Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Exploring the Role of Cathelicidin Antimicrobial Peptide, Toll-Like Receptor 4, and HMGB-1 in Bacterial Infection

Author(s): Ami Febriza*, Hasta Handayani Idrus and Vivien Novarina Kasim

Volume 22, Issue 3, 2024

Published on: 11 January, 2024

Article ID: e110124225525 Pages: 8

DOI: 10.2174/0122113525284634231222071749

Price: $65

Abstract

Background and Aim: Lipopolysaccharides (LPS) from Salmonella typhi will attach with Toll-Like Receptor 4 (TLR-4) and trigger an inflammatory response to fight the pathogen. Due to infection, the HMGB1 is produced by immune cells or secreted passively from dead cells. Furthermore, the antimicrobial peptide, cathelicidin was secreted to neutralize and eliminate these pathogens. This study aims to examine the interaction of Cathelicidin antimicrobial peptide (CAMP), TLR-4, and HMGB-1 on inhibiting bacterial growth in Salmonella infection.

Methods: This study is an experiment that uses a pre-post-test design. Mice balb/c were separated into three groups; group A received levofloxacin for five days, group B received a placebo, and group C was the control. Both groups, A and B, received an injection of S. Typhi strain thy1. Blood samples were taken from three groups on the 4th, 10th, and 30th day to calculate CAMP, TLR-4, and HMGB-1 mRNA gene expression levels. To determine bacterial colony, peritoneal fluid was taken three times on the 4th, 10th, and 30th day to calculate bacterial colony.

Results: Our finding observed that the expression of mRNA CAMP was inversely related to bacterial colony count, which means that higher CAMP mRNA expression was associated with reduced bacterial colony count in groups A and B. The expression of HMGB-1 mRNA was found to be positively correlated with bacterial growth in group A. Meanwhile, TLR-4 mRNA expression did not significantly correlate with bacterial colony count in any groups.

Conclusions: CAMP, TLR-4, and HMGB-1 affect bacterial infections. Higher expression CAMP mRNA levels lower colony counts. Meanwhile, decreasing TLR-4 and HMGB-1 mRNA expression were found during the study, due to reducing growth bacteria.

Graphical Abstract

[1]
Dwiyanti, R. Seroprevalence rates of typhoid fever among children in endemic areas, South Sulawesi, Indonesia Indian J Public Health Res Dev, 2019. Available from: https://api.semanticscholar.org/CorpusID:213920103
[http://dx.doi.org/10.5958/0976-5506.2019.02979.6]
[2]
Dwiyanti, R.; Hatta, M.; Natzir, R.; Pratiwi, S.; Sabir, M.; Yasir, Y.; Noviyanthi, R.A.; Junita, A.R.; Tandirogan, N.; Amir, M.; Fias, M.; Saning, J.; Bahar, B. Association of typhoid fever severity with polymorphisms NOD2, VDR and NRAMP1 genes in endemic area, Indonesia. J. Med. Sci., 2017, 17(3), 133-139.
[http://dx.doi.org/10.3923/jms.2017.133.139]
[3]
Abul Abbas, Andrew H. Lichtman, S. P. (2014). Cellular and Molecular Immunology (8th ed.). Philadelphia: W.B. Saunders Company. https://www.elsevier.com/books/cellular-and-molecular-immunology/abbas/978-0-323-22275-4
[4]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[5]
Ramachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. In: Virulence; Taylor and Francis Inc, 2014; 5, pp. (1)213-218.
[http://dx.doi.org/10.4161/viru.27024]
[6]
Febriza, A.; Natzir, R.; Hatta, M.; As’ad, S. Budu; Kaelan, C.; Kasim, V.N.; Idrus, H.H. The role of IL-6, TNF-α and VDR in inhibiting the growth of salmonella typhi: In vivo study. Open Microbiol. J., 2020, 14(1), 65-71.
[http://dx.doi.org/10.2174/1874285802014010065]
[7]
Kasim, V.N. Antibacterial and anti-inflammatory effects of lime (itrs rtifli) peel extract in Balb/c mice infected by Salmonella typhi. J. Biol. Res., 2020, 93(2)
[http://dx.doi.org/10.4081/jbr.0.8951]
[8]
Bowdish, D.; Davidson, D.; Hancock, R. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr. Protein Pept. Sci., 2005, 6(1), 35-51.
[http://dx.doi.org/10.2174/1389203053027494] [PMID: 15638767]
[9]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[10]
Xhindoli, D.; Morgera, F.; Zinth, U.; Rizzo, R.; Pacor, S.; Tossi, A. New aspects of the structure and mode of action of the human cathelicidin LL-37 revealed by the intrinsic probe p -cyanophenylalanine. Biochem. J., 2015, 465(3), 443-457.
[http://dx.doi.org/10.1042/BJ20141016] [PMID: 25378136]
[11]
Wu, H.; Zhang, G.; Minton, J. E.; Ross, C. R.; Blecha, F. Regulation of Cathelicidin Gene Expression: Induction by Lipopolysaccharide, Interleukin-6, Retinoic Acid, and Salmonella enterica Serovar Typhimurium Infection; , 2000.
[http://dx.doi.org/10.1128/IAI.68.10.5552-5558.2000]
[12]
Bergman, P.; Johansson, L.; Asp, V.; Plant, L.; Gudmundsson, G.H.; Jonsson, A.B.; Agerberth, B. Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell. Microbiol., 2005, 7(7), 1009-1017.
[http://dx.doi.org/10.1111/j.1462-5822.2005.00530.x] [PMID: 15953032]
[13]
Islam, D.; Bandholtz, L.; Nilsson, J.; Wigzell, H.; Christensson, B.; Agerberth, B.; Gudmundsson, G.H. Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med., 2001, 7(2), 180-185.
[http://dx.doi.org/10.1038/84627] [PMID: 11175848]
[14]
Yu, J.; Dai, Y.; Fu, Y.; Wang, K.; Yang, Y.; Li, M.; Xu, W.; Wei, L. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Res., 2021, 187, 105021.
[http://dx.doi.org/10.1016/j.antiviral.2021.105021] [PMID: 33508330]
[15]
Maruyama; Hashiguchi, T.; Masuda, K.; Saniabadi, A.R.; Kikuchi, K.; Tancharoen, S.; Ito, T.; Miura, N.; Morimoto, Y.; Biswas, K.K.; Nawa, Y.; Meng, X.; Oyama, Y.; Takenouchi, K.; Shrestha, B.; Sameshima, H.; Shimizu, T.; Adachi, T.; Adachi, M.; Maruyama, I. Mechanism of HMGB1 release inhibition from RAW264.7 cells by oleanolic acid in Prunus mume Sieb. et Zucc. Int. J. Mol. Med., 2009, 23(5), 615-620.
[http://dx.doi.org/10.3892/ijmm_00000172] [PMID: 19360320]
[16]
Idrus, H.H.; Hatta, M.; Kasim, V.N.; Achmad, A.F.; Arsal, A.S.F. hadju, V.; As’ad, S. Molecular impact on high motility group box-1 (HMGB-1) in pamps and damp. Indian J. Public Health Res. Dev., 2019, 10(8), 1109.
[http://dx.doi.org/10.5958/0976-5506.2019.02045.X]
[17]
Andersson, U.; Tracey, K.J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol., 2011, 29(1), 139-162.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101323] [PMID: 21219181]
[18]
van Zoelen, M.A.D.; Yang, H.; Florquin, S.; Meijers, J.C.M.; Akira, S.; Arnold, B.; Nawroth, P.P.; Bierhaus, A.; Tracey, K.J.; Poll, T. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock, 2009, 31(3), 280-284.
[http://dx.doi.org/10.1097/SHK.0b013e318186262d] [PMID: 19218854]
[19]
Park, J.S.; Gamboni-Robertson, F.; He, Q.; Svetkauskaite, D.; Kim, J.Y.; Strassheim, D.; Sohn, J.W.; Yamada, S.; Maruyama, I.; Banerjee, A.; Ishizaka, A.; Abraham, E. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol., 2006, 290(3), C917-C924.
[http://dx.doi.org/10.1152/ajpcell.00401.2005] [PMID: 16267105]
[20]
Park, J.S.; Svetkauskaite, D.; He, Q.; Kim, J.Y.; Strassheim, D.; Ishizaka, A.; Abraham, E. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem., 2004, 279(9), 7370-7377.
[http://dx.doi.org/10.1074/jbc.M306793200] [PMID: 14660645]
[21]
Mukherjee, S.; Patra, R.; Behzadi, P.; Masotti, A.; Paolini, A.; Sarshar, M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives In: Frontiers in Immunology; Frontiers Media SA, 2023; p. 14.
[http://dx.doi.org/10.3389/fimmu.2023.1244345]
[22]
Febriza, A.; Kasim, V.N.A.; Idrus, H.H.; Hatta, M. The effects of curcumin and vitamin d combination as inhibitor toward Salmonella typhi bacteria growth in vivo. Int. J. Appl. Pharm., 2019, 11(5)
[http://dx.doi.org/10.22159/ijap.2019.v11s5.T0093]
[23]
Hatta, M.; Smits, H.L. Detection of Salmonella typhi by nested polymerase chain reaction in blood, urine, and stool samples. Am. J. Trop. Med. Hyg., 2007, 76(1), 139-143.
[http://dx.doi.org/10.4269/ajtmh.2007.76.139] [PMID: 17255243]
[24]
Camp cathelicidin antimicrobial peptide [Mus musculus (house mouse)] - Gene - NCBI Available from: https://www.ncbi.nlm.nih.gov/gene/?term=12796 Accessed: Nov. 23, 2023.
[25]
Tlr4 toll-like receptor 4 [Mus musculus (house mouse)] - Gene - NCBI Available from: https://www.ncbi.nlm.nih.gov/gene/?term=21898 Accessed: Nov. 23, 2023.
[26]
Hmgb1 high mobility group box 1 [Mus musculus (house mouse)] - Gene - NCBI Available from: https://www.ncbi.nlm.nih.gov/gene/?term=15289 Accessed: Nov. 23, 2023.
[27]
Kaarthikeyan, G.; Balakrishnan, A.; Jayakumar, N.D. The link between the genetic polymorphisms of the innate immune signaling molecular factors with periodontitis. J. Biol. Res., 2018, 91(1)
[http://dx.doi.org/10.4081/jbr.2018.7202]
[28]
Bals, R.; Weiner, D.J.; Moscioni, A.D.; Meegalla, R.L.; Wilson, J.M. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect. Immun., 1999, 67(11), 6084-6089.
[http://dx.doi.org/10.1128/IAI.67.11.6084-6089.1999] [PMID: 10531270]
[29]
Lee, P.H.A.; Ohtake, T.; Zaiou, M.; Murakami, M.; Rudisill, J.A.; Lin, K.H.; Gallo, R.L. Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc. Natl. Acad. Sci. USA, 2005, 102(10), 3750-3755.
[http://dx.doi.org/10.1073/pnas.0500268102] [PMID: 15728389]
[30]
Liu, P.T. Toll-like receptor triggering of a vitamin d-mediated human antimicrobial response. Science, 2006, 311(5768), 1770-1773.
[http://dx.doi.org/10.1126/science.1123933]
[31]
O’Neill, A.M.; Liggins, M.C.; Seidman, J.S.; Do, T.H.; Li, F.; Cavagnero, K.J.; Dokoshi, T.; Cheng, J.Y.; Shafiq, F.; Hata, T.R.; Gudjonsson, J.E.; Modlin, R.L.; Gallo, R.L. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci. Transl. Med., 2022, 14(632), eabh1478.
[http://dx.doi.org/10.1126/scitranslmed.abh1478] [PMID: 35171653]
[32]
Ansari, A.R.; Arshad, M.; Masood, S.; Huang, H.B.; Zhao, X.; Li, N.; Sun, Z.; Cui, L.; Hu, Y.; Liu, H.Z. Salmonella infection may alter the expression of toll like receptor 4 and immune related cells in chicken bursa of Fabricius. Microb. Pathog., 2018, 121, 59-64.
[http://dx.doi.org/10.1016/j.micpath.2018.05.019] [PMID: 29763725]
[33]
Li, N.; Ansari, A.R.; Sun, Z.; Huang, H.; Cui, L.; Hu, Y.; Zhao, X.; Zhong, J.; Abdel-Kafy, E.S.M.; Liu, H. Toll like receptor 4 signaling pathway participated in Salmonella lipopolysaccharide-induced spleen injury in young chicks. Microb. Pathog., 2017, 112, 288-294.
[http://dx.doi.org/10.1016/j.micpath.2017.10.004] [PMID: 28987624]
[34]
Behzadi, P.; Sameer, A.S.; Nissar, S.; Banday, M.Z.; Gajdács, M.; García-Perdomo, H.A.; Akhtar, K.; Pinheiro, M.; Magnusson, P.; Sarshar, M.; Ambrosi, C. The interleukin-1 (IL-1) superfamily cytokines and their single nucleotide polymorphisms (SNPs). J. Immunol. Res., 2022, 2022, 1-25.
[http://dx.doi.org/10.1155/2022/2054431] [PMID: 35378905]
[35]
Wang, H.L.; Tsao, S.M.; Yeh, C.B.; Chou, Y.E.; Yang, S.F. Circulating level of high mobility group box-1 predicts the severity of community-acquired pneumonia: Regulation of inflammatory responses via the c-Jun N-terminal signaling pathway in macrophages. Mol. Med. Rep., 2017, 16(3), 2361-2366.
[http://dx.doi.org/10.3892/mmr.2017.6892] [PMID: 28677786]
[36]
Morita, H.; Hasunuma, R.; Kawaguchi, K.; Adachi, Y.; Tanaka, S.; Kumazawa, Y. Limitation of polymyxin B on suppression of endotoxin shock induced by Salmonella infection in mice. Biol. Pharm. Bull., 2004, 27(11), 1840-1843.
[http://dx.doi.org/10.1248/bpb.27.1840] [PMID: 15516734]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy