Beaulieu, J.F. Expression of functionally distinct variants of the beta(4)A integrin subunit in relation to the differentiation state in human intestinal cells. J. Biol. Chem., 1999, 274(42), 29819-29825.
[http://dx.doi.org/10.1074/jbc.274.42.29819] [PMID: 10514460]
[47]
Bierie, B.; Pierce, S.E.; Kroeger, C.; Stover, D.G.; Pattabiraman, D.R.; Thiru, P.; Liu Donaher, J.; Reinhardt, F.; Chaffer, C.L.; Keckesova, Z.; Weinberg, R.A. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl. Acad. Sci., 2017, 114(12), E2337-E2346.
[http://dx.doi.org/10.1073/pnas.1618298114] [PMID: 28270621]
[48]
Chen, W.; Gard, J.M.C.; Epshtein, Y.; Camp, S.M.; Garcia, J.G.N.; Jacobson, J.R.; Cress, A.E. Integrin beta 4E promotes endothelial phenotypic changes and attenuates lung endothelial cell inflammatory responses. Front. Physiol., 2022, 13, 769325.
[http://dx.doi.org/10.3389/fphys.2022.769325] [PMID: 35250607]
[49]
Jiang, W.; Wang, J.M.; Luo, J.H.; Chen, Y.; Pi, J.; Ma, X.D.; Liu, C.X.; Zhou, Y.; Qu, X.P.; Liu, C.; Liu, H.J.; Qin, X.Q.; Xiang, Y. Airway epithelial integrin β4-deficiency exacerbates lipopolysaccharide-induced acute lung injury. J. Cell. Physiol., 2021, 236(11), 7711-7724.
[http://dx.doi.org/10.1002/jcp.30422] [PMID: 34018612]
[50]
Yang, L.; Ren, Z.; Yan, S.; Zhao, L.; Liu, J.; Zhao, L.; Li, Z.; Ye, S.; Liu, A.; Li, X.; Guo, J.; Zhao, W.; Kuang, W.; Liu, H.; Chen, D. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun. Biol., 2022, 5(1), 495.
[http://dx.doi.org/10.1038/s42003-022-03420-x] [PMID: 35614315]
[51]
Shi, B.; Liu, W.W.; Yang, K.; Jiang, G.M.; Wang, H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol. Cancer, 2022, 21(1), 163.
[http://dx.doi.org/10.1186/s12943-022-01634-5] [PMID: 35974338]
[52]
Agarwala, R.; Barrett, T.; Beck, J.; Benson, D.A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J.R.; Bryant, S.H.; Canese, K.; Cavanaugh, M.; Charowhas, C.; Clark, K.; Dondoshansky, I.; Feolo, M.; Fitzpatrick, L.; Funk, K.; Geer, L.Y.; Gorelenkov, V.; Graeff, A.; Hlavina, W.; Holmes, B.; Johnson, M.; Kattman, B.; Khotomlianski, V.; Kimchi, A.; Kimelman, M.; Kimura, M.; Kitts, P.; Klimke, W.; Kotliarov, A.; Krasnov, S.; Kuznetsov, A.; Landrum, M.J.; Landsman, D.; Lathrop, S.; Lee, J.M.; Leubsdorf, C.; Lu, Z.; Madden, T.L.; Marchler-Bauer, A.; Malheiro, A.; Meric, P.; Karsch-Mizrachi, I.; Mnev, A.; Murphy, T.; Orris, R.; Ostell, J.; O’Sullivan, C.; Palanigobu, V.; Panchenko, A.R.; Phan, L.; Pierov, B.; Pruitt, K.D.; Rodarmer, K.; Sayers, E.W.; Schneider, V.; Schoch, C.L.; Schuler, G.D.; Sherry, S.T.; Siyan, K.; Soboleva, A.; Soussov, V.; Starchenko, G.; Tatusova, T.A.; Thibaud-Nissen, F.; Todorov, K.; Trawick, B.W.; Vakatov, D.; Ward, M.; Yaschenko, E.; Zasypkin, A.; Zbicz, K. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2018, 46(D1), D8-D13.
[http://dx.doi.org/10.1093/nar/gkx1095] [PMID: 29140470]
[53]
Hammad, M.H.R.; Hamed, D.H.E.D.; Eldosoky, M.A.E.L.R.; Ahmad, A.A.E.S.; Osman, H.M.; Abd Elgalil, H.M.; Mahmoud, H.M.M. Plasma microRNA-21, microRNA-146a and IL-13 expression in asthmatic children. Innate Immun., 2018, 24(3), 171-179.
[http://dx.doi.org/10.1177/1753425918763521] [PMID: 29635981]
[54]
Achard, V.; Putora, P.M.; Omlin, A.; Zilli, T.; Fischer, S. Metastatic prostate cancer: Treatment options. Oncology, 2022, 100(1), 48-59.
[http://dx.doi.org/10.1159/000519861] [PMID: 34781285]
[55]
Liu, X.; Gao, C.; Wang, Y.; Niu, L.; Jiang, S.; Pan, S. BMSC-derived exosomes ameliorate LPS-induced acute lung injury by miR-384-5p-controlled alveolar macrophage autophagy. Oxid. Med. Cell. Longev., 2021, 2021, 1-23.
[http://dx.doi.org/10.1155/2021/9973457] [PMID: 34234888]
[56]
Wei, X.; Yi, X.; Lv, H.; Sui, X.; Lu, P.; Li, L.; An, Y.; Yang, Y.; Yi, H.; Chen, G. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy. Cell Death Dis., 2020, 11(8), 657.
[http://dx.doi.org/10.1038/s41419-020-02857-4] [PMID: 32814765]
[57]
Cui, Y.; Wang, X.; Lin, F.; Li, W.; Zhao, Y.; Zhu, F.; Yang, H.; Rao, M.; li, Y.; Liang, H.; Dai, M.; Liu, B.; Chen, L.; Han, D.; Lu, R.; Peng, W.; Zhang, Y.; Song, C.; Luo, Y.; Pan, P. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis., 2022, 13(3), 899-909.
[http://dx.doi.org/10.14336/AD.2021.1023] [PMID: 35656115]
[58]
Jiang, J.; Huang, K.; Xu, S.; Garcia, J.G.N.; Wang, C.; Cai, H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol., 2020, 36, 101638.
[http://dx.doi.org/10.1016/j.redox.2020.101638] [PMID: 32863203]
[59]
Cheng, N.; Liang, Y.; Du, X.; Ye, R.D. Serum amyloid A promotes LPS clearance and suppresses LPS -induced inflammation and tissue injury. EMBO Rep., 2018, 19(10), e45517.
[http://dx.doi.org/10.15252/embr.201745517] [PMID: 30126923]
[60]
Li, Y.; Huang, J.; Foley, N.M.; Xu, Y.; Li, Y.P.; Pan, J.; Redmond, H.P.; Wang, J.H.; Wang, J. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Sci. Rep., 2016, 6(1), 31284.
[http://dx.doi.org/10.1038/srep31284] [PMID: 27515382]
[61]
Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; Ranieri, M.; Rubenfeld, G.; Thompson, B.T.; Wrigge, H.; Slutsky, A.S.; Pesenti, A. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8), 788-800.
[http://dx.doi.org/10.1001/jama.2016.0291] [PMID: 26903337]
[62]
Willis, G.R.; Fernandez-Gonzalez, A.; Anastas, J.; Vitali, S.H.; Liu, X.; Ericsson, M.; Kwong, A.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med., 2018, 197(1), 104-116.
[http://dx.doi.org/10.1164/rccm.201705-0925OC] [PMID: 28853608]
[63]
Xu, N.; Shao, Y.; Ye, K.; Qu, Y.; Memet, O.; He, D.; Shen, J. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhal. Toxicol., 2019, 31(2), 52-60.
[http://dx.doi.org/10.1080/08958378.2019.1597220] [PMID: 31068039]
[64]
Wang, X.; Xiao, H.; Wu, D.; Zhang, D.; Zhang, Z. miR-335-5p regulates cell cycle and metastasis in lung adenocarcinoma by targeting CCNB2. OncoTargets Ther., 2020, 13, 6255-6263.
[http://dx.doi.org/10.2147/OTT.S245136] [PMID: 32636645]
[65]
Wang, F.; Li, L.; Piontek, K.; Sakaguchi, M.; Selaru, F.M. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology, 2018, 67(3), 940-954.
[http://dx.doi.org/10.1002/hep.29586] [PMID: 29023935]
[66]
Suyal, G.; Pandey, P.; Saraya, A.; Sharma, R. Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp. Mol. Pathol., 2022, 124, 104738.
[http://dx.doi.org/10.1016/j.yexmp.2021.104738] [PMID: 34953918]
[67]
Cao, J.; Zhang, Y.; Yang, J.; He, S.; Li, M.; Yan, S.; Chen, Y.; Qu, C.; Xu, L. NEAT1 regulates pancreatic cancer cell growth, invasion and migration though mircroRNA-335-5p/c-met axis. Am. J. Cancer Res., 2016, 6(10), 2361-2374.
[PMID: 27822425]
[68]
Aghapour, M.; Raee, P.; Moghaddam, S.J.; Hiemstra, P.S.; Heijink, I.H. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 157-169.
[http://dx.doi.org/10.1165/rcmb.2017-0200TR] [PMID: 28933915]
[69]
Luo, K.; Liu, A.; Wu, H.; Liu, Q.; Dai, J.; Liu, Y.; Wang, Z. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis., 2022, 13(8), 740.
[http://dx.doi.org/10.1038/s41419-022-05175-z] [PMID: 36030248]
[70]
Hou, Y.; Zhang, X.; Yao, H.; Hou, L.; Zhang, Q.; Tao, E.; Zhu, X.; Jiang, S.; Ren, Y.; Hong, X.; Lu, S.; Leng, X.; Xie, Y.; Gao, Y.; Liang, Y.; Zhong, T.; Long, B.; Fang, J.Y.; Meng, X. METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells. EMBO Rep., 2023, 24(4), e56325.
[http://dx.doi.org/10.15252/embr.202256325] [PMID: 36794620]
[71]
Chen, X.; Xu, M.; Xu, X.; Zeng, K.; Liu, X.; Pan, B.; Li, C.; Sun, L.; Qin, J.; Xu, T.; He, B.; Pan, Y.; Sun, H.; Wang, S. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol. Cancer, 2020, 19(1), 106.
[http://dx.doi.org/10.1186/s12943-020-01220-7] [PMID: 32552762]
[72]
Liu, Z.; Sun, T.; Piao, C.; Zhang, Z.; Kong, C. METTL14- mediated N6-methyladenosine modification of ITGβ4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun. Signal., 2022, 20(1), 36.
[http://dx.doi.org/10.1186/s12964-022-00831-5] [PMID: 35305660]
[73]
Zheng, Y.; Liu, J.; Chen, P.; Lin, L.; Luo, Y.; Ma, X.; Lin, J.; Shen, Y.; Zhang, L. RETRACTED: Exosomal miR-22-3p from human umbilical cord blood-derived mesenchymal stem cells protects against lipopolysaccharid-induced acute lung injury. Life Sci., 2021, 269, 119004.
[http://dx.doi.org/10.1016/j.lfs.2020.119004] [PMID: 33417960]
[74]
Liu, J.; Xing, F.; Fu, Q.; He, B.; Jia, Z.; Du, J.; Li, Y.; Zhang, X.; Chen, X. hUC-MSCs exosomal miR-451 alleviated acute lung injury by modulating macrophage M2 polarization fpage regulating MIF-PI3K-AKT signaling pathway. Environ. Toxicol., 2022, 37(12), 2819-2831.
[http://dx.doi.org/10.1002/tox.23639] [PMID: 35997581]
[75]
Song, S.; Qin, Y.; He, Y.; Huang, Q.; Fan, C.; Chen, H.Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev., 2010, 39(11), 4234-4243.
[http://dx.doi.org/10.1039/c000682n] [PMID: 20871878]
[76]
Foreman-Ortiz, I.U.; Ma, T.F.; Hoover, B.M.; Wu, M.; Murphy, C.J.; Murphy, R.M.; Pedersen, J.A. Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle–vesicle binding. J. Colloid Interface Sci., 2022, 615, 50-58.
[http://dx.doi.org/10.1016/j.jcis.2022.01.141] [PMID: 35123359]
[77]
Lou, G.; Chen, Z.; Zheng, M.; Liu, Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med., 2017, 49(6), e346.
[http://dx.doi.org/10.1038/emm.2017.63] [PMID: 28620221]
[78]
Console, L.; Scalise, M.; Indiveri, C. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta, 2019, 488, 165-171.
[http://dx.doi.org/10.1016/j.cca.2018.11.009] [PMID: 30419221]
[79]
Li, T.; Xia, M.; Gao, Y.; Chen, Y.; Xu, Y. Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy. Expert Opin. Biol. Ther., 2015, 15(9), 1293-1306.
[http://dx.doi.org/10.1517/14712598.2015.1051528] [PMID: 26067213]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy