Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Thiophene-based Solar Cell. A Review

Author(s): Maurizio D'Auria* and Lucia Emanuele

Volume 28, Issue 1, 2024

Published on: 23 January, 2024

Page: [21 - 31] Pages: 11

DOI: 10.2174/0113852728285515231230162315

Price: $65

Abstract

In recent years, perovskite solar cells, which use a hybrid inorganic-organic material, have also made remarkable progress and achieved a rapid increase in efficiency. The organic materials used are usually small conductive molecules, polymers or oligomers. The fused thiophenes, polythiophenes and olithiophenes used for this purpose are presented. The condensed thiophene-based small molecule for DSSCs shows important properties such as simplicity of synthesis and purification methods, well-defined and reproducible structures, but low power conversion efficiencies. Polymers of thiophene for DSSCs show high power conversion efficiencies, especially in ternary systems, even >19%; however, they have poor long-term stability because of the molecular size and packing properties of the polymer chains. Oligomers of thiophene for DSSCs have good long-term stability but low power conversion efficiencies.

Graphical Abstract

[1]
Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. Polymer-based solar cells. Mater. Today, 2007, 10(11), 28-33.
[http://dx.doi.org/10.1016/S1369-7021(07)70276-6]
[2]
D'Auria, M. Photochemical and photophysical behavior of thiophene. In: Advances in Heterocyclic Chemistry; Elsevier, 2011; 104, pp. 127-390.
[3]
Murase, C. Material for forming optical absorption layer of solar cell. J.P. Patent 2001156307A, 2001.
[4]
Nitha, P.R.; Soman, S.; John, J. Indole fused heterocycles as sensitizers in dye-sensitized solar cells: an overview. Mater. Advances, 2021, 2(19), 6136-6168.
[http://dx.doi.org/10.1039/D1MA00499A]
[5]
Huang, P.; Du, J.; Biewer, M.C.; Stefan, M.C. Developments of furan and benzodifuran semiconductors for organic photovoltaics. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(12), 6244-6257.
[http://dx.doi.org/10.1039/C4TA07111E]
[6]
Behera, A.K.; Sen, A. Pyrrole – Best additional spacers for azo based dye sensitized solar cells: A computational study. J. Photochem. Photobiol. Chem., 2022, 433, 114146.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114146]
[7]
Do, T.T.; Stephen, M.; Chan, K.L.; Manzhos, S.; Burn, P.L.; Sonar, P. Pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP) end capped with napthalimide or phthalimide: Novel small molecular acceptors for organic solar cells. Molecules, 2020, 25(20), 4700.
[http://dx.doi.org/10.3390/molecules25204700] [PMID: 33066513]
[8]
Sheokand, M.; Rout, Y.; Misra, R. Recent development of pyridine based charge transporting materials for organic light-emitting diodes and perovskite solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2022, 10(18), 6992-7017.
[http://dx.doi.org/10.1039/D2TC00387B]
[9]
Sekar, S.; Kumar, K.A.; Sree, V.G.; Gnanamoorthy, G.; Lee, S.; Kim, D.Y.; Manikandan, R. Conjugated oxazole‐based interfacial materials for efficient and stable inverted polymer solar cell with an efficiency of 16.52%. Int. J. Energy Res., 2022, 46(12), 16791-16798.
[http://dx.doi.org/10.1002/er.8342]
[10]
Agarwal, R.; Vyas, Y.; Chundawat, P.; Ameta, C. Outdoor performance and stability assessment of dye-sensitized solar cells (DSSCs). In: Solar Radiation - Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications; IntechOpen, 2021.
[http://dx.doi.org/10.5772/intechopen.98621]
[11]
Kumaresan, P.; Vegiraju, S.; Ezhumalai, Y.; Yau, S.; Kim, C.; Lee, W.H.; Chen, M.C. Fused-thiophene based materials for organic photovoltaics and dye-sensitized solar cells. Polymers, 2014, 6(10), 2645-2669.
[http://dx.doi.org/10.3390/polym6102645]
[12]
Shellaiah, M.; Fang, H.P.; Lin, Y.L.; Hsu, Y.C.; Lin, J.T.; Lin, H.C. Synthesis of metal-free organic dyes containing tris(dodecyloxy)phenyl and dithienothiophenyl units and a study of their mesomorphic and photovoltaic properties. Tetrahedron, 2013, 69(9), 2124-2130.
[http://dx.doi.org/10.1016/j.tet.2013.01.009]
[13]
Dong, H.; Liang, M.; Zhang, C.; Wu, Y.; Sun, Z.; Xue, S. Twisted fused-ring thiophene organic dye-sensitized solar cells. J. Phys. Chem. C, 2016, 120(40), 22822-22830.
[http://dx.doi.org/10.1021/acs.jpcc.6b06604]
[14]
Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C.W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H.Y.; Djurišić, A.B.; He, Z.; Guo, X. Dopant‐free small‐molecule hole‐transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv. Mater., 2019, 31(35), 1902781.
[http://dx.doi.org/10.1002/adma.201902781] [PMID: 31292989]
[15]
Rasool, A.; Zahid, S.; Ans, M.; Muhammad, S.; Ayub, K.; Iqbal, J. Bithieno thiophene-based small molecules for application as donor materials for organic solar cells and hole transport materials for perovskite solar cells. ACS Omega, 2022, 7(1), 844-862.
[http://dx.doi.org/10.1021/acsomega.1c05504] [PMID: 35036751]
[16]
Abbas, F.; Mohammadi, M.D.; Louis, H.; Amodu, I.O.; Charlie, D.E.; Gber, T.E. Design of new bithieno thiophene (BTTI) central core-based small molecules as efficient hole transport materials for perovskite solar cells and donor materials for organic solar cells. Mater. Sci. Eng. B, 2023, 291, 116392.
[http://dx.doi.org/10.1016/j.mseb.2023.116392]
[17]
Isci, R.; Unal, M.; Yesil, T.; Ekici, A.; Sütay, B.; Zafer, C.; Ozturk, T. Thieno[3,2-b]thiophene and triphenylamine-based hole transport materials for perovskite solar cells. Front. Mater., 2023, 10, 1125462.
[http://dx.doi.org/10.3389/fmats.2023.1125462]
[18]
Al-Ibrahim, M.; Roth, H-K.; Zhokhavets, U.; Gobsch, G.; Sensfuss, S. Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Ener. Sol. Cells, 2005, 85, 13-20.
[19]
Hiorns, R.C.; de Bettignies, R.; Leroy, J.; Bailly, S.; Firon, M.; Sentein, C.; Khoukh, A.; Preud’homme, H.; Dagron-Lartigau, C. High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly(3-hexylthiophene) or poly(3-butylthiophene). Adv. Funct. Mater., 2006, 16(17), 2263-2273.
[http://dx.doi.org/10.1002/adfm.200600005]
[20]
Nguyen, L.H.; Hoppe, H.; Erb, T.; Günes, S.; Gobsch, G.; Sariciftci, N.S. Effects of annealing on the nanomorphology and performance of poly (alkylthiophene): fullerene bulk‐heterojunction solar cells. Adv. Funct. Mater., 2007, 17(7), 1071-1078.
[http://dx.doi.org/10.1002/adfm.200601038]
[21]
Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007, 317(5835), 222-225.
[http://dx.doi.org/10.1126/science.1141711] [PMID: 17626879]
[22]
Xin, H.; Kim, F.S.; Jenekhe, S.A. Highly efficient solar cells based on poly(3-butylthiophene) nanowires. J. Am. Chem. Soc., 2008, 130(16), 5424-5425.
[http://dx.doi.org/10.1021/ja800411b] [PMID: 18376831]
[23]
D’Auria, M.; Guarnaccio, A.; Racioppi, R.; Santagata, A.; Teghil, R. Synthesis and photophysical properties of some dithienylbenzo[c]thiophene derivatives. Heterocycles, 2015, 91(2), 313-331.
[http://dx.doi.org/10.3987/COM-14-13145]
[24]
Li, G.; Gong, X.; Zhang, J.; Liu, Y.; Feng, S.; Li, C.; Bo, Z. 4-Alkyl-3,5-difluorophenyl-substituted benzodithiophene-based wide band gap polymers for high-efficiency polymer solar cells. ACS Appl. Mater. Interfaces, 2016, 8(6), 3686-3692.
[http://dx.doi.org/10.1021/acsami.5b08769] [PMID: 26646056]
[25]
Liu, C.; Wang, K.; Hu, X.; Yang, Y.; Hsu, C.H.; Zhang, W.; Xiao, S.; Gong, X.; Cao, Y. Molecular weight effect on the efficiency of polymer solar cells. ACS Appl. Mater. Interfaces, 2013, 5(22), 12163-12167.
[http://dx.doi.org/10.1021/am404157t] [PMID: 24180708]
[26]
Kang, H.; Uddin, M.A.; Lee, C.; Kim, K.H.; Nguyen, T.L.; Lee, W.; Li, Y.; Wang, C.; Woo, H.Y.; Kim, B.J. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: Its effect on polymer aggregation and phase separation. J. Am. Chem. Soc., 2015, 137(6), 2359-2365.
[http://dx.doi.org/10.1021/ja5123182] [PMID: 25605316]
[27]
Zhu, D.; Sun, L.; Bao, X.; Wen, S.; Han, L.; Gu, C.; Guo, J.; Yang, R. Low band-gap polymers based on easily synthesized thioester-substituted thieno[3,4-b]thiophene for polymer solar cells. RSC Advances, 2015, 5(77), 62336-62342.
[http://dx.doi.org/10.1039/C5RA13381E]
[28]
Liang, Y.; Yu, L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res., 2010, 43(9), 1227-1236.
[http://dx.doi.org/10.1021/ar1000296] [PMID: 20853907]
[29]
Lee, W.; Jung, J.W. A wide band gap polymer based on indacenodithieno[3,2-b]thiophene for high-performance bulk heterojunction polymer solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(2), 712-719.
[http://dx.doi.org/10.1039/C6TA08591A]
[30]
Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N.D.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T.D.; Heeney, M. A novel alkylated indacenodithieno[3,2‐b]thiophene‐based polymer for high‐performance field‐effect transistors. Adv. Mater., 2016, 28(20), 3922-3927.
[http://dx.doi.org/10.1002/adma.201504092] [PMID: 26514111]
[31]
Fuller, L.S.; Iddon, B.; Smith, K.A. Thienothiophenes. Part 2.1 Synthesis, metallation and bromine→lithium exchange reactions of thieno[3,2-b]thiophene and its polybromo derivatives. J. Chem. Soc., Perkin Trans. 1, 1997, (22), 3465-3470.
[http://dx.doi.org/10.1039/a701877k]
[32]
Liao, Z.; Hu, D.; Tang, H.; Huang, P.; Singh, R.; Chung, S.; Cho, K.; Kumar, M.; Hou, L.; Chen, Q.; Yu, W.; Chen, H.; Yang, K.; Kan, Z.; Liu, F.; Xiao, Z.; Li, G.; Lu, S. 18.42% efficiency polymer solar cells enabled by terpolymer donors with optimal miscibility and energy levels. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(14), 7878-7887.
[http://dx.doi.org/10.1039/D1TA10644A]
[33]
Deng, X.; Fang, Y.; Huang, B.; Liao, F.; Liu, K.; Zhang, J.; Chen, S.; Kim, S.; Yang, C.; Ye, D.; Liu, J.; Chen, L. Terpolymerization strategy to achieve high-efficiency organic solar cells via construction of D1–A–D1–D2-type polymer donors. Chem. Commun., 2022, 58(84), 11823-11826.
[http://dx.doi.org/10.1039/D2CC04999F] [PMID: 36190499]
[34]
Bin, H.; Li, J.; Caiazzo, A.; Wienk, M.M.; Li, Y.; Janssen, R.A.J. Preparation of efficient organic solar cells based on terpolymer donors via a monomer‐ratio insensitive side‐chain hybridization strategy. ChemSusChem, 2023, 16(6), e202300006.
[http://dx.doi.org/10.1002/cssc.202300006] [PMID: 36601966]
[35]
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull., 2020, 65(4), 272-275.
[http://dx.doi.org/10.1016/j.scib.2020.01.001] [PMID: 36659090]
[36]
Jin, K.; Xiao, Z.; Ding, L. D18, an eximious solar polymer! J. Semicond., 2021, 42(1), 010502.
[http://dx.doi.org/10.1088/1674-4926/42/1/010502]
[37]
Liu, Z.; Zhang, M.; Zhang, L.; Jeong, S.Y.; Geng, S.; Woo, H.Y.; Zhang, J.; Zhang, F.; Ma, X. Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem. Eng. J., 2023, 471, 144711.
[http://dx.doi.org/10.1016/j.cej.2023.144711]
[38]
Zhou, M.; Liao, C.; Duan, Y.; Xu, X.; Yu, L.; Li, R.; Peng, Q. 19.10% Efficiency and 80.5% fill factor layer‐by‐layer organic solar cells realized by 4‐bis(2‐thienyl)pyrrole‐2,5‐dione based polymer additives for inducing vertical segregation morphology. Adv. Mater., 2023, 35(6), 2208279.
[http://dx.doi.org/10.1002/adma.202208279] [PMID: 36411949]
[39]
Segura, J.L.; Martín, N.; Guldi, D.M. Materials for organic solar cells: The C 60/π-conjugated oligomer approach. Chem. Soc. Rev., 2005, 34(1), 31-47.
[http://dx.doi.org/10.1039/B402417F] [PMID: 15643488]
[40]
Eckert, J.F.; Nicoud, J.F.; Nierengarten, J.F.; Liu, S.G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. Fullerene-oligophenylenevinylene hybrids: Synthesis, electronic properties, and incorporation in photovoltaic devices. J. Am. Chem. Soc., 2000, 122(31), 7467-7479.
[http://dx.doi.org/10.1021/ja9941072]
[41]
Pasimeni, L.; Maniero, A.L.; Ruzzi, M.; Prato, M.; Ros, T.D.; Barbarella, G.; Zambianchi, M. Photoinduced electron transfer in sexithiophene/fullerene derivative blends: evidence of long-lived spin correlated radical pairs. Chem. Commun., 1999, (5), 429-430.
[http://dx.doi.org/10.1039/a809036j]
[42]
Ouali, L.; Krasnikov, V.V.; Stalmach, U.; Hadziioannou, G. Oligo(phenylenevinylene)/fullerene photovoltaic cells: Influence of morphology. Adv. Mater., 1999, 11(18), 1515-1518.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199912)11:18<1515::AID-ADMA1515>3.0.CO;2-A]
[43]
Andreev, A.Y.; Matt, G.; Sitter, H.; Brabec, C.J.; Badt, D.; Neugebauer, H.; Sariciftci, N.S. High oriented epitaxial oligomer/fullerene structures grown by hot wall epitaxy. Synth. Met., 2001, 116(1-3), 235-239.
[http://dx.doi.org/10.1016/S0379-6779(00)00459-8]
[44]
Noma, N.; Tsuzuki, T.; Shirota, Y. αThiophene octamer as a new class of photo‐active material for photoelectrical conversion. Adv. Mater., 1995, 7(7), 647-648.
[http://dx.doi.org/10.1002/adma.19950070709]
[45]
Zhang, F.; Wu, D.; Xu, Y.; Feng, X. Thiophene-based conjugated oligomers for organic solar cells. J. Mater. Chem., 2011, 21(44), 17590-17600.
[http://dx.doi.org/10.1039/c1jm12801a]
[46]
Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; Kang, S.H.; Chen, S.; Yang, C.; Brus, J.; Hou, J.; Gao, F.; Li, Y.; Li, Y. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy, 2021, 6(11), 1045-1053.
[http://dx.doi.org/10.1038/s41560-021-00923-5]
[47]
Liu, F.; Zhou, L.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; Feng, L.; Yi, Y.; Zhang, W.; Zhu, X. Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two‐in‐one strategy. Adv. Mater., 2021, 33(27), 2100830.
[http://dx.doi.org/10.1002/adma.202100830] [PMID: 34048104]
[48]
Cheng, Y.; Huang, B.; Huang, X.; Zhang, L.; Kim, S.; Xie, Q.; Liu, C.; Heumüller, T.; Liu, Z.; Zhang, Y.; Wu, F.; Yang, C.; Brabec, C.J.; Chen, Y.; Chen, L. Oligomer‐assisted photoactive layers enable >18% efficiency of organic solar cells. Angew. Chem. Int. Ed., 2022, 61(21), e202200329.
[http://dx.doi.org/10.1002/anie.202200329] [PMID: 35263008]
[49]
Fu, J.; Fong, P.W.K.; Liu, H.; Huang, C.S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.M.; Yang, Y.; Li, G. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun., 2023, 14(1), 1760.
[http://dx.doi.org/10.1038/s41467-023-37526-5] [PMID: 36997533]
[50]
Zhao, Y.; Procel, P.; Smets, A.; Mazzarella, L.; Han, C.; Yang, G.; Cao, L.; Yao, Z.; Weeber, A.; Zeman, M.; Isabella, O. The effects of (i)a-Si:H deposition temperature on high-efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl., 2022, 1-11.
[51]
Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Paviet-Salomon, B.; Moon, S.J.; Allebé, C.; Despeisse, M.; Nicolay, S.; De Wolf, S.; Niesen, B.; Ballif, C. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-Terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett., 2016, 1(2), 474-480.
[http://dx.doi.org/10.1021/acsenergylett.6b00254]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy