Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Withania coagulans Dunal.: A Narrative Review of an Anti-diabetic Shrub of the Desert Biome

Author(s): Acharya Balkrishna, Shalini Mishra, Shalini Singh*, Maneesha Rana, Vedpriya Arya, Rajesh Mishra, Satyendra Kumar Rajput and Ashwani Kumar*

Volume 14, Issue 6, 2024

Published on: 12 January, 2024

Article ID: e120124225565 Pages: 13

DOI: 10.2174/0122103155273189231119065235

Price: $65

Abstract

Diabetes mellitus is a chronic disease affecting more than 300 million people worldwide. Even after advances in medicine, we are still away from a permanent solution to this problem. Longterm use of currently available treatments are associated with adverse effects ranging from cardiovascular conditions, renal disorders, liver ailments, and weight gain. Subsequently, a significant diabetic population seeks herbal medicines that are said to control blood sugar levels. Several plants have been explored in this context; one such plant is Withania coagulans Dunal., which is known for the hypoglycemic property due to its fruits. Different plant parts and bioactive components like withanolides exhibited anti-diabetic activity in type 2 diabetes models in vivo and in vitro. However, clinical studies are limited and more research is warranted. Bioactive composition of W. coagulans include Withanolide J, F; Coagulin C, E, L; Ajugin E, Withaperuvin C and others. Bioavailability of Withaferin A from W. coagulans was enhanced by co-administration of Piperine. Herbal quality control and commercialization aspects of W. coagulans are also highlighted. W. coagulans can be employed in managing type 2 diabetes mellitus after detailed follow-up studies.

Graphical Abstract

[1]
Jarald, E.E.; Asghar, S.; Ahmad, S.; Bangar, O.P. Antidiabetic activity of a polyherbal formulation (Karnim Plus). Int. J. Green Pharma., 2009, 3(3), 211-214.
[http://dx.doi.org/10.4103/0973-8258.56276]
[2]
WHO-World Health Organization. Diabetes. Available from: https://www.who.int/en/news-room/fact-sheets/detail/diabetes
[3]
CDC-Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/diabetes/basics/diabetes.html
[4]
Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet, 2017, 389(10085), 2239-2251.
[http://dx.doi.org/10.1016/S0140-6736(17)30058-2] [PMID: 28190580]
[5]
WebMD. Type 2 Diabetes Causes and Risk Factors. Available from: https://www.webmd.com/diabetes/diabetes-causes
[6]
Medscape. Pathogenesis of type 2 diabetes. Available from: https://www.medscape.com/viewarticle/412682
[7]
Dey, L.; Attele, A.S.; Yuan, C.S. Alternative therapies for type 2 diabetes. Altern. Med. Rev., 2002, 7(1), 45-58.
[PMID: 11896745]
[9]
Sharma, S.; Kumari, A.; Dhatwalia, J.; Guleria, I.; Lal, S.; Upadhyay, N.; Kumar, V.; Kumar, A. Effect of solvents extraction on phytochemical profile and biological activities of two Ocimum species: A comparative study. J. Appl. Res. Med. Aromat. Plants, 2021, 25, 100348.
[http://dx.doi.org/10.1016/j.jarmap.2021.100348]
[10]
Dhatwalia, J.; Kumari, A.; Verma, R.; Upadhyay, N.; Guleria, I.; Lal, S.; Thakur, S.; Gudeta, K.; Kumar, V.; Chao, J.C.J.; Sharma, S.; Kumar, A.; Manicum, A.L.E.; Lorenzo, J.M.; Amarowicz, R. Phytochemistry, pharmacology, and nutraceutical profile of Carissa species: An updated review. Molecules, 2021, 26(22), 7010.
[http://dx.doi.org/10.3390/molecules26227010] [PMID: 34834102]
[11]
Kumari, A.; Verma, R.; Sharma, M.; Chauhan, P.; Kumar, A. Evaluation of phytochemical, antioxidant, antibacterial and anti-cancerous activity of Ficus auriculata Lour. and Osyris wightiana Wall. ex Wight. Bull. Environ. Pharmacol. Life Sci, 2018, 7, 64-70.
[12]
Balkrishna, A.; Juyal, R.; Devi, R.; Kumar, J.; Prakash, A.; Pathak, P.; Arya, V.; Kumar, A. Ethnomedicinal status and pharmacological profile of some important orchids of Uttarakhand (NorthWestern Himalayas), India. J. Orchid Soc. India, 2020, 34, 137-147.
[13]
Sharma, K.; Verma, R.; Kumar, D.; Nepovimova, E.; Kuča, K.; Kumar, A.; Raghuvanshi, D.; Dhalaria, R.; Puri, S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. J. Ethnopharmacol., 2022, 293, 115318.
[http://dx.doi.org/10.1016/j.jep.2022.115318] [PMID: 35469830]
[14]
Sonam; Kumari, A.; Kumar, V.; Guleria, I.; Sharma, M.; Kumar, A.; Alruways, M.W.; Khan, N.; Raina, R. Antimicrobial potential and chemical profiling of leaves essential oil of Mentha species growing under North-West Himalaya conditions. J. Pure Appl. Microbiol., 2021, 15(4), 2229-2243.
[http://dx.doi.org/10.22207/JPAM.15.4.45]
[15]
Chadha, Y.R. The wealth of India; Publications and information directorate: New Delhi,, 1976.
[16]
Yousaf, Z.; Masood, S.; Shinwari, Z.K.; Khan, M.A.; Rabani, A. Evaluation of taxonomic status of medicinal species of the genus Hyoscyamous, Withania, Atropa and Datura based on polyacrylamide gel electrophoresis. Pak. J. Bot., 2008, 40, 2289-2297.
[17]
Gupta, V.; Upadhyay, B.N. A clinical study on the effect of Rishyagandha (Withania coagulans) in the management of Prameha (Type II Diabetes Mellitus). Ayu, 2011, 32(4), 507-511.
[http://dx.doi.org/10.4103/0974-8520.96124] [PMID: 22661845]
[18]
Agarwal, N.; Raghav, P.K.; Singh, R.; Singh, R. Paneer Doda (Withania coagulans Dunal): A Promising Therapeutic Agent. IJGHC, 2014, 3, 701-711.
[19]
Watt, G.A. Dictionary of the Economic Products of India; Cosmo Publications: Delhi, India, 1972, p. 309.
[20]
Mathur, D.; Agrawal, R. Withania coagulans: A review on the morphological and pharmacological properties of the shrub. ScientificWorldJournal, 2011, 1, 30-37.
[21]
WHO-World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. Available from: [https://apps.who.int/iris/bitstream/handle/10665/43588/9241594934_eng.pdf]
[22]
Gupta, P.D.; De, A. Diabetes mellitus and its herbal treatment. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 706-721.
[23]
Atta-ur-Rahman,; Abbas, S.; Dur-e-Shahwar,; Jamal, S.A.; Choudhary, M.I. New withanolides from Withania spp. J. Nat. Prod., 1993, 56(7), 1000-1006.
[http://dx.doi.org/10.1021/np50097a003]
[24]
Atta-ur-Rahman,; Choudhary, M.I.; Qureshi, S.; Gul, W.; Yousaf, M. Two new ergostane-type steroidal lactones from Withania coagulans. J. Nat. Prod., 1998, 61(6), 812-814.
[http://dx.doi.org/10.1021/np970478p]
[25]
Gupta, V.; Keshari, B.B. Withania coagulans Dunal (paneer doda): A review. Int. J. Ayu. Herb. Med, 2013, 3, 1330-1336.
[26]
Pandey, I.; Nama, K.S. Withania coagulans (Stocks) Dunal A rare ethnomedicinal plant of the Western Rajasthan Desert. Int. J. Pharm. Biomed. Res., 2015, 2, 34-40.
[27]
Khan, M.I.; Maqsood, M.; Saeed, R.A.; Alam, A.; Sahar, A.; Kieliszek, M.; Miecznikowski, A.; Muzammil, H.S.; Aadil, R.M. Phytochemistry, food application, and therapeutic potential of the medicinal plant (Withania coagulans): A review. Molecules, 2021, 26(22), 6881.
[http://dx.doi.org/10.3390/molecules26226881] [PMID: 34833974]
[28]
Gupta, R.; Sonawane, T.; Pai, S. An overview on pharmaceutical properties and biotechnological advancement of Withania coagulans. Adv. Trad. Med., 2022, 22(4), 673-683.
[http://dx.doi.org/10.1007/s13596-021-00558-7]
[29]
Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet, 2005, 365(9467), 1333-1346.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[30]
DeFronzo, R.A. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009, 58(4), 773-795.
[http://dx.doi.org/10.2337/db09-9028] [PMID: 19336687]
[31]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[32]
Beale, E.G. Insulin signaling and insulin resistance. J. Investig. Med., 2013, 61(1), 11-14.
[http://dx.doi.org/10.2310/JIM.0b013e3182746f95] [PMID: 23111650]
[33]
Titchenell, P.M.; Lazar, M.A.; Birnbaum, M.J. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab., 2017, 28(7), 497-505.
[http://dx.doi.org/10.1016/j.tem.2017.03.003] [PMID: 28416361]
[34]
Lewis, G.F.; Steiner, G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care, 1996, 19(4), 390-393.
[http://dx.doi.org/10.2337/diacare.19.4.390] [PMID: 8729170]
[35]
Bays, H.E. “Sick fat,” metabolic disease, and atherosclerosis. Am. J. Med., 2009, 122(1), S26-S37.
[http://dx.doi.org/10.1016/j.amjmed.2008.10.015] [PMID: 19110085]
[36]
Carmena, R. Dyslipidemia in type 2 diabetes mellitus. In: Type 2 Diabetes Mellitus; Elsevier: Barcelona, Spain, 2010; pp. 219-230.
[37]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[38]
Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients, 2017, 9(12), 1310.
[http://dx.doi.org/10.3390/nu9121310] [PMID: 29194424]
[39]
Gérard, C.; Vidal, H. Impact of gut microbiota on host glycemic control. Front. Endocrinol., 2019, 10, 29.
[http://dx.doi.org/10.3389/fendo.2019.00029] [PMID: 30761090]
[40]
Yassour, M.; Lim, M.Y.; Yun, H.S.; Tickle, T.L.; Sung, J.; Song, Y.M.; Lee, K.; Franzosa, E.A.; Morgan, X.C.; Gevers, D.; Lander, E.S.; Xavier, R.J.; Birren, B.W.; Ko, G.; Huttenhower, C. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med., 2016, 8(1), 17.
[http://dx.doi.org/10.1186/s13073-016-0271-6] [PMID: 26884067]
[41]
Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered gut microbiota in type 2 diabetes: Just a coincidence? Curr. Diab. Rep., 2018, 18(10), 98.
[http://dx.doi.org/10.1007/s11892-018-1057-6] [PMID: 30215149]
[42]
Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol., 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[43]
Singer-Englar, T.; Barlow, G.; Mathur, R. Obesity, diabetes, and the gut microbiome: An updated review. Expert Rev. Gastroenterol. Hepatol., 2019, 13(1), 3-15.
[http://dx.doi.org/10.1080/17474124.2019.1543023] [PMID: 30791839]
[44]
Mohlke, K.L.; Boehnke, M. Recent advances in understanding the genetic architecture of type 2 diabetes. Hum. Mol. Genet., 2015, 24(R1), R85-R92.
[http://dx.doi.org/10.1093/hmg/ddv264] [PMID: 26160912]
[45]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[46]
Merino, J.; Udler, M.S.; Leong, A.; Meigs, J.B. A decade of genetic and metabolomic contributions to type 2 diabetes risk prediction. Curr. Diab. Rep., 2017, 17(12), 135.
[http://dx.doi.org/10.1007/s11892-017-0958-0] [PMID: 29103096]
[47]
Grarup, N.; Sandholt, C.H.; Hansen, T.; Pedersen, O. Genetic susceptibility to type 2 diabetes and obesity: From genome-wide association studies to rare variants and beyond. Diabetologia, 2014, 57(8), 1528-1541.
[http://dx.doi.org/10.1007/s00125-014-3270-4] [PMID: 24859358]
[48]
Scott, R.A.; Scott, L.J.; Mägi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; Jackson, A.U.; Ferreira, T.; Lee, Y.; Ma, C.; Steinthorsdottir, V.; Thorleifsson, G.; Qi, L.; Van Zuydam, N.R.; Mahajan, A.; Chen, H.; Almgren, P.; Voight, B.F.; Grallert, H.; Müller-Nurasyid, M.; Ried, J.S.; Rayner, N.W.; Robertson, N.; Karssen, L.C.; van Leeuwen, E.M.; Willems, S.M.; Fuchsberger, C.; Kwan, P.; Teslovich, T.M.; Chanda, P.; Li, M.; Lu, Y.; Dina, C.; Thuillier, D.; Yengo, L.; Jiang, L.; Sparso, T.; Kestler, H.A.; Chheda, H.; Eisele, L.; Gustafsson, S.; Frånberg, M.; Strawbridge, R.J.; Benediktsson, R.; Hreidarsson, A.B.; Kong, A.; Sigurðsson, G.; Kerrison, N.D.; Luan, J.; Liang, L.; Meitinger, T.; Roden, M.; Thorand, B.; Esko, T.; Mihailov, E.; Fox, C.; Liu, C.T.; Rybin, D.; Isomaa, B.; Lyssenko, V.; Tuomi, T.; Couper, D.J.; Pankow, J.S.; Grarup, N.; Have, C.T.; Jørgensen, M.E.; Jørgensen, T.; Linneberg, A.; Cornelis, M.C.; van Dam, R.M.; Hunter, D.J.; Kraft, P.; Sun, Q.; Edkins, S.; Owen, K.R.; Perry, J.R.B.; Wood, A.R.; Zeggini, E.; Tajes-Fernandes, J.; Abecasis, G.R.; Bonnycastle, L.L.; Chines, P.S.; Stringham, H.M.; Koistinen, H.A.; Kinnunen, L.; Sennblad, B.; Mühleisen, T.W.; Nöthen, M.M.; Pechlivanis, S.; Baldassarre, D.; Gertow, K.; Humphries, S.E.; Tremoli, E.; Klopp, N.; Meyer, J.; Steinbach, G.; Wennauer, R.; Eriksson, J.G. Mӓnnistö, S.; Peltonen, L.; Tikkanen, E.; Charpentier, G.; Eury, E.; Lobbens, S.; Gigante, B.; Leander, K.; McLeod, O.; Bottinger, E.P.; Gottesman, O.; Ruderfer, D.; Blüher, M.; Kovacs, P.; Tonjes, A.; Maruthur, N.M.; Scapoli, C.; Erbel, R.; Jöckel, K.H.; Moebus, S.; de Faire, U.; Hamsten, A.; Stumvoll, M.; Deloukas, P.; Donnelly, P.J.; Frayling, T.M.; Hattersley, A.T.; Ripatti, S.; Salomaa, V.; Pedersen, N.L.; Boehm, B.O.; Bergman, R.N.; Collins, F.S.; Mohlke, K.L.; Tuomilehto, J.; Hansen, T.; Pedersen, O.; Barroso, I.; Lannfelt, L.; Ingelsson, E.; Lind, L.; Lindgren, C.M.; Cauchi, S.; Froguel, P.; Loos, R.J.F.; Balkau, B.; Boeing, H.; Franks, P.W.; Barricarte Gurrea, A.; Palli, D.; van der Schouw, Y.T.; Altshuler, D.; Groop, L.C.; Langenberg, C.; Wareham, N.J.; Sijbrands, E.; van Duijn, C.M.; Florez, J.C.; Meigs, J.B.; Boerwinkle, E.; Gieger, C.; Strauch, K.; Metspalu, A.; Morris, A.D.; Palmer, C.N.A.; Hu, F.B.; Thorsteinsdottir, U.; Stefansson, K.; Dupuis, J.; Morris, A.P.; Boehnke, M.; McCarthy, M.I.; Prokopenko, I. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes, 2017, 66(11), 2888-2902.
[http://dx.doi.org/10.2337/db16-1253] [PMID: 28566273]
[49]
Bocanegra, A.; Macho-González, A.; Garcimartín, A.; Benedí, J.; Sánchez-Muniz, F.J. Whole alga, algal extracts, and compounds as ingredients of functional foods: Composition and action mechanism relationships in the prevention and treatment of type-2 diabetes mellitus. Int. J. Mol. Sci., 2021, 22(8), 3816.
[http://dx.doi.org/10.3390/ijms22083816] [PMID: 33917044]
[50]
Eflora-Flora of Pakistan-Withania coagulans. Available from: http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=242426281
[51]
Tripathi, D.; Pandey-Rai, S. Withania coagulans: An overview on therapeutic potential and use of recent biotechnological approaches for conservation and enhancement of secondary metabolites; Nova Science Publishers, Inc.: India, 2019.
[52]
Sharma, N.; Sachdeva, P.; Dhiman, M.; Koshy, E.P. Comparative evaluation of in vitro regeneration potential of seeds of W. somnifera and W. coagulans. Biotechnol. J. Int., 2015, 8, 21-33.
[53]
Jacob, B.; Narendhirakannan, R.T. Role of medicinal plants in the management of diabetes mellitus: A review. 3 Biotech, 2019, 9, 1-17.
[http://dx.doi.org/10.1007/s13205-018-1528-0]
[54]
Kherade, M.; Solanke, S.; Tawar, M.; Gawande, S.; Warghat, S.; Bansod, T. A comprehensive review on withania coagulans (Paneer Dodi). Int. J. Pharm. Pharm. Res., 2021, 22, 257-282.
[55]
Sudhanshu, K.B.; Amit, K.; Neeraj, K.S.; Supriya, K.; Ashok, K.G.; Shree, R.P. Antidiabetic effect of aqueous extract of Withania coagulans flower in Poloxamer-407 induced type 2 diabetic rats. J. Med. Plants Res., 2012, 6, 5706-5713.
[56]
Jaiswal, D.; Rai, P.K.; Watal, G. Antidiabetic effect of Withania coagulans in experimental rats. Indian J. Clin. Biochem., 2009, 24(1), 88-93.
[http://dx.doi.org/10.1007/s12291-009-0015-0] [PMID: 23105813]
[57]
Shukla, K.; Dikshit, P.; Shukla, R.; Gambhir, J.K. The aqueous extract of Withania coagulans fruit partially reverses nicotinamide/streptozotocin-induced diabetes mellitus in rats. J. Med. Food, 2012, 15(8), 718-725.
[http://dx.doi.org/10.1089/jmf.2011.1829] [PMID: 22846078]
[58]
Hoda, Q.; Ahmad, S.; Akhtar, M.; Pillai, K.K.; Pillai, K.K.; Ahmad, S.J. Antihyperglycaemic and antihyperlipidaemic effect of poly-constituents, in aqueous and chloroform extracts, of Withania coagulans Dunal in experimental type 2 diabetes mellitus in rats. Hum. Exp. Toxicol., 2010, 29(8), 653-658.
[http://dx.doi.org/10.1177/0960327109359638] [PMID: 20068014]
[59]
Tanuja; Waris, M.; Shahzad, N.; Al-Ghamdi, S.S.; Mir, S.R. Evaluation of the antidiabetic potential of an isolated hydroalcoholic fraction from the fruit of withania coagulans. J. Pharm. Bioallied Sci., 2021, 13(4), 367-372.
[http://dx.doi.org/10.4103/jpbs.JPBS_423_20] [PMID: 35399799]
[60]
Ram, H.; Kumar, P.; Purohit, A.; Kashyap, P.; Kumar, S.; Kumar, S.; Singh, G.; Alqarawi, A.A.; Hashem, A.; Abd-Allah, E.F.; Al-Arjani, A.B.F.; Singh, B.P. Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. Nutr. Metab., 2021, 18(1), 43.
[http://dx.doi.org/10.1186/s12986-021-00547-2] [PMID: 33882957]
[61]
Maurya, R. Akanksha; Jayendra; Singh, A.B.; Srivastava, A.K. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg. Med. Chem. Lett., 2008, 18(24), 6534-6537.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.050] [PMID: 18952419]
[62]
Bagchi, C.; Das, S.; Mitra, A.; Pati, A.D.; Tripathi, S.K.; Datta, A. Antidiabetic and antihyperlipidemic activity of hydroalcoholic extract of Withania coagulans Dunal dried fruit in experimental rat models. J. Ayurveda Integr. Med., 2013, 4(2), 99-106.
[http://dx.doi.org/10.4103/0975-9476.113880] [PMID: 23930042]
[63]
Jaiswal, D.; Rai, P.K.; Watal, G. Hypoglycemic and antidiabetic effects of Withania coagulans fruit ethanolic extract in normal and streptozotocin-induced diabetic rats. J. Food Biochem., 2010, 34.
[http://dx.doi.org/10.1111/j.1745-4514.2009.00314.x]
[64]
Yasir, M.; Shrivastava, R.; Jain, P.; Das, D. Hypoglycemic and antihyperglycemic effects of different extracts and combinations of Withania coagulans Dunal and Acacia arabica Lamk in normal and alloxan-induced diabetic rats. Phcog. Pharmacogn. Commun., 2012, 2(2), 61-66.
[http://dx.doi.org/10.5530/pc.2012.2.9]
[65]
Bansal, M.; Kumari, S.; Sharma, Y.K. Screening & evaluation of anti-diabetic spectrum of Withania Coagulans. Int. J. Pharmaceut. Biol. Sci. Arch., 2021, 9(1), 93-96.
[http://dx.doi.org/10.32553/ijpba.v9i1.179]
[66]
Upadhayay, A.; Shalini, S.; Kumari, S.; Rahman, M.U. Evaluation of antidiabetic activity of fruits of Withahnia coagulans in streptozocin induced diabetic rats. J. Drug Deliv. Ther., 2018, 8(2), 25-28.
[http://dx.doi.org/10.22270/jddt.v8i2.1678]
[67]
Maher, S.; Choudhary, M.I.; Saleem, F.; Rasheed, S.; Waheed, I.; Halim, S.A.; Azeem, M.; Abdullah, I.B.; Froeyen, M.; Mirza, M.U.; Ahmad, S. Isolation of antidiabetic withanolides from Withania coagulans Dunal and their in vitro and in silico validation. Biology, 2020, 9(8), 197.
[http://dx.doi.org/10.3390/biology9080197] [PMID: 32751610]
[68]
Sampathkumar, K.; Riyajan, S.; Tan, C.K.; Demokritou, P.; Chudapongse, N.; Loo, S.C.J. Small-intestine-specific delivery of antidiabetic extracts from Withania coagulans using polysaccharide-based enteric-coated nanoparticles. ACS Omega, 2019, 4(7), 12049-12057.
[http://dx.doi.org/10.1021/acsomega.9b00823] [PMID: 31460318]
[69]
Samad, A.; Sadiq, N.; Ayaz, H.; Rajpoot, N.N. Antidiabetic effect of withanolides and liraglutide on serum insulin level and pancreatic histology in diabetic rats. Prof. Med. J., 2019, 26(11), 1898-1903.
[http://dx.doi.org/10.29309/TPMJ/2019.26.11.3155]
[70]
Samad, A.; Rajpoot, N.N.; Ayaz, H.; Sadiq, N. Effect of Withania coagulans and liraglutide on serum Glp-1, postprandial and fasting blood glucose in streptozotocin induced diabetic rats. J. Bahria Univ. Med. Dental College, 2019, 9(2), 120-123.
[http://dx.doi.org/10.51985/JBUMDC2018125]
[71]
Sandhiya, V.; Krishna, M.S. Effect of chloroform fraction of Withania coagulans bud on the regulation of GLUT4 and PPARγ-expressions levels in diabetic L6 myotubes. Int. J. Life Sci. Res., 2016, 2, 285-289.
[72]
Meeran, S.B.; Subburaya, U.; Narasimhan, G. In silico and in vitro screening of ethanolic extract of fruits of Withania coagulans against diabetes. Res. J. Pharma. Technol., 2020, 13(2), 631-635.
[http://dx.doi.org/10.5958/0974-360X.2020.00120.1]
[73]
v, H.; Vigasini, N. Effect of supplementation of Withania coagulans fruit on the fasting plasma glucose levels of Type 2 diabetic subjects. Asian J. Pharm. Clin. Res., 2018, 11(12), 448-451.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i12.27433]
[74]
Kamble, M.A.; Mane, M.R.; Ingole, A.R.; Dhabarde, D.M. Standardization of some marketed herbal formulation used in diabetes. J. Adv. Res. Pharma. Sci. Pharmacol. Int., 2018, 2, 22-26.
[75]
Nazim, M.D.; Aslam, D.M.; Khatoon, R.; Asif, D.M.; Chaudhary, S.S. Physico-chemical standardization of Hansraj (Adiantum capillus-Veneris). J. Drug Deliv. Ther., 2018, 8(6-s), 195-203.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2229]
[76]
Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[77]
Deogade, M.S.; Ksr, P. Standardization of wild Krushnatulasi (Ocimum tenuiflorum Linn). Leaf. Int. J. Ayurvedic Med., 2019, 10(1), 52-61.
[http://dx.doi.org/10.47552/ijam.v10i1.1172]
[78]
Zhang, J.; Wider, B.; Shang, H.; Li, X.; Ernst, E. Quality of herbal medicines: Challenges and solutions. Complement. Ther. Med., 2012, 20(1-2), 100-106.
[http://dx.doi.org/10.1016/j.ctim.2011.09.004] [PMID: 22305255]
[79]
Fernandes, F.H.A.; Salgado, H.R.N. Gallic acid: Review of the methods of determination and quantification. Crit. Rev. Anal. Chem., 2016, 46(3), 257-265.
[http://dx.doi.org/10.1080/10408347.2015.1095064] [PMID: 26440222]
[80]
Rashid, S.; Zafar, M.; Ahmad, M.; Lone, F.A.; Shaheen, S.; Sultana, S.; Ashfaq, S.; Shinwari, M.I. Microscopic investigations and pharmacognostic techniques used for the standardization of herbal drug Nigella sativa L. Microsc. Res. Tech., 2018, 81(12), 1443-1450.
[http://dx.doi.org/10.1002/jemt.23110] [PMID: 30351462]
[81]
Kannan, N.D.; Kulandaivelu, G. Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J. Med. Plants Res., 2011, 5, 3929-3935.
[82]
Preethi, M.P.; Sangeetha, U.; Pradeepa, D.; Valizadeh, M.; Senthil, K. Principal component analysis and HPTLC fingerprint of in vitro and field grown root extracts of Withania coagulans. Int. J. Pharm. Pharm. Sci., 2014, 6, 480-488.
[83]
Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology, 2020, 9(9), 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[84]
Costa, I.S.; Medeiros, A.F.; Piuvezam, G.; Medeiros, G.C.B.S.; Maciel, B.L.L.; Morais, A.H.A.M. Insulin-like proteins in plant sources: A systematic review. Diabetes Metab. Syndr. Obes., 2020, 13, 3421-3431.
[http://dx.doi.org/10.2147/DMSO.S256883] [PMID: 33061503]
[85]
Atta-ur-Rahman,; Abbas, S.; Dur-e-Shahwar,; Jamal, S.A.; Choudhary, M.I. New withanolides from Withania sp. J. Nat. Prod., 1993, 56(7), 1000-1006.
[http://dx.doi.org/10.1021/np50097a003]
[86]
Kapoor, L. Handbook of Ayurvedic Medicinal Plants: Herbal Reference Library; CRC Press: Boca Raton, FL, USA, 2000, Vol. 2, .
[87]
Rohit, J.; Sumita, K. S, L.K. Phytochemistry, pharmacology, and biotechnology of Withania somnifera and Withania coagulans: A review. J. Med. Plants Res., 2012, 6(41), 5388-5399.
[http://dx.doi.org/10.5897/JMPR12.704]
[88]
Salam, A.; Wahid, M.A. Free sugars and a galactoaraban from Withania coagulans seeds. Pak. J. Biochem., 1969, 2, 18-21.
[89]
Atal, C.K.; Sethi, P.D. A preliminary chemical examination of Withania coagulans. Indian J. Pharmacol., 1963, 25, 163-164.
[90]
Andallu, B.; Radhika, B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J. Exp. Biol., 2000, 38(6), 607-609.
[PMID: 11116534]
[91]
Gibaldi, M. Non-oral medications. In: Bioinformatics and Clinical Pharmacokinetics; Gibaldi, M., Ed.; Lea and Febiger: Philadelphia, 1984; pp. 85-112.
[92]
Patil, R. Bioavailability: Issues and Challenges. In: Bioavailability of Herbal Medicine; Patil, R., Ed.; Springer, 2019; pp. 1-19.
[93]
Gupta, S. Formulation strategies to improve the bioavailability of herbal drugs. J. Drug Deliv. Sci. Technol., 2019, 49, 284-295.
[94]
Zhang, Y. Factors affecting the oral bioavailability of phytochemicals. J. Med. Food, 2020, 23, 1-13.
[95]
Azmi, M.B.; Khan, F.; Asif, U.; Khurshid, B.; Wadood, A.; Qureshi, S.A.; Ahmed, S.D.H.; Mudassir, H.A.; Sheikh, S.I.; Feroz, N. In silico characterization of withania coagulans bioactive compounds as potential inhibitors of hydroxymethylglutaryl (HMG-CoA) Reductase of Mus musculus. ACS Omega, 2023, 8(5), 5057-5071.
[http://dx.doi.org/10.1021/acsomega.2c07893] [PMID: 36777558]
[96]
Gupta, S.; Sharma, A. Pharmacokinetics of withaferin A in rats: A rapid and sensitive UHPLC-MS/MS method for quantification in plasma and tissues. Biomed. Chromatogr., 2017, 31, e3940.
[97]
Verma, S.K.; Singh, J. Effect of piperine on the pharmacokinetics of withaferin A and its major metabolite, withanolide A, in rats. Drug Res., 2018, 68, 553-558.
[98]
Prasad, S.; Tyagi, A.K. Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: Influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine, 2015, 22, 387-394.
[99]
Zhou, Z.; Xiang, W.; Jiang, Y.; Tian, N.; Wei, Z.; Wen, X.; Wang, W.; Liao, W.; Xia, X.; Li, Q.; Liao, R. Withaferin A alleviates traumatic brain injury induced secondary brain injury via suppressing apoptosis in endothelia cells and modulating activation in the microglia. Eur. J. Pharmacol., 2020, 874, 172988.
[http://dx.doi.org/10.1016/j.ejphar.2020.172988] [PMID: 32032599]
[100]
Singh, A.; Raza, A.; Amin, S.; Damodaran, C.; Sharma, A.K. Recent advances in the chemistry and therapeutic evaluation of naturally occurring and synthetic withanolides. Molecules, 2022, 27(3), 886.
[http://dx.doi.org/10.3390/molecules27030886] [PMID: 35164150]
[101]
Kumar, S.; Mathew, S.O.; Aharwal, R.P.; Tulli, H.S.; Mohan, C.D.; Sethi, G.; Ahn, K.S.; Webber, K.; Sandhu, S.S.; Bishayee, A.; Withaferin, A.; Withaferin, A. A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals, 2023, 16(2), 160.
[http://dx.doi.org/10.3390/ph16020160] [PMID: 37259311]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy