Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Potential Correlation between Gene Mutations and Metabolic Changes in Acute Myeloid Leukemia

Author(s): Aili Jiang, Zhiying Hou, Bingyan Yu, Ning Wang* and Bin Zhang*

Volume 14, Issue 7, 2024

Published on: 16 January, 2024

Article ID: e160124225694 Pages: 14

DOI: 10.2174/0122103155277735231122105519

Price: $65

Abstract

Acute myeloid leukemia (AML) is a common type of leukemia. However, the understanding of AML remains insufficient. The pathological progression of AML is closely related to chromosome abnormalities and genetic mutations. Gene mutation is an important factor in the pathogenesis of AML and a potential cause of drug resistance. Recent studies have shown that gene mutations in AML can cause metabolic changes. Metabolites, as downstream products of human physiological activities, can amplify physiological and disease-related signals. Therefore, the analysis of metabolite markers related to gene mutations can be used for early prediction of the occurrence of the disease. This review describes the types and significance of AML gene mutations and analyzes the characteristics of metabolic changes related to gene mutations.

Graphical Abstract

[1]
Stone, R.M.; O’Donnell, M.R.; Sekeres, M.A. Acute myeloid leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2004, 2004(1), 98-117.
[http://dx.doi.org/10.1182/asheducation-2004.1.98] [PMID: 15561679]
[2]
Nagel, G.; Weber, D.; Fromm, E.; Erhardt, S.; Lübbert, M.; Fiedler, W.; Kindler, T.; Krauter, J.; Brossart, P.; Kündgen, A.; Salih, H.R.; Westermann, J.; Wulf, G.; Hertenstein, B.; Wattad, M.; Götze, K.; Kraemer, D.; Heinicke, T.; Girschikofsky, M.; Derigs, H.G.; Horst, H.A.; Rudolph, C.; Heuser, M.; Göhring, G.; Teleanu, V.; Bullinger, L.; Thol, F.; Gaidzik, V.I.; Paschka, P.; Döhner, K.; Ganser, A.; Döhner, H.; Schlenk, R.F. Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann. Hematol., 2017, 96(12), 1993-2003.
[http://dx.doi.org/10.1007/s00277-017-3150-3] [PMID: 29090343]
[3]
Knoble, N.B.; Alderfer, M.A.; Hossain, M.J. Socioeconomic status (SES) and childhood acute myeloid leukemia (AML) mortality risk: Analysis of SEER data. Cancer Epidemiol., 2016, 44, 101-108.
[http://dx.doi.org/10.1016/j.canep.2016.07.007] [PMID: 27543948]
[4]
Ferrara, F.; Schiffer, C.A. Acute myeloid leukaemia in adults. Lancet, 2013, 381(9865), 484-495.
[http://dx.doi.org/10.1016/S0140-6736(12)61727-9] [PMID: 23399072]
[5]
Finn, L.; Sproat, L.; Heckman, M.G.; Jiang, L.; Diehl, N.N.; Ketterling, R.; Tibes, R.; Valdez, R.; Foran, J. Epidemiology of adult acute myeloid leukemia: Impact of exposures on clinical phenotypes and outcomes after therapy. Cancer Epidemiol., 2015, 39(6), 1084-1092.
[http://dx.doi.org/10.1016/j.canep.2015.09.003] [PMID: 26365691]
[6]
Musharraf, S.G.; Siddiqui, A.J.; Shamsi, T.; Choudhary, M.I.; Rahman, A. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy. Sci. Rep., 2016, 6(1), 30693.
[http://dx.doi.org/10.1038/srep30693] [PMID: 27480133]
[7]
Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; Lo-Coco, F.; Naoe, T.; Niederwieser, D.; Ossenkoppele, G.J.; Sanz, M.A.; Sierra, J.; Tallman, M.S.; Löwenberg, B.; Bloomfield, C.D. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood, 2010, 115(3), 453-474.
[http://dx.doi.org/10.1182/blood-2009-07-235358] [PMID: 19880497]
[8]
Creutzig, U.; van den Heuvel-Eibrink, M.M.; Gibson, B.; Dworzak, M.N.; Adachi, S.; de Bont, E.; Harbott, J.; Hasle, H.; Johnston, D.; Kinoshita, A.; Lehrnbecher, T.; Leverger, G.; Mejstrikova, E.; Meshinchi, S.; Pession, A.; Raimondi, S.C.; Sung, L.; Stary, J.; Zwaan, C.M.; Kaspers, G.J.L.; Reinhardt, D. Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel. Blood, 2012, 120(16), 3187-3205.
[http://dx.doi.org/10.1182/blood-2012-03-362608] [PMID: 22879540]
[9]
Percival, M.E.; Lai, C.; Estey, E.; Hourigan, C.S. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood Rev., 2017, 31(4), 185-192.
[http://dx.doi.org/10.1016/j.blre.2017.01.003] [PMID: 28190619]
[10]
Al-Mawali, A.; Gillis, D.; Hissaria, P.; Lewis, I. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am. J. Clin. Pathol., 2008, 129(6), 934-945.
[http://dx.doi.org/10.1309/FY0UMAMM91VPMR2W] [PMID: 18480011]
[11]
Bendall, S.C.; Nolan, G.P. From single cells to deep phenotypes in cancer. Nat. Biotechnol., 2012, 30(7), 639-647.
[http://dx.doi.org/10.1038/nbt.2283] [PMID: 22781693]
[12]
Konn, Z.J.; Wright, S.L.; Barber, K.E.; Harrison, C.J. Fluorescence in situ hybridization (FISH) as a tool for the detection of significant chromosomal abnormalities in childhood leukaemia. Methods Mol. Biol., 2009, 538, 29-55.
[http://dx.doi.org/10.1007/978-1-59745-418-6_3] [PMID: 19277578]
[13]
Halling, K.C.; Kipp, B.R. Fluorescence in situ hybridization in diagnostic cytology. Hum. Pathol., 2007, 38(8), 1137-1144.
[http://dx.doi.org/10.1016/j.humpath.2007.04.015] [PMID: 17640552]
[14]
Shen, Y.; Zhu, Y.M.; Fan, X.; Shi, J.Y.; Wang, Q.R.; Yan, X.J.; Gu, Z.H.; Wang, Y.Y.; Chen, B.; Jiang, C.L.; Yan, H.; Chen, F.F.; Chen, H.M.; Chen, Z.; Jin, J.; Chen, S.J. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood, 2011, 118(20), 5593-5603.
[http://dx.doi.org/10.1182/blood-2011-03-343988] [PMID: 21881046]
[15]
Yang, F.; Anekpuritanang, T.; Press, R.D. Clinical utility of next-generation sequencing in acute myeloid eukemia. Mol. Diagn. Ther., 2020, 24(1), 1-13.
[http://dx.doi.org/10.1007/s40291-019-00443-9] [PMID: 31848884]
[16]
Kreitz, J.; Schönfeld, C.; Seibert, M.; Stolp, V.; Alshamleh, I.; Oellerich, T.; Steffen, B.; Schwalbe, H.; Schnütgen, F.; Kurrle, N.; Serve, H. Metabolic plasticity of acute myeloid leukemia. Cells, 2019, 8(8), 805.
[http://dx.doi.org/10.3390/cells8080805] [PMID: 31370337]
[17]
Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; Gundem, G.; Van Loo, P.; Martincorena, I.; Ganly, P.; Mudie, L.; McLaren, S.; O’Meara, S.; Raine, K.; Jones, D.R.; Teague, J.W.; Butler, A.P.; Greaves, M.F.; Ganser, A.; Döhner, K.; Schlenk, R.F.; Döhner, H.; Campbell, P.J. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med., 2016, 374(23), 2209-2221.
[http://dx.doi.org/10.1056/NEJMoa1516192] [PMID: 27276561]
[18]
Tiziani, S.; Kang, Y.; Harjanto, R.; Axelrod, J.; Piermarocchi, C.; Roberts, W.; Paternostro, G. Metabolomics of the tumor microenvironment in pediatric acute lymphoblastic leukemia. PLoS One, 2013, 8(12), e82859.
[http://dx.doi.org/10.1371/journal.pone.0082859] [PMID: 24349380]
[19]
Beger, R. A review of applications of metabolomics in cancer. Metabolites, 2013, 3(3), 552-574.
[http://dx.doi.org/10.3390/metabo3030552] [PMID: 24958139]
[20]
Stockard, B.; Garrett, T.; Guingab-Cagmat, J.; Meshinchi, S.; Lamba, J. Distinct metabolic features differentiating FLT3-ITD AML from FLT3-WT childhood acute myeloid leukemia. Sci. Rep., 2018, 8(1), 5534.
[http://dx.doi.org/10.1038/s41598-018-23863-9] [PMID: 29615816]
[21]
Wang, Y.; Zhang, L.; Chen, W.L.; Wang, J.H.; Li, N.; Li, J.M.; Mi, J.Q.; Zhang, W.N.; Li, Y.; Wu, S.F.; Jin, J.; Wang, Y.G.; Huang, H.; Chen, Z.; Chen, S.J.; Tang, H. Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. J. Proteome Res., 2013, 12(10), 4393-4401.
[http://dx.doi.org/10.1021/pr400403p] [PMID: 23998518]
[22]
Chen, W.L.; Wang, J.H.; Zhao, A.H.; Xu, X.; Wang, Y.H.; Chen, T.L.; Li, J.M.; Mi, J.Q.; Zhu, Y.M.; Liu, Y.F.; Wang, Y.Y.; Jin, J.; Huang, H.; Wu, D.P.; Li, Y.; Yan, X.J.; Yan, J.S.; Li, J.Y.; Wang, S.; Huang, X.J.; Wang, B.S.; Chen, Z.; Chen, S.J.; Jia, W. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood, 2014, 124(10), 1645-1654.
[http://dx.doi.org/10.1182/blood-2014-02-554204] [PMID: 25006128]
[23]
Ellis, D.I.; Goodacre, R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 2006, 131(8), 875-885.
[http://dx.doi.org/10.1039/b602376m] [PMID: 17028718]
[24]
Tiziani, S.; Lodi, A.; Khanim, F.L.; viant, M.R.; Bunce, C.M.; Günther, U.L. Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. PLoS One, 2009, 4(1), e4251.
[http://dx.doi.org/10.1371/journal.pone.0004251] [PMID: 19158949]
[25]
Stäubert, C.; Bhuiyan, H.; Lindahl, A.; Broom, O.J.; Zhu, Y.; Islam, S.; Linnarsson, S.; Lehtiö, J.; Nordström, A. Rewired metabolism in drug-resistant leukemia cells: A metabolic switch hallmarked by reduced dependence on exogenous glutamine. J. Biol. Chem., 2015, 290(13), 8348-8359.
[http://dx.doi.org/10.1074/jbc.M114.618769] [PMID: 25697355]
[26]
Southam, A.D.; Khanim, F.L.; Hayden, R.E.; Constantinou, J.K.; Koczula, K.M.; Michell, R.H.; viant, M.R.; Drayson, M.T.; Bunce, C.M. Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids. Cancer Res., 2015, 75(12), 2530-2540.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0202] [PMID: 25943877]
[27]
Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine. Mass Spectrom. Rev., 2019, 38(3), 221-238.
[http://dx.doi.org/10.1002/mas.21548] [PMID: 29073341]
[28]
Wojcicki, A.V.; Kasowski, M.M.; Sakamoto, K.M.; Lacayo, N. Metabolomics in acute myeloid leukemia. Mol. Genet. Metab., 2020, 130(4), 230-238.
[http://dx.doi.org/10.1016/j.ymgme.2020.05.005] [PMID: 32457018]
[29]
Wei, R.; Li, G.; Seymour, A.B. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem., 2010, 82(13), 5527-5533.
[http://dx.doi.org/10.1021/ac100331b] [PMID: 20524683]
[30]
Dalton, W.B.; Helmenstine, E.; Walsh, N.; Gondek, L.P.; Kelkar, D.S.; Read, A.; Natrajan, R.; Christenson, E.S.; Roman, B.; Das, S.; Zhao, L.; Leone, R.D.; Shinn, D.; Groginski, T.; Madugundu, A.K.; Patil, A.; Zabransky, D.J.; Medford, A.; Lee, J.; Cole, A.J.; Rosen, M.; Thakar, M.; Ambinder, A.; Donaldson, J.; DeZern, A.E.; Cravero, K.; Chu, D.; Madero-Marroquin, R.; Pandey, A.; Hurley, P.J.; Lauring, J.; Park, B.H. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J. Clin. Invest., 2019, 129(11), 4708-4723.
[http://dx.doi.org/10.1172/JCI125022] [PMID: 31393856]
[31]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[32]
Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; International Agency for Research on Cancer Press Lyon: France, 2008.
[33]
Cazzola, M. Introduction to a review series: The 2016 revision of the WHO classification of tumors of hematopoietic and lymphoid tissues. Blood, 2016, 127(20), 2361-2364.
[http://dx.doi.org/10.1182/blood-2016-03-657379] [PMID: 27069255]
[34]
Bacher, U.; Schnittger, S.; Haferlach, T. Molecular genetics in acute myeloid leukemia. Curr. Opin. Oncol., 2010, 22(6), 646-655.
[http://dx.doi.org/10.1097/CCO.0b013e32833ed806] [PMID: 20805748]
[35]
Murati, A.; Brecqueville, M.; Devillier, R.; Mozziconacci, M.J.; Gelsi-Boyer, V.; Birnbaum, D. Myeloid malignancies: mutations, models and management. BMC Cancer, 2012, 12(1), 304.
[http://dx.doi.org/10.1186/1471-2407-12-304] [PMID: 22823977]
[36]
Kansal, R.; Kansal, R. Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification. Cancer Biol. Med., 2016, 13(1), 41-54.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0001] [PMID: 27144061]
[37]
Small, D. FLT3 mutations: Biology and treatment. Hematology (Am. Soc. Hematol. Educ. Program), 2006, 2006(1), 178-184.
[http://dx.doi.org/10.1182/asheducation-2006.1.178] [PMID: 17124058]
[38]
McCormick, S.R.; McCormick, M.J.; Grutkoski, P.S.; Ducker, G.S.; Banerji, N.; Higgins, R.R.; Mendiola, J.R.; Reinartz, J.J. FLT3 mutations at diagnosis and relapse in acute myeloid leukemia: cytogenetic and pathologic correlations, including cuplike blast morphology. Arch. Pathol. Lab. Med., 2010, 134(8), 1143-1151.
[http://dx.doi.org/10.5858/2009-0292-OA.1] [PMID: 20670134]
[39]
Döhner, K.; Schlenk, R.F.; Habdank, M.; Scholl, C.; Rücker, F.G.; Corbacioglu, A.; Bullinger, L.; Fröhling, S.; Döhner, H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood, 2005, 106(12), 3740-3746.
[http://dx.doi.org/10.1182/blood-2005-05-2164] [PMID: 16051734]
[40]
Smith, M.L.; Cavenagh, J.D.; Lister, T.A.; Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N. Engl. J. Med., 2004, 351(23), 2403-2407.
[http://dx.doi.org/10.1056/NEJMoa041331] [PMID: 15575056]
[41]
Van Gestel, C.A.M.; Van Brummelen, T.C. Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms. Ecotoxicology, 1996, 5(4), 217-225.
[http://dx.doi.org/10.1007/BF00118992] [PMID: 24193812]
[42]
Hannum, C.; Culpepper, J.; Campbell, D.; McClanahan, T.; Zurawski, S.; Kastelein, R.; Bazan, J.F.; Hudak, S.; Wagner, J.; Mattson, J.; Luh, J.; Duda, G.; Martina, N.; Peterson, D.; Menon, S.; Shanafelt, A.; Muench, M.; Kelner, G.; Namikawa, R.; Rennick, D.; Roncarolo, M-G.; Zlotnik, A.; Rosnet, O.; Dubreuil, P.; Birnbaum, D.; Lee, F. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature, 1994, 368(6472), 643-648.
[http://dx.doi.org/10.1038/368643a0] [PMID: 8145851]
[43]
Grafone, T.; Palmisano, M.; Nicci, C.; Storti, S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol. Rev., 2012, 6(1), 8.
[http://dx.doi.org/10.4081/oncol.2012.e8] [PMID: 25992210]
[44]
Brandts, C.H.; Sargin, B.; Rode, M.; Biermann, C.; Lindtner, B.; Schwäble, J.; Buerger, H.; Müller-Tidow, C.; Choudhary, C.; McMahon, M.; Berdel, W.E.; Serve, H. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res., 2005, 65(21), 9643-9650.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0422] [PMID: 16266983]
[45]
Pillinger, G.; Abdul-Aziz, A.; Zaitseva, L.; Lawes, M.; MacEwan, D.J.; Bowles, K.M.; Rushworth, S.A. Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia. Sci. Rep., 2015, 5(1), 12949.
[http://dx.doi.org/10.1038/srep12949] [PMID: 26292723]
[46]
Levis, M.; Small, D. FLT3: ITDoes matter in leukemia. Leukemia, 2003, 17(9), 1738-1752.
[http://dx.doi.org/10.1038/sj.leu.2403099] [PMID: 12970773]
[47]
Levis, M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology (Am. Soc. Hematol. Educ. Program), 2013, 2013(1), 220-226.
[http://dx.doi.org/10.1182/asheducation-2013.1.220] [PMID: 24319184]
[48]
Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia, 2019, 33(2), 299-312.
[http://dx.doi.org/10.1038/s41375-018-0357-9] [PMID: 30651634]
[49]
Breitenbuecher, F.; Schnittger, S.; Grundler, R.; Markova, B.; Carius, B.; Brecht, A.; Duyster, J.; Haferlach, T.; Huber, C.; Fischer, T. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood, 2009, 113(17), 4074-4077.
[http://dx.doi.org/10.1182/blood-2007-11-125476] [PMID: 18483393]
[50]
Small, D. Targeting FLT3 for the treatment of leukemia. Semin. Hematol., 2008, 45(3), S17-S21.
[http://dx.doi.org/10.1053/j.seminhematol.2008.07.007] [PMID: 18760705]
[51]
Chen, Y.; Pan, Y.; Guo, Y.; Zhao, W.; Ho, W.T.; Wang, J.; Xu, M.; Yang, F.C.; Zhao, Z.J. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig., 2017, 4(6), 48.
[http://dx.doi.org/10.21037/sci.2017.05.04] [PMID: 28607922]
[52]
Pratz, K.W.; Sato, T.; Murphy, K.M.; Stine, A.; Rajkhowa, T.; Levis, M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood, 2010, 115(7), 1425-1432.
[http://dx.doi.org/10.1182/blood-2009-09-242859] [PMID: 20007803]
[53]
Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; Levine, R.L.; Lo-Coco, F.; Naoe, T.; Niederwieser, D.; Ossenkoppele, G.J.; Sanz, M.; Sierra, J.; Tallman, M.S.; Tien, H.F.; Wei, A.H.; Löwenberg, B.; Bloomfield, C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017, 129(4), 424-447.
[http://dx.doi.org/10.1182/blood-2016-08-733196] [PMID: 27895058]
[54]
Grunwald, M.R.; Tseng, L.H.; Lin, M.T.; Pratz, K.W.; Eshleman, J.R.; Levis, M.J.; Gocke, C.D. Improved FLT3 internal tandem duplication PCR assay predicts outcome after allogeneic transplant for acute myeloid leukemia. Biol. Blood Marrow Transplant., 2014, 20(12), 1989-1995.
[http://dx.doi.org/10.1016/j.bbmt.2014.08.015] [PMID: 25240816]
[55]
Yamamoto, Y.; Kiyoi, H.; Nakano, Y.; Suzuki, R.; Kodera, Y.; Miyawaki, S.; Asou, N.; Kuriyama, K.; Yagasaki, F.; Shimazaki, C.; Akiyama, H.; Saito, K.; Nishimura, M.; Motoji, T.; Shinagawa, K.; Takeshita, A.; Saito, H.; Ueda, R.; Ohno, R.; Naoe, T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood, 2001, 97(8), 2434-2439.
[http://dx.doi.org/10.1182/blood.V97.8.2434] [PMID: 11290608]
[56]
Abu-Duhier, F.M.; Goodeve, A.C.; Wilson, G.A.; Care, R.S.; Peake, I.R.; Reilly, J.T. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br. J. Haematol., 2001, 113(4), 983-988.
[http://dx.doi.org/10.1046/j.1365-2141.2001.02850.x] [PMID: 11442493]
[57]
Grundler, R.; Miething, C.; Thiede, C.; Peschel, C.; Duyster, J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood, 2005, 105(12), 4792-4799.
[http://dx.doi.org/10.1182/blood-2004-11-4430] [PMID: 15718420]
[58]
Choudhary, C.; Schwäble, J.; Brandts, C.; Tickenbrock, L.; Sargin, B.; Kindler, T.; Fischer, T.; Berdel, W.E.; Müller-Tidow, C.; Serve, H. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood, 2005, 106(1), 265-273.
[http://dx.doi.org/10.1182/blood-2004-07-2942] [PMID: 15769897]
[59]
Shiraishi, T.; Verdone, J.E.; Huang, J.; Kahlert, U.D.; Hernandez, J.R.; Torga, G.; Zarif, J.C.; Epstein, T.; Gatenby, R.; McCartney, A.; Elisseeff, J.H.; Mooney, S.M.; An, S.S.; Pienta, K.J. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget, 2015, 6(1), 130-143.
[http://dx.doi.org/10.18632/oncotarget.2766] [PMID: 25426557]
[60]
Li, X.; Gu, J.; Zhou, Q. Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac. Cancer, 2015, 6(1), 17-24.
[http://dx.doi.org/10.1111/1759-7714.12148] [PMID: 26273330]
[61]
Cui, H.; Gao, Q.; Zhang, L.; Han, F.; Wang, L. Knockdown of FOXK1 suppresses liver cancer cell viability by inhibiting glycolysis. Life Sci., 2018, 213, 66-73.
[http://dx.doi.org/10.1016/j.lfs.2018.10.018] [PMID: 30312701]
[62]
Hulleman, E.; Kazemier, K.M.; Holleman, A.; VanderWeele, D.J.; Rudin, C.M.; Broekhuis, M.J.C.; Evans, W.E.; Pieters, R.; Den Boer, M.L. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood, 2009, 113(9), 2014-2021.
[http://dx.doi.org/10.1182/blood-2008-05-157842] [PMID: 18978206]
[63]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. science, 2009, 324(5930), 1029-1033.
[64]
Diers, A.R.; Broniowska, K.A.; Chang, C.F.; Hogg, N. Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem. J., 2012, 444(3), 561-571.
[http://dx.doi.org/10.1042/BJ20120294] [PMID: 22458763]
[65]
Herst, P.M.; Howman, R.A.; Neeson, P.J.; Berridge, M.V.; Ritchie, D.S. The level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is prognostic for clinical outcome. J. Leukoc. Biol., 2010, 89(1), 51-55.
[http://dx.doi.org/10.1189/jlb.0710417] [PMID: 20959411]
[66]
Song, K.; Li, M.; Xu, X.; Xuan, L.; Huang, G.; Liu, Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol. Lett., 2016, 12(1), 334-342.
[http://dx.doi.org/10.3892/ol.2016.4600] [PMID: 27347147]
[67]
Wang, J.H.; Chen, W.L.; Li, J.M.; Wu, S.F.; Chen, T.L.; Zhu, Y.M.; Zhang, W.N.; Li, Y.; Qiu, Y.P.; Zhao, A.H.; Mi, J.Q.; Jin, J.; Wang, Y.G.; Ma, Q.L.; Huang, H.; Wu, D.P.; Wang, Q.R.; Li, Y.; Yan, X.J.; Yan, J.S.; Li, J.Y.; Wang, S.; Huang, X.J.; Wang, B.S.; Jia, W.; Shen, Y.; Chen, Z.; Chen, S.J. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. Proc. Natl. Acad. Sci., 2013, 110(42), 17017-17022.
[http://dx.doi.org/10.1073/pnas.1315558110] [PMID: 24082129]
[68]
Ju, H-Q.; Zhan, G.; Huang, A.; Sun, Y.; Wen, S.; Yang, J.; Lu, W.; Xu, R.; Li, J.; Li, Y.; Garcia-Manero, G.; Huang, P.; Hu, Y. ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia, 2017, 31(10), 2143-2150.
[http://dx.doi.org/10.1038/leu.2017.45] [PMID: 28194038]
[69]
Huang, A.; Ju, H.Q.; Liu, K.; Zhan, G.; Liu, D.; Wen, S.; Garcia-Manero, G.; Huang, P.; Hu, Y. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer Lett., 2016, 377(2), 149-157.
[http://dx.doi.org/10.1016/j.canlet.2016.04.040] [PMID: 27132990]
[70]
Cosentino, C.; Grieco, D.; Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J., 2011, 30(3), 546-555.
[http://dx.doi.org/10.1038/emboj.2010.330] [PMID: 21157431]
[71]
Gregory, M.A.; D’Alessandro, A.; Alvarez-Calderon, F.; Kim, J.; Nemkov, T.; Adane, B.; Rozhok, A.I.; Kumar, A.; Kumar, V.; Pollyea, D.A.; Wempe, M.F.; Jordan, C.T.; Serkova, N.J.; Tan, A.C.; Hansen, K.C.; DeGregori, J. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proc. Natl. Acad. Sci., 2016, 113(43), E6669-E6678.
[http://dx.doi.org/10.1073/pnas.1603876113] [PMID: 27791036]
[72]
Ciccarone, F.; Vegliante, R.; Di Leo, L.; Ciriolo, M.R. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Semin. Cancer Biol., 2017, 47, 50-56.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.008] [PMID: 28645607]
[73]
Anderson, N.M.; Mucka, P.; Kern, J.G.; Feng, H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell, 2018, 9(2), 216-237.
[http://dx.doi.org/10.1007/s13238-017-0451-1] [PMID: 28748451]
[74]
Zachar, Z.; Marecek, J.; Maturo, C.; Gupta, S.; Stuart, S.D.; Howell, K.; Schauble, A.; Lem, J.; Piramzadian, A.; Karnik, S.; Lee, K.; Rodriguez, R.; Shorr, R.; Bingham, P.M. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J. Mol. Med., 2011, 89(11), 1137-1148.
[http://dx.doi.org/10.1007/s00109-011-0785-8] [PMID: 21769686]
[75]
Pardee, T.S.; Anderson, R.G.; Pladna, K.M.; Isom, S.; Ghiraldeli, L.P.; Miller, L.D.; Chou, J.W.; Jin, G.; Zhang, W.; Ellis, L.R.; Berenzon, D.; Howard, D.S.; Hurd, D.D.; Manuel, M.; Dralle, S.; Lyerly, S.; Powell, B.L. A phase I study of CPI-613 in combination with high-dose cytarabine and mitoxantrone for relapsed or refractory acute myeloid leukemia. Clin. Cancer Res., 2018, 24(9), 2060-2073.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2282] [PMID: 29437791]
[76]
Weller, M.; Wick, W.; von Deimling, A. Isocitrate dehydrogenase mutations: A challenge to traditional views on the genesis and malignant progression of gliomas. Glia, 2011, 59(8), 1200-1204.
[http://dx.doi.org/10.1002/glia.21130] [PMID: 21294161]
[77]
Mardis, E.R.; Ding, L.; Dooling, D.J.; Larson, D.E.; McLellan, M.D.; Chen, K.; Koboldt, D.C.; Fulton, R.S.; Delehaunty, K.D.; McGrath, S.D.; Fulton, L.A.; Locke, D.P.; Magrini, V.J.; Abbott, R.M.; Vickery, T.L.; Reed, J.S.; Robinson, J.S.; Wylie, T.; Smith, S.M.; Carmichael, L.; Eldred, J.M.; Harris, C.C.; Walker, J.; Peck, J.B.; Du, F.; Dukes, A.F.; Sanderson, G.E.; Brummett, A.M.; Clark, E.; McMichael, J.F.; Meyer, R.J.; Schindler, J.K.; Pohl, C.S.; Wallis, J.W.; Shi, X.; Lin, L.; Schmidt, H.; Tang, Y.; Haipek, C.; Wiechert, M.E.; Ivy, J.V.; Kalicki, J.; Elliott, G.; Ries, R.E.; Payton, J.E.; Westervelt, P.; Tomasson, M.H.; Watson, M.A.; Baty, J.; Heath, S.; Shannon, W.D.; Nagarajan, R.; Link, D.C.; Walter, M.J.; Graubert, T.A.; DiPersio, J.F.; Wilson, R.K.; Ley, T.J. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med., 2009, 361(11), 1058-1066.
[http://dx.doi.org/10.1056/NEJMoa0903840] [PMID: 19657110]
[78]
Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; Marks, K.M.; Prins, R.M.; Ward, P.S.; Yen, K.E.; Liau, L.M.; Rabinowitz, J.D.; Cantley, L.C.; Thompson, C.B.; Vander Heiden, M.G.; Su, S.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462(7274), 739-744.
[http://dx.doi.org/10.1038/nature08617] [PMID: 19935646]
[79]
Chowdhury, R.; Yeoh, K.K.; Tian, Y.M.; Hillringhaus, L.; Bagg, E.A.; Rose, N.R.; Leung, I.K.H.; Li, X.S.; Woon, E.C.Y.; Yang, M.; McDonough, M.A.; King, O.N.; Clifton, I.J.; Klose, R.J.; Claridge, T.D.W.; Ratcliffe, P.J.; Schofield, C.J.; Kawamura, A. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep., 2011, 12(5), 463-469.
[http://dx.doi.org/10.1038/embor.2011.43] [PMID: 21460794]
[80]
Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; Liu, L.; Jiang, W.; Liu, J.; Zhang, J.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.; Lei, Q.; Guan, K.L.; Zhao, S.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30.
[http://dx.doi.org/10.1016/j.ccr.2010.12.014] [PMID: 21251613]
[81]
Figueroa, M.E.; Abdel-Wahab, O.; Lu, C.; Ward, P.S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H.F.; Tallman, M.S.; Sun, Z.; Wolniak, K.; Peeters, J.K.; Liu, W.; Choe, S.E.; Fantin, V.R.; Paietta, E.; Löwenberg, B.; Licht, J.D.; Godley, L.A.; Delwel, R.; Valk, P.J.M.; Thompson, C.B.; Levine, R.L.; Melnick, A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 2010, 18(6), 553-567.
[http://dx.doi.org/10.1016/j.ccr.2010.11.015] [PMID: 21130701]
[82]
Haseeb, A.; Makki, M.S.; Haqqi, T.M. Modulation of ten-eleven translocation 1 (TET1), Isocitrate Dehydrogenase (IDH) expression, α-Ketoglutarate (α-KG), and DNA hydroxymethylation levels by interleukin-1β in primary human chondrocytes. J. Biol. Chem., 2014, 289(10), 6877-6885.
[http://dx.doi.org/10.1074/jbc.M113.512269] [PMID: 24469454]
[83]
Gross, S.; Cairns, R.A.; Minden, M.D.; Driggers, E.M.; Bittinger, M.A.; Jang, H.G.; Sasaki, M.; Jin, S.; Schenkein, D.P.; Su, S.M.; Dang, L.; Fantin, V.R.; Mak, T.W. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med., 2010, 207(2), 339-344.
[http://dx.doi.org/10.1084/jem.20092506] [PMID: 20142433]
[84]
DiNardo, C.D.; Propert, K.J.; Loren, A.W.; Paietta, E.; Sun, Z.; Levine, R.L.; Straley, K.S.; Yen, K.; Patel, J.P.; Agresta, S.; Abdel-Wahab, O.; Perl, A.E.; Litzow, M.R.; Rowe, J.M.; Lazarus, H.M.; Fernandez, H.F.; Margolis, D.J.; Tallman, M.S.; Luger, S.M.; Carroll, M. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood, 2013, 121(24), 4917-4924.
[http://dx.doi.org/10.1182/blood-2013-03-493197] [PMID: 23641016]
[85]
Brunner, A.M.; Neuberg, D.S.; Wander, S.A.; Sadrzadeh, H.; Ballen, K.K.; Amrein, P.C.; Attar, E.; Hobbs, G.S.; Chen, Y.B.; Perry, A.; Connolly, C.; Joseph, C.; Burke, M.; Ramos, A.; Galinsky, I.; Yen, K.; Yang, H.; Straley, K.; Agresta, S.; Adamia, S.; Borger, D.R.; Iafrate, A.; Graubert, T.A.; Stone, R.M.; Fathi, A.T. Isocitrate dehydrogenase 1 and 2 mutations, 2-hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia. Cancer, 2019, 125(4), 541-549.
[http://dx.doi.org/10.1002/cncr.31729] [PMID: 30422308]
[86]
Wang, X.; Chen, S.; Jia, W. Metabolomics in cancer biomarker research. Curr. Pharmacol. Rep., 2016, 2(6), 293-298.
[http://dx.doi.org/10.1007/s40495-016-0074-x]
[87]
Grønningsæter, I.S.; Fredly, H.K.; Gjertsen, B.T.; Hatfield, K.J.; Bruserud, Ø. Systemic Metabolomic profiling of acute myeloid leukemia patients before and during disease-stabilizing treatment based on all-trans retinoic acid, valproic acid, and low-dose chemotherapy. Cells, 2019, 8(10), 1229.
[http://dx.doi.org/10.3390/cells8101229] [PMID: 31658693]
[88]
Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Reisz, J.A.; Culp-Hill, R.; Nemkov, T.; Pei, S.; Khan, N.; Adane, B.; Ye, H.; Krug, A.; Reinhold, D.; Smith, C.; DeGregori, J.; Pollyea, D.A.; Jordan, C.T. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell, 2018, 34(5), 724-740.e4.
[http://dx.doi.org/10.1016/j.ccell.2018.10.005] [PMID: 30423294]
[89]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634.
[http://dx.doi.org/10.1038/nrc.2016.71] [PMID: 27492215]
[90]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[91]
Wojtowicz, W.; Chachaj, A.; Olczak, A.; Ząbek, A.; Piątkowska, E.; Rybka, J.; Butrym, A.; Biedroń, M.; Mazur, G.; Wróbel, T.; Szuba, A.; Młynarz, P. Serum NMR metabolomics to differentiate haematologic malignancies. Oncotarget, 2018, 9(36), 24414-24427.
[http://dx.doi.org/10.18632/oncotarget.25311] [PMID: 29849950]
[92]
Jacque, N.; Ronchetti, A.M.; Larrue, C.; Meunier, G.; Birsen, R.; Willems, L.; Saland, E.; Decroocq, J.; Maciel, T.T.; Lambert, M.; Poulain, L.; Hospital, M.A.; Sujobert, P.; Joseph, L.; Chapuis, N.; Lacombe, C.; Moura, I.C.; Demo, S.; Sarry, J.E.; Recher, C.; Mayeux, P.; Tamburini, J.; Bouscary, D. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood, 2015, 126(11), 1346-1356.
[http://dx.doi.org/10.1182/blood-2015-01-621870] [PMID: 26186940]
[93]
Salamanca-Cardona, L.; Shah, H.; Poot, A.J.; Correa, F.M.; Di Gialleonardo, V.; Lui, H.; Miloushev, V.Z.; Granlund, K.L.; Tee, S.S.; Cross, J.R.; Thompson, C.B.; Keshari, K.R. In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in IDH1/2 mutant tumors. Cell Metab., 2017, 26(6), 830-841.e3.
[http://dx.doi.org/10.1016/j.cmet.2017.10.001] [PMID: 29056515]
[94]
Fathi, A.T.; Abdel-Wahab, O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv. Hematol., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/469592] [PMID: 21811504]
[95]
Shah, M.Y.; Licht, J.D. DNMT3A mutations in acute myeloid leukemia. Nat. Genet., 2011, 43(4), 289-290.
[http://dx.doi.org/10.1038/ng0411-289] [PMID: 21445072]
[96]
Yan, X.J.; Xu, J.; Gu, Z.H.; Pan, C.M.; Lu, G.; Shen, Y.; Shi, J.Y.; Zhu, Y.M.; Tang, L.; Zhang, X.W.; Liang, W.X.; Mi, J.Q.; Song, H.D.; Li, K.Q.; Chen, Z.; Chen, S.J. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet., 2011, 43(4), 309-315.
[http://dx.doi.org/10.1038/ng.788] [PMID: 21399634]
[97]
Walter, M.J.; Ding, L.; Shen, D.; Shao, J.; Grillot, M.; McLellan, M.; Fulton, R.; Schmidt, H.; Kalicki-Veizer, J.; O’Laughlin, M.; Kandoth, C.; Baty, J.; Westervelt, P.; DiPersio, J.F.; Mardis, E.R.; Wilson, R.K.; Ley, T.J.; Graubert, T.A. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia, 2011, 25(7), 1153-1158.
[http://dx.doi.org/10.1038/leu.2011.44] [PMID: 21415852]
[98]
Shivarov, V.; Gueorguieva, R.; Stoimenov, A.; Tiu, R. DNMT3A mutation is a poor prognosis biomarker in AML: Results of a meta-analysis of 4500 AML patients. Leuk. Res., 2013, 37(11), 1445-1450.
[http://dx.doi.org/10.1016/j.leukres.2013.07.032] [PMID: 23962568]
[99]
Thol, F.; Damm, F.; Lüdeking, A.; Winschel, C.; Wagner, K.; Morgan, M.; Yun, H.; Göhring, G.; Schlegelberger, B.; Hoelzer, D.; Lübbert, M.; Kanz, L.; Fiedler, W.; Kirchner, H.; Heil, G.; Krauter, J.; Ganser, A.; Heuser, M. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J. Clin. Oncol., 2011, 29(21), 2889-2896.
[http://dx.doi.org/10.1200/JCO.2011.35.4894] [PMID: 21670448]
[100]
Marková, J.; Michková, P.; Burčková, K.; Březinová, J.; Michalová, K.; Dohnalová, A.; Maaloufová, J.S.; Soukup, P.; Vítek, A.; Cetkovský, P.; Schwarz, J. Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia. Eur. J. Haematol., 2012, 88(2), 128-135.
[http://dx.doi.org/10.1111/j.1600-0609.2011.01716.x] [PMID: 21967546]
[101]
Schwarz, J.; Marková, J. DNMT3A mutations in AML: A new prognostic factor? Leuk. Res., 2013, 37(11), 1432-1433.
[http://dx.doi.org/10.1016/j.leukres.2013.08.012] [PMID: 24045027]
[102]
Zhang, X.; Wang, X.; Wang, X.Q.D.; Su, J.; Putluri, N.; Zhou, T.; Qu, Y.; Jeong, M.; Guzman, A.; Rosas, C.; Huang, Y.; Sreekumar, A.; Li, W.; Goodell, M.A. Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood, 2020, 135(11), 845-856.
[http://dx.doi.org/10.1182/blood.2019003330] [PMID: 31932841]
[103]
Zhang, X.; Zhou, T.; Nagireddy, P.; Michailidis, G.; Jeong, M.; Sreekumar, A.; Rebel, V.I.; Goodell, M.A. Combined effect of dnmt3a loss-of-function and Idh2 neomorphic mutation promotes hematopoietic malignancy. Blood, 2013, 122(21), 884.
[http://dx.doi.org/10.1182/blood.V122.21.884.884]
[104]
Dai, Y.J.; Hu, F.; He, S.Y.; Tian, X.P.; Li, H-H.; Qin, Z-Y.; Chen, S.; Liang, Y. A distinct metabolic signature in dnmt3a-mutated leukemia. Blood, 2019, 134(Suppl. 1), 1426.
[http://dx.doi.org/10.1182/blood-2019-121657]
[105]
Yang, L.; Liu, Y.N.; Zhang, N.; Ding, X.Y.; Zhang, W.; Shen, K.F.; Huang, L.; Zhou, J.F.; Cui, S.; Zhu, Z.M.; Hu, Z.; Xiao, M. Novel impact of the DNMT3A R882H mutation on GSH metabolism in a K562 cell model established by TALENs. Oncotarget, 2017, 8(18), 30395-30409.
[http://dx.doi.org/10.18632/oncotarget.16449] [PMID: 28418922]
[106]
Que, Y.; Li, H.; Lin, L.; Zhu, X.; Xiao, M.; Wang, Y.; Zhu, L.; Li, D. Study on the immune escape mechanism of acute myeloid leukemia with DNMT3A mutation. Front. Immunol., 2021, 12, 653030.
[http://dx.doi.org/10.3389/fimmu.2021.653030] [PMID: 34093541]
[107]
Hou, H-A.; Chou, W-C.; Kuo, Y-Y.; Liu, C-Y.; Lin, L-I.; Tseng, M-H.; Chiang, Y-C.; Liu, M-C.; Liu, C-W.; Tang, J-L.; Yao, M.; Li, C-C.; Huang, S-Y.; Ko, B-S.; Hsu, S-C.; Chen, C-Y.; Lin, C-T.; Wu, S-J.; Tsay, W.; Chen, Y-C.; Tien, H-F. TP53 mutations in de novo acute myeloid leukemia patients: Longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J., 2015, 5(7), e331.
[http://dx.doi.org/10.1038/bcj.2015.59] [PMID: 26230955]
[108]
Rücker, F.G.; Schlenk, R.F.; Bullinger, L.; Kayser, S.; Teleanu, V.; Kett, H.; Habdank, M.; Kugler, C.M.; Holzmann, K.; Gaidzik, V.I.; Paschka, P.; Held, G.; von Lilienfeld-Toal, M.; Lübbert, M.; Fröhling, S.; Zenz, T.; Krauter, J.; Schlegelberger, B.; Ganser, A.; Lichter, P.; Döhner, K.; Döhner, H. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood, 2012, 119(9), 2114-2121.
[http://dx.doi.org/10.1182/blood-2011-08-375758] [PMID: 22186996]
[109]
Yanada, M.; Yamamoto, Y.; Iba, S.; Okamoto, A.; Inaguma, Y.; Tokuda, M.; Morishima, S.; Kanie, T.; Mizuta, S.; Akatsuka, Y.; Okamoto, M.; Emi, N. TP53 mutations in older adults with acute myeloid leukemia. Int. J. Hematol., 2016, 103(4), 429-435.
[http://dx.doi.org/10.1007/s12185-016-1942-1] [PMID: 26781615]
[110]
Haferlach, C.; Dicker, F.; Herholz, H.; Schnittger, S.; Kern, W.; Haferlach, T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia, 2008, 22(8), 1539-1541.
[http://dx.doi.org/10.1038/leu.2008.143] [PMID: 18528419]
[111]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[112]
Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3), 323-331.
[http://dx.doi.org/10.1016/S0092-8674(00)81871-1] [PMID: 9039259]
[113]
Zhang, X.; Qin, Z.; Wang, J. The role of p53 in cell metabolism. Acta Pharmacol. Sin., 2010, 31(9), 1208-1212.
[http://dx.doi.org/10.1038/aps.2010.151] [PMID: 20729871]
[114]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]
[115]
Mathupala, S.P.; Ko, Y.H.; Pedersen, P.L. Hexokinase II: Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 2006, 25(34), 4777-4786.
[http://dx.doi.org/10.1038/sj.onc.1209603] [PMID: 16892090]
[116]
Matoba, S.; Kang, J.G.; Patino, W.D.; Wragg, A.; Boehm, M.; Gavrilova, O.; Hurley, P.J.; Bunz, F.; Hwang, P.M. p53 regulates mitochondrial respiration. Science, 2006, 312(5780), 1650-1653.
[http://dx.doi.org/10.1126/science.1126863] [PMID: 16728594]
[117]
Maddocks, O.D.K.; Vousden, K.H. Metabolic regulation by p53. J. Mol. Med., 2011, 89(3), 237-245.
[http://dx.doi.org/10.1007/s00109-011-0735-5] [PMID: 21340684]
[118]
Kamp, W.M.; Wang, P.; Hwang, P.M. TP53 mutation, mitochondria and cancer. Curr. Opin. Genet. Dev., 2016, 38, 16-22.
[http://dx.doi.org/10.1016/j.gde.2016.02.007] [PMID: 27003724]
[119]
Liu, J.; Zhang, C.; Hu, W.; Feng, Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett., 2015, 356(2), 197-203.
[http://dx.doi.org/10.1016/j.canlet.2013.12.025] [PMID: 24374014]
[120]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[121]
Goel, A.; Mathupala, S.P.; Pedersen, P.L. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J. Biol. Chem., 2003, 278(17), 15333-15340.
[http://dx.doi.org/10.1074/jbc.M300608200] [PMID: 12566445]
[122]
Simonetti, G.; Padella, A.; Mengucci, C.; Fonzi, E.; Picone, G.; Pazzaglia, M.; Perricone, M.; Fontana, M.; Bruno, S.; Bochicchio, M.T.; Franchini, E.; Nanni, J.; Marconi, G.; do Valle, I.F.; De Tommaso, R.; Ferrari, A.; Ghetti, M.; Napolitano, R.; Papayannidis, C.; Ghelli Luseran di Rorà, A.; Cerchione, C.; Ottaviani, E.; Castellani, G.; Remondini, D.; Capozzi, F.; Martinelli, G. PF197 a new classification of acute myeloid leukemia based on integrated genomics and metabolomics. HemaSphere, 2019, 3(S1), 51.
[http://dx.doi.org/10.1097/01.HS9.0000559004.69204.d0]
[123]
Simonetti, G.; Mengucci, C.; Padella, A.; Fonzi, E.; Picone, G.; Delpino, C.; Nanni, J.; De Tommaso, R.; Franchini, E.; Papayannidis, C.; Marconi, G.; Pazzaglia, M.; Perricone, M.; Scarpi, E.; Fontana, M.C.; Bruno, S.; Tebaldi, M.; Ferrari, A.; Bochicchio, M.T.; Ghelli Luserna Di Rorà, A.; Ghetti, M.; Napolitano, R.; Astolfi, A.; Baldazzi, C.; Guadagnuolo, V.; Ottaviani, E.; Iacobucci, I.; Cavo, M.; Castellani, G.; Haferlach, T.; Remondini, D.; Capozzi, F.; Martinelli, G. Integrated genomic-metabolic classification of acute myeloid leukemia defines a subgroup with NPM1 and cohesin/DNA damage mutations. Leukemia, 2021, 35(10), 2813-2826.
[http://dx.doi.org/10.1038/s41375-021-01318-x] [PMID: 34193978]
[124]
DiNardo, C.D.; Cortes, J.E. Mutations in AML: Prognostic and therapeutic implications. Hematology (Am. Soc. Hematol. Educ. Program), 2016, 2016(1), 348-355.
[http://dx.doi.org/10.1182/asheducation-2016.1.348] [PMID: 27913501]
[125]
Badar, T.; Patel, K.P.; Thompson, P.A.; DiNardo, C.; Takahashi, K.; Cabrero, M.; Borthakur, G.; Cortes, J.; Konopleva, M.; Kadia, T.; Bohannan, Z.; Pierce, S.; Jabbour, E.J.; Ravandi, F.; Daver, N.; Luthra, R.; Kantarjian, H.; Garcia-Manero, G. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk. Res., 2015, 39(12), 1367-1374.
[http://dx.doi.org/10.1016/j.leukres.2015.10.005] [PMID: 26547258]
[126]
Qiao, S.; Koh, S.B.; Vivekanandan, V.; Salunke, D.; Patra, K.C.; Zaganjor, E.; Ross, K.; Mizukami, Y.; Jeanfavre, S.; Chen, A.; Mino-Kenudson, M.; Ramaswamy, S.; Clish, C.; Haigis, M.; Bardeesy, N.; Ellisen, L.W. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev., 2020, 34(11-12), 751-766.
[http://dx.doi.org/10.1101/gad.335166.119] [PMID: 32273287]
[127]
Stevens, B.M.; Jones, C.L.; Pollyea, D.A.; Culp-Hill, R.; D’Alessandro, A.; Winters, A.; Krug, A.; Abbott, D.; Goosman, M.; Pei, S.; Ye, H.; Gillen, A.E.; Becker, M.W.; Savona, M.R.; Smith, C.; Jordan, C.T. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat. Can., 2020, 1(12), 1176-1187.
[http://dx.doi.org/10.1038/s43018-020-00126-z] [PMID: 33884374]
[128]
Dvinge, H.; Kim, E.; Abdel-Wahab, O.; Bradley, R.K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer, 2016, 16(7), 413-430.
[http://dx.doi.org/10.1038/nrc.2016.51] [PMID: 27282250]
[129]
Mizuno, H.; Koya, J.; Masamoto, Y.; Kagoya, Y.; Kurokawa, M. Evi1 upregulates Fbp1 and supports progression of acute myeloid leukemia through pentose phosphate pathway activation. Cancer Sci., 2021, 112(10), 4112-4126.
[http://dx.doi.org/10.1111/cas.15098] [PMID: 34363719]
[130]
Fenouille, N.; Bassil, C.F.; Ben-Sahra, I.; Benajiba, L.; Alexe, G.; Ramos, A.; Pikman, Y.; Conway, A.S.; Burgess, M.R.; Li, Q.; Luciano, F.; Auberger, P.; Galinsky, I.; DeAngelo, D.J.; Stone, R.M.; Zhang, Y.; Perkins, A.S.; Shannon, K.; Hemann, M.T.; Puissant, A.; Stegmaier, K. The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nat. Med., 2017, 23(3), 301-313.
[http://dx.doi.org/10.1038/nm.4283] [PMID: 28191887]
[131]
Gurnari, C.; Pagliuca, S.; Visconte, V. The interactome between metabolism and gene mutations in myeloid malignancies. Int. J. Mol. Sci., 2021, 22(6), 3135.
[http://dx.doi.org/10.3390/ijms22063135] [PMID: 33808599]
[132]
Reed, D.R.; Elsarrag, R.Z.; Morris, A.L.; Keng, M.K. Enasidenib in acute myeloid leukemia: Clinical development and perspectives on treatment. Cancer Manag. Res., 2019, 11, 8073-8080.
[http://dx.doi.org/10.2147/CMAR.S162784] [PMID: 31564968]
[133]
Dhillon, S. Ivosidenib: First global approval. Drugs, 2018, 78(14), 1509-1516.
[http://dx.doi.org/10.1007/s40265-018-0978-3] [PMID: 30209701]
[134]
Testa, U.; Castelli, G.; Pelosi, E. Isocitrate dehydrogenase mutations in myelodysplastic syndromes and in acute myeloid leukemias. Cancers, 2020, 12(9), 2427.
[http://dx.doi.org/10.3390/cancers12092427] [PMID: 32859092]
[135]
Morad, S.A.F.; Davis, T.S.; Kester, M.; Loughran, T.P., Jr; Cabot, M.C. Dynamics of ceramide generation and metabolism in response to fenretinide – Diversity within and among leukemia. Leuk. Res., 2015, 39(10), 1071-1078.
[http://dx.doi.org/10.1016/j.leukres.2015.06.009] [PMID: 26220867]
[136]
Dany, M.; Gencer, S.; Nganga, R.; Thomas, R.J.; Oleinik, N.; Baron, K.D.; Szulc, Z.M.; Ruvolo, P.; Kornblau, S.; Andreeff, M.; Ogretmen, B. Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood, 2016, 128(15), 1944-1958.
[http://dx.doi.org/10.1182/blood-2016-04-708750] [PMID: 27540013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy