Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

An Investigation of Pharmacokinetic Interaction of Vericiguat with Apigenin based on a Newly Developed Ultra-performance Liquid Chromatography-tandem Mass Spectrometry Assay

Author(s): En Zhang, Chaojie Chen, Yu Wang, Qinghua Weng, Ren-ai Xu* and Jingjing Lin*

Volume 31, Issue 33, 2024

Published on: 06 October, 2023

Page: [5468 - 5476] Pages: 9

DOI: 10.2174/0109298673258387230921090445

Price: $65

Abstract

Background: Vericiguat, as a new stimulator of soluble guanylate cyclase (s- GC), was recently approved as a first-in-class treatment for reducing risks in patients with ejection fraction less than 45 percent and heart failure (HF) in the USA.

Objective: The main aim of the present experiment was to establish an acceptable, sensitive assay based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for quantitatively analyzing the plasma concentration levels of vericiguat in rats, and to further evaluate the effect of apigenin on the metabolism of vericiguat in vivo.

Methods: In sample processes, acetonitrile was finally chosen for quickly precipitating protein. The levels of vericiguat in plasma were analyzed by a Xevo TQ-S triple quadrupole tandem mass spectrometry (Milford, MA, USA) in a positive ion mode.

Results: The scope of the calibration standard for vericiguat ranged from 0.5 to 1000 ng/mL, where a great linearity was acceptable. The lower limit of quantification (also called LLOQ) of vericiguat presented the sensitivity of this assay was evaluated as low as 0.5 ng/mL. Additionally, selectivity, accuracy and precision, extraction recovery, matrix effect, and stability were all verified. Subsequently, this approach also supported to assess the plasmatic concentrations of vericiguat from an interaction survey on herb-- drug, in which oral administration of apigenin (20 mg/kg) obviously increased the plasmatic levels of vericiguat and altered the pharmacokinetics of vericiguat in rats.

Conclusion: These results would help us to further understand the pharmacokinetic properties of vericiguat when co-administration with apigenin, and to avoid unexpected clinical risks in the future.

[1]
Markham, A.; Duggan, S. Vericiguat: First approval. Drugs, 2021, 81(6), 721-726.
[http://dx.doi.org/10.1007/s40265-021-01496-z] [PMID: 33770393]
[2]
Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; McNulty, S.E.; Patel, M.J.; Roessig, L.; Koglin, J.; O’Connor, C.M.; Group, V.S. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med., 2020, 382(20), 1883-1893.
[http://dx.doi.org/10.1056/NEJMoa1915928] [PMID: 32222134]
[3]
Armstrong, P.W.; Roessig, L.; Patel, M.J.; Anstrom, K.J.; Butler, J.; Voors, A.A.; Lam, C.S.P.; Ponikowski, P.; Temple, T.; Pieske, B.; Ezekowitz, J.; Hernandez, A.F.; Koglin, J.; O’Connor, C.M.; Multicenter, A. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator. JACC Heart Fail., 2018, 6(2), 96-104.
[http://dx.doi.org/10.1016/j.jchf.2017.08.013] [PMID: 29032136]
[4]
Butler, J.; Lam, C.S.P.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; O’Connor, C.M.; Pieske, B.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; Voors, A.A.; Wu, Y.; Carvalho, F.; Bamber, L.; Blaustein, R.O.; Roessig, L.; Armstrong, P.W. Rationale and design of the VITALITY-HFpEF trial. Circ. Heart Fail., 2019, 12(5), e005998.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.005998] [PMID: 31096775]
[5]
Ruehs, H.; Klein, D.; Frei, M.; Grevel, J.; Austin, R.; Becker, C.; Roessig, L.; Pieske, B.; Garmann, D.; Meyer, M. Population pharmacokinetics and pharmacodynamics of vericiguat in patients with heart failure and reduced ejection fraction. Clin. Pharmacokinet., 2021, 60(11), 1407-1421.
[http://dx.doi.org/10.1007/s40262-021-01024-y] [PMID: 34086190]
[6]
Boettcher, M.; Gerisch, M.; Lobmeyer, M.; Besche, N.; Thomas, D.; Gerrits, M.; Lemmen, J.; Mueck, W.; Radtke, M.; Becker, C. Metabolism and pharmacokinetic drug– drug interaction profile of vericiguat, a soluble guanylate cyclase stimulator: Results from preclinical and phase I healthy volunteer studies. Clin. Pharmacokinet., 2020, 59(11), 1407-1418.
[http://dx.doi.org/10.1007/s40262-020-00895-x] [PMID: 32458378]
[7]
Boettcher, M.; Loewen, S.; Gerrits, M.; Becker, C. Pharmacodynamic and pharmacokinetic interaction profile of vericiguat: Results from three randomized phase I studies in healthy volunteers. Clin. Pharmacokinet., 2021, 60(3), 337-351.
[http://dx.doi.org/10.1007/s40262-020-00935-6] [PMID: 33030703]
[8]
Wang, M.; Firrman, J.; Liu, L.; Yam, K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Res. Int., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/7010467] [PMID: 31737673]
[9]
Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 323-330.
[http://dx.doi.org/10.1080/17425255.2017.1251903] [PMID: 27766890]
[10]
Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.; Martins, N. The therapeutic potential of apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[11]
Brimson, J.M.; Onlamoon, N.; Tencomnao, T.; Thitilertdecha, P. Clerodendrum petasites S. Moore: The therapeutic potential of phytochemicals, hispidulin, vanillic acid, verbascoside, and apigenin. Biomed. Pharmacother., 2019, 118, 109319.
[http://dx.doi.org/10.1016/j.biopha.2019.109319] [PMID: 31404773]
[12]
Li, F.; Lang, F.; Zhang, H.; Xu, L.; Wang, Y.; Zhai, C.; Hao, E. Apigenin alleviates endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy. Oxid. Med. Cell. Longev., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/2302896] [PMID: 28828145]
[13]
Liu, H.J.; Fan, Y.L.; Liao, H.H.; Liu, Y.; Chen, S.; Ma, Z.G.; Zhang, N.; Yang, Z.; Deng, W.; Tang, Q.Z. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol. Cell. Biochem., 2017, 428(1-2), 9-21.
[http://dx.doi.org/10.1007/s11010-016-2913-9] [PMID: 28176247]
[14]
Sharma, S.; Sharma, D.; Dhobi, M.; Wang, D.; Tewari, D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol. Cell. Biochem., 2023.
[http://dx.doi.org/10.1007/s11010-023-04755-7] [PMID: 37171724]
[15]
Tomou, E.M.; Papakyriakopoulou, P.; Skaltsa, H.; Valsami, G.; Kadoglou, N.P.E. Bio-actives from natural products with potential cardioprotective properties: Isolation, identification, and pharmacological actions of apigenin, quercetin, and silibinin. Molecules, 2023, 28(5), 2387.
[http://dx.doi.org/10.3390/molecules28052387] [PMID: 36903630]
[16]
Thomas, S.D.; Jha, N.K.; Jha, S.K.; Sadek, B.; Ojha, S. Pharmacological and molecular insight on the cardioprotective role of apigenin. Nutrients, 2023, 15(2), 385.
[http://dx.doi.org/10.3390/nu15020385] [PMID: 36678254]
[17]
Center for Drug Evaluation and Research of the U.S. Department of Health and Human Services Food and Drug Administration. 2018. http://www.fda.gov/ Drugs/ GuidanceComplianceRegulatoryInformation/Guidances/ucm064964.htm
[18]
Zhang, Y.; Wang, C.; Xu, X.; Zhao, Z.; Su, X.; Zhu, H. Determination and metabolism of brexpiprazole following baicalin to rats by a novel developed UPLC-MS/MS. Arab. J. Chem., 2021, 14(12), 103430.
[http://dx.doi.org/10.1016/j.arabjc.2021.103430]
[19]
Boettcher, M.; Thomas, D.; Mueck, W.; Loewen, S.; Arens, E.; Yoshikawa, K.; Becker, C. Safety, pharmacodynamic, and pharmacokinetic characterization of vericiguat: Results from six phase I studies in healthy subjects. Eur. J. Clin. Pharmacol., 2021, 77(4), 527-537.
[http://dx.doi.org/10.1007/s00228-020-03023-7] [PMID: 33125516]
[20]
MacKenzie, P.; Gregory, P.; Lewinsky, R.; Yasmin, S.; Height, T.; McKinnon, R.; Gardnerstephen, D. Polymorphic variations in the expression of the chemical detoxifying UDP glucuronosyltransferases. Toxicol. Appl. Pharmacol., 2005, 207(2)(Suppl.), 77-83.
[http://dx.doi.org/10.1016/j.taap.2004.12.026] [PMID: 15979674]
[21]
Lee, J.A.; Ha, S.; Cho, E.; Choi, I. Resveratrol as a bioenhancer to improve anti-inflammatory activities of apigenin. Nutrients, 2015, 7(11), 9650-9661.
[http://dx.doi.org/10.3390/nu7115485] [PMID: 26610561]
[22]
Janssen, W.; Schwarz, T.; Bütehorn, U.; Steinke, W.; Sandmann, S.; Lang, D.; Kern, A.; Hucke, F.; Gerisch, M. Pharmacokinetics and mass balance of vericiguat in rats and dogs and distribution in rats. Xenobiotica, 2022, 52(5), 453-462.
[http://dx.doi.org/10.1080/00498254.2022.2082899] [PMID: 35616579]
[23]
Wu, W.; Hu, N.; Zhang, Q.; Li, Y.; Li, P.; Yan, R.; Wang, Y. In vitro glucuronidation of five rhubarb anthraquinones by intestinal and liver microsomes from humans and rats. Chem. Biol. Interact., 2014, 219, 18-27.
[http://dx.doi.org/10.1016/j.cbi.2014.05.006] [PMID: 24854283]
[24]
Liu, W.; Tang, L.; Ye, L.; Cai, Z.; Xia, B.; Zhang, J.; Hu, M.; Liu, Z. Species and gender differences affect the metabolism of emodin via glucuronidation. AAPS J., 2010, 12(3), 424-436.
[http://dx.doi.org/10.1208/s12248-010-9200-6] [PMID: 20467923]
[25]
Miles, K.K.; Stern, S.T.; Smith, P.C.; Kessler, F.K.; Ali, S.; Ritter, J.K. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: Evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab. Dispos., 2005, 33(10), 1513-1520.
[http://dx.doi.org/10.1124/dmd.105.004663] [PMID: 16033946]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy