Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Design, Synthesis and Characterization of Deoxycholic Acid-chalcone Conjugates as Antioxidant Agents

Author(s): Sejal Patel and Satyendra Mishra*

Volume 28, Issue 1, 2024

Published on: 17 January, 2024

Page: [32 - 39] Pages: 8

DOI: 10.2174/0113852728280936231221110245

Price: $65

conference banner
Abstract

The present article reports the synthesis, characterization, and antioxidant activity of the chalcone-deoxycholic acid conjugates. The structures of the synthesised bile acidchalcone conjugates have been determined using 1H and 13C NMR spectroscopy. According to the results of the DPPH experiment, compounds 5e (3, 4, 5-methoxy; IC50; 15.04 μg /ml) and 5f (4-hydroxy group; IC50; 11.73 μg /ml) had higher antioxidant activity than the control compound ascorbic acid (IC50; 20.72 μg /ml). The best conjugate was found to be 5f in the DPPH test (IC50: 11.73 μg /ml; 4-hydroxy group), while the best conjugate in the ABTS assay was found to be 5g (IC50: 67.97 μg /ml; pyridine group). It is straightforward to synthesize a huge library of bile acid-derived compounds and employ them in comprehensive structure-activity relationship investigations to identify the compounds with the best antioxidant activity.

Graphical Abstract

[1]
Kostanecki, S.V.; Tambor, J. Synthese des fisetins. J. Chem. Ber, 1921, 32, 1899.
[2]
Azad, M.; Munawar, M.A.; Siddiqui, H.L. Antimicrobial activity and synthesis of quinoline-based chalcones. J. Appl. Sci., 2007, 7(17), 2485-2489.
[http://dx.doi.org/10.3923/jas.2007.2485.2489]
[3]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[4]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[5]
Burlando, B.; Cornara, L.; Bottini-Massa, E. Herbal Principles in Cosmetics: Properties and Mechanisms of Action; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2010.
[http://dx.doi.org/10.1201/EBK1439812136]
[6]
Awasthi, S.K.; Mishra, N.; Kumar, B.; Sharma, M.; Bhattacharya, A.; Mishra, L.C.; Bhasin, V.K. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med. Chem. Res., 2009, 18(6), 407-420.
[http://dx.doi.org/10.1007/s00044-008-9137-9]
[7]
Lim, S.S.; Kim, H.S.; Lee, D.U. In vitro antimalarial activity of flavonoids and chalcones. Bull. Korean Chem. Soc., 2007, 28(12), 2495-2497.
[http://dx.doi.org/10.5012/bkcs.2007.28.12.2495]
[8]
Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivities of chalcones. Curr. Med. Chem., 1999, 6(12), 1125-1149.
[http://dx.doi.org/10.2174/0929867306666220401182509] [PMID: 10519918]
[9]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18(3), 1364-1370.
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[10]
Ilango, K.; Valentina, P.; Saluja, G. Synthesis and in-vitro anti-cancer activity of some substituted chalcone derivatives. Res. J. Pharm. Biol. Chem., 2010, 1, 354-359.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.071]
[11]
Achanta, G.; Modzelewska, A.; Feng, L.; Khan, S.R.; Huang, P. A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome. Mol. Pharmacol., 2006, 70(1), 426-433.
[http://dx.doi.org/10.1124/mol.105.021311] [PMID: 16636137]
[12]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[13]
Motta, L.F.; Gaudio, A.C.; Takahata, Y. Quantitative structure–activity relationships of a series of chalcone derivatives (1,3–diphenyl–2–propen–1–one) as anti Plasmodium falciparum agents (anti malaria agents). IE J. Mol. Design, 2006, 5, 555-569.
[14]
Hamdi, N.; Fischmeister, C.; Puerta, M.C.; Valerga, P. A rapid access to new coumarinyl chalcone and substituted chromeno[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities. Med. Chem. Res., 2010, 19, 1-16.
[http://dx.doi.org/10.1007/s00044-010-9326-1]
[15]
Lahtchev, K.L.; Batovska, D.I.; Parushev, S.P.; Ubiyvovk, V.M.; Sibirny, A.A. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur. J. Med. Chem., 2008, 43(10), 2220-2228.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.027] [PMID: 18280009]
[16]
Yadav, H.L.; Gupta, P.; Pawar, R.S.; Singour, P.K.; Patil, U.K. Synthesis and biological evaluation of anti-inflammatory activity of 1,3 diphenyl propenone derivatives. Med. Chem. Res., 2011, 20(4), 461-465.
[http://dx.doi.org/10.1007/s00044-010-9339-9]
[17]
Zhang, X.W.; Zhao, D.H.; Quan, Y.C.; Sun, L.P.; Yin, X.M.; Guan, L.P. Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives. Med. Chem. Res., 2010, 19(4), 403-412.
[http://dx.doi.org/10.1007/s00044-009-9202-z]
[18]
Kaushik, S.; Kumar, N.; Drabu, S. Synthesis and anti-convulsant activities of phenoxychalcones. T. Ph. Res., 2010, 3, 257-262.
[http://dx.doi.org/10.1055/s-0033-1337978]
[19]
Vasil’ev, R.F.; Kancheva, V.D.; Fedorova, G.F.; Batovska, D.I.; Trofimov, A.V. Antioxidant activity of chalcones: The chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates. Kinet. Catal., 2010, 51(4), 507-515.
[http://dx.doi.org/10.1134/S0023158410040087]
[20]
Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Natural and non-natural prenylated chalcones: Synthesis, cytotoxicity and anti-oxidative activity. Bioorg. Med. Chem., 2008, 16(8), 4286-4293.
[http://dx.doi.org/10.1016/j.bmc.2008.02.079] [PMID: 18343123]
[21]
Najafian, M.; Ebrahim-Habibi, A.; Hezareh, N.; Yaghmaei, P.; Parivar, K.; Larijani, B. Transchalcone: A novelsmall molecule inhibitor of mammalian alphaamylase. Mol. Biol. Rep., 2010, 10, 271-274.
[http://dx.doi.org/10.1007/s11033-010-0271-3] [PMID: 20857221]
[22]
Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J. Med. Chem., 2009, 52(9), 2818-2824.
[http://dx.doi.org/10.1021/jm801590u] [PMID: 19378991]
[23]
Gaede, B.J.; Mcdermott, L.L. Novel perfluoroalkyl‐substituted pyrazoles. 1. Hydroxypyrazoles. J. Heterocycl. Chem., 1993, 30(1), 49-54.
[http://dx.doi.org/10.1002/jhet.5570300110]
[24]
Abonia, R.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J.; Meier, H.; Lotero, E. An amberlyst15 mediated synthesis of new functionalized dioxoloquinolinone derivatives. J. Org. Chem., 2008, 2(1), 26-34.
[http://dx.doi.org/10.2174/1874095200801020026]
[25]
Fujimoto, C.; Yamasoba, T. Mitochondria-targeted antioxidants for treatment of hearing loss: A systematic review. Antioxidants, 2019, 8(4), 109.
[http://dx.doi.org/10.3390/antiox8040109] [PMID: 31022870]
[26]
Kirson, I.; Glotter, E. Recent developments in naturally occurring ergostane-type steroids. A review. J. Nat. Prod., 1981, 44(6), 633-647.
[http://dx.doi.org/10.1021/np50018a001]
[27]
Fetizon, M.; Kakis, F.J.; Ignatiadou-Ragoussis, V. Steroids derived from bile acids. Novel side-chain degradation scheme. J. Org. Chem., 1973, 38(25), 4308-4311.
[http://dx.doi.org/10.1021/jo00964a022] [PMID: 4778127]
[28]
Hanson, J.R. Steroids: Partial synthesis in medicinal chemistry. Nat. Prod. Rep., 2010, 27(6), 887-899.
[http://dx.doi.org/10.1039/c001262a] [PMID: 20424788]
[29]
Kakati, D.; Sarma, R.K.; Saikia, R.; Barua, N.C.; Sarma, J.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones. Steroids, 2013, 78(3), 321-326.
[http://dx.doi.org/10.1016/j.steroids.2012.12.003] [PMID: 23287649]
[30]
Piatak, D.M.; Wicha, J. Various approaches to the construction of aliphatic side chains of steroids and related compounds. Chem. Rev., 1978, 78, 199-241.
[http://dx.doi.org/10.1021/cr60313a002]
[31]
Boivin, R.P.; Luu-The, V.; Lachance, R.; Labrie, F.; Poirier, D. Structure-activity relationships of 17alpha-derivatives of estradiol as inhibitors of steroid sulfatase. J. Med. Chem., 2000, 43(23), 4465-4478.
[http://dx.doi.org/10.1021/jm0001166] [PMID: 11087571]
[32]
Roehrborn, C.G.; Boyle, P.; Nickel, J.C.; Hoefner, K.; Andriole, G. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology, 2002, 60(3), 434-441.
[http://dx.doi.org/10.1016/S0090-4295(02)01905-2] [PMID: 12350480]
[33]
Salvador, J.A.R.; Carvalho, J.F.S.; Neves, M.A.C.; Silvestre, S.M.; Leitão, A.J.; Silva, M.M.C.; Sá e Melo, M.L. Anticancer steroids: Linking natural and semi-synthetic compounds. Nat. Prod. Rep., 2013, 30(2), 324-374.
[http://dx.doi.org/10.1039/C2NP20082A] [PMID: 23151898]
[34]
The Bile Acids: Chemistry, Physiology and Metabolism; Danielsson, H.; Nair, P.P.; Kritchevsky, D., Eds.; Plenum Press: New York, 1973, pp. 1-32.
[35]
Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87(12), 1666-1683.
[36]
Mooranian, A.; Zamani, N.; Mikov, M.; Goločorbin-Kon, S.; Stojanovic, G.; Arfuso, F.; Al-Salami, H. Novel nano-encapsulation of probucol in micro-gels: Scanning electron micrograph characterizations, buoyancy profiling, and antioxidant assay analyses. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), 741-747.
[http://dx.doi.org/10.1080/21691401.2018.1511571] [PMID: 30260253]
[37]
Nurunnabi, M.; Khatun, Z.; Revuri, V.; Nafiujjaman, M.; Cha, S.; Cho, S.; Moo Huh, K.; Lee, Y. Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 2016, 6(78), 73986-74002.
[http://dx.doi.org/10.1039/C6RA10978K]
[38]
Yang, C.; Shao, Y.; Zhi, X.; Huan, Q.; Yu, X.; Yao, X.; Xu, H. Semisynthesis and quantitative structure–activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents. Bioorg. Med. Chem. Lett., 2013, 23(17), 4806-4812.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.099] [PMID: 23891182]
[39]
Aly, M.R.E.S.; Saad, H.A.; Mohamed, M.A.M. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2015, 25(14), 2824-2830.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.096] [PMID: 26025874]
[40]
Abdul-Reda, N.A.; Abd, A.S. Synthesis, characterization and biological activity of some chalcone derivatives of cholic acid. Asian J. Chem., 2018, 30(11), 2577-2581.
[http://dx.doi.org/10.14233/ajchem.2018.21666]
[41]
Singla, P.; Salunke, D.B. Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. Eur. J. Med. Chem., 2020, 187, 111909.
[http://dx.doi.org/10.1016/j.ejmech.2019.111909] [PMID: 31830636]
[42]
Mishra, R.; Mishra, S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids, 2020, 159, 108639.
[http://dx.doi.org/10.1016/j.steroids.2020.108639] [PMID: 32222373]
[43]
Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036.
[http://dx.doi.org/10.1016/j.bioorg.2022.106036] [PMID: 35878450]
[44]
Patel, S.; Mishra, S. Synthesis of bile acid-thiadiazole conjugates as antibacterial and antioxidant agents. Steroids, 2023, 198, 109273.
[http://dx.doi.org/10.1016/j.steroids.2023.109273] [PMID: 37460006]
[45]
Gülçin, İ. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr., 2005, 56(7), 491-499.
[http://dx.doi.org/10.1080/09637480500450248] [PMID: 16503560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy