Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

Recent Patterns and Assessment of Long-term Complications followi ng SARS-CoV-2 Infection and Vaccination in the Context of Diabet es Prevalence among Blood Donors

Author(s): Turki Mohammed M. Alqahtani, Mohammed Abdullah Ali Alghamdi, Mirza Rafi Baig, Fahad A. Al-Abbasi, Ryan Adnan Sheikh, Naif A. R. Almalki, Moayad Mustafa Hejazi, Sultan Alhayyani, Turky Omar Asar, Vikas Kumar and Firoz Anwar*

Volume 20, Issue 9, 2024

Published on: 26 February, 2024

Article ID: e110124225520 Pages: 8

DOI: 10.2174/0115733998274390231110050809

Price: $65

Abstract

Background: Much increasing evidence has suggested that long-term complications post vaccination of SARS-CoV-2 experience a wide range of complication including diabetes. The risk and burden of type 1 diabetes is extensively reported, but type 2 diabetes mellitus (T2D) has yet to be characterized. To address this gap, we aimed to examine trends of long-term complications post SARS-CoV-2 infection and vaccination in diabetes incidence among the Saudi population.

Methods: In this cross-sectional hospital-based study, we analyzed the blood profile of first-time blood donors from the University Hospital of King Abdulaziz University, Jeddah. Saudi Arabia. Various blood parameters, HbA1c was measured in the month of May 2023. All the donors were non-diabetic and were never diagnosed with T2D before the current blood donation. 203 healthy subjects donated their blood, out of which 104 had abnormally high HbA1c tending towards diagnosis of T2D and 99 had with blood profiles. The study followed the STROBE reporting guidelines.

Results: Out of 203 donors 104 (male 50(48.1%), female 54(51.9%)) were diagnosed with increased HbA1c (8.24 in males) compared to 7.61 of HbA1c in females. 35.6% were above ˃65 years, with 52.9% with O+ from the ABO blood group. Liver functions indicated significant p˂0.05, 0.04, increased amount of GGT (46.47 U/L), Alkaline phosphatase (99.93 ±64.26 uL) respectively in HbA1c elevated donors KFT represented significant p˂0.05, 0.02 elevated levels of urea (6.73 ±5.51 mmol/L), creatinine (129.97 ±195.17 umol/L) respectively along with elevated values of Lactate dehydrogenase (LDH) (263.72± 196.70 uL) and triglycerides (1.66 ±0.74mmol/L) when compared to normal value of HbA1c donors.

Discussion: In the present cross-sectional study, significant increase in HbA1c, trending towards increased cases of T2D post SARS-CoV-2 infection and vaccination. Males are much affected compared to females. Further maximum number of cases were from donors above the age of 65 years with altered partial LFT (GGT, Alkaline phosphatase), KFT (urea, creatinine), lipid profile (TG) and LDH in post SARS-CoV-2 and vaccination blood donors.

Conclusion: Increase in HbA1c in 50% of donors, irrespective of gender, is an alarming figure for health authorities, with altered LFT, KFT and LDH tests and, in the near future, may increase the incidence of T2D. Large-scale population-based studies are required to prevent future incidences of T2D in young children who will be vaccinated.

[1]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[2]
Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol 2014; 2(1): 56-64.
[http://dx.doi.org/10.1016/S2213-8587(13)70112-8] [PMID: 24622669]
[3]
Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol 2019; 26(2_suppl): 7-14.
[http://dx.doi.org/10.1177/2047487319881021] [PMID: 31766915]
[4]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition Diabetes Res Clin Pract 2019; 157(107843)
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[5]
Jaacks LM, Siegel KR, Gujral UP, Narayan KMV. Type 2 diabetes: A 21st century epidemic. Best Pract Res Clin Endocrinol Metab 2016; 30(3): 331-43.
[http://dx.doi.org/10.1016/j.beem.2016.05.003] [PMID: 27432069]
[6]
Misra A, Tandon N, Ebrahim S, et al. Diabetes, cardiovascular disease, and chronic kidney disease in South Asia: Current status and future directions. BMJ 2017; 357.
[7]
AlZubaidi HAA, Alfaqih ANO, Alothayqi MHA, et al. Knowledge and practice of the preventive and care methods for diabetic foot among the caregivers of diabetic patients in Saudi Arabia. Cureus 2023; 15.
[8]
Alhowaish A. Economic costs of diabetes in Saudi Arabia. J Family Community Med 2013; 20(1): 1-7.
[http://dx.doi.org/10.4103/2230-8229.108174] [PMID: 23723724]
[9]
Malkin J, Finkelstein E, Baid D, et al. Impact of noncommunicable diseases on direct medical costs and worker productivity, Saudi Arabia. East Mediterr Health J 2022; 28(4): 296-301.
[http://dx.doi.org/10.26719/emhj/22.015] [PMID: 35545911]
[10]
Jacob AM, Devarajan A, Nachimuthu S, Datta M, Viswanathan V. Cost of diabetes treatment in private facilities for low resource urban community in South India. Int J Diabetes Dev Ctries 2023; 43(2): 208-13.
[http://dx.doi.org/10.1007/s13410-022-01047-6]
[11]
Yano M, Morioka T, Natsuki Y, et al. New-onset type 1 diabetes after COVID-19 mRNA vaccination. Intern Med 2022; 61(8): 1197-200.
[http://dx.doi.org/10.2169/internalmedicine.9004-21] [PMID: 35135929]
[12]
Edwards AE, Vathenen R, Henson SM, Finer S, Gunganah K. Acute hyperglycaemic crisis after vaccination against COVID‐19: A case series. Diabet Med 2021; 38(11): e14631.
[http://dx.doi.org/10.1111/dme.14631] [PMID: 34185927]
[13]
Sasaki H, Itoh A, Watanabe Y, et al. Newly developed type 1 diabetes after coronavirus disease 2019 vaccination: A case report. J Diabetes Investig 2022; 13(6): 1105-8.
[http://dx.doi.org/10.1111/jdi.13757] [PMID: 35088548]
[14]
Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care 2021; 44(12): 2645-55.
[http://dx.doi.org/10.2337/dc21-1318] [PMID: 34625431]
[15]
Samuel SM, Varghese E, Triggle CR, Büsselberg D. COVID-19 vaccines and hyperglycemia-is there a need for postvaccination surveillance? Vaccines 2022; 10(3): 454.
[http://dx.doi.org/10.3390/vaccines10030454] [PMID: 35335086]
[16]
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med 2010; 362(12): 1090-101.
[http://dx.doi.org/10.1056/NEJMoa0908292] [PMID: 20335585]
[17]
Wander PL, Lowy E, Beste LA, et al. The incidence of diabetes among 2,777,768 veterans with and without recent SARS-CoV-2 infection. Diabetes Care 2022; 45(4): 782-8.
[http://dx.doi.org/10.2337/dc21-1686] [PMID: 35085391]
[18]
Corrao S, Pinelli K, Vacca M, Raspanti M, Argano C. Type 2 diabetes mellitus and COVID-19: A narrative review. Front Endocrinol 2021; 12: 609470.
[http://dx.doi.org/10.3389/fendo.2021.609470] [PMID: 33868163]
[19]
Soegiarto G, Purnomosari D, Wulandari L, et al. Incidence of SARS-CoV-2 infection in hospital workers before and after vaccination programme in East Java, Indonesia - a retrospective cohort study. Lancet Reg Health Southeast Asia 2023; 10: 100130.
[http://dx.doi.org/10.1016/j.lansea.2022.100130] [PMID: 36531927]
[20]
Barrett CE, Koyama AK, Alvarez P, et al. Risk for newly diagnosed diabetes> 30 days after SARS-CoV-2 infection among persons aged< 18 years-United States, March 1, 2020–June 28, 2021. MMWR Morb Mortal Wkly Rep 2022; 71(2): 59-65.
[http://dx.doi.org/10.15585/mmwr.mm7102e2] [PMID: 35025851]
[21]
Lawrence JM, Divers J, Isom S, et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017. JAMA 2021; 326(8): 717-27.
[http://dx.doi.org/10.1001/jama.2021.11165] [PMID: 34427600]
[22]
Fagherazzi G, Gusto G, Clavel-Chapelon F, Balkau B, Bonnet F. ABO and Rhesus blood groups and risk of type 2 diabetes: Evidence from the large E3N cohort study. Diabetologia 2015; 58(3): 519-22.
[http://dx.doi.org/10.1007/s00125-014-3472-9] [PMID: 25533388]
[23]
Cano EA, Esguerra MA, Batausa AM, et al. Association between ABO blood groups and type 2 diabetes mellitus: A meta-analysis. Curr Diabetes Rev 2023; 19(6): e270422204139.
[http://dx.doi.org/10.2174/1573399818666220427124448] [PMID: 35490312]
[24]
Sun L, Kanwar YS. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int 2015; 88(4): 662-5.
[http://dx.doi.org/10.1038/ki.2015.250] [PMID: 26422621]
[25]
Ferguson M, Vel J, Phan V, et al. Coronavirus disease 2019, diabetes, and inflammation: A systemic review. Metab Syndr Relat Disord 2023; 21(4): 177-87.
[http://dx.doi.org/10.1089/met.2022.0090] [PMID: 37130311]
[26]
Azzi L, Dalla Gasperina D, Veronesi G, et al. Mucosal immune response after the booster dose of the BNT162b2 COVID-19 vaccine. EBioMedicine 2023; 88: 104435.
[http://dx.doi.org/10.1016/j.ebiom.2022.104435] [PMID: 36628844]
[27]
Berry A, Kapelus D, Singh P, Groome M, de Assis Rosa D. ABO blood types, but not Secretor or Lewis blood types, influence strength of antibody response to Hepatitis B vaccine in Black South African children. Vaccine 2023; 41(24): 3617-26.
[http://dx.doi.org/10.1016/j.vaccine.2023.04.051] [PMID: 37169653]
[28]
Kumar S, Kumari B, Kaushik A, Banerjee A, Mahto M, Bansal A. Relation between HbA1c and lipid profile among prediabetics, diabetics, and non-diabetics: A hospital-based cross-sectional analysis. Cureus 2022; 14.
[29]
Roberts LN, Whyte MB. Re: Diabetes mellitus is associated with a higher relative risk for venous thromboembolism in females than in males. Diabetes Res Clin Pract 2023; 197: 110556.
[http://dx.doi.org/10.1016/j.diabres.2023.110556] [PMID: 36738831]
[30]
Sarfraz M, Sajid S, Ashraf MA. Prevalence and pattern of dyslipidemia in hyperglycemic patients and its associated factors among Pakistani population. Saudi J Biol Sci 2016; 23(6): 761-6.
[http://dx.doi.org/10.1016/j.sjbs.2016.03.001] [PMID: 27872574]
[31]
Marfella R, Sardu C, D’Onofrio N, et al. Glycaemic control is associated with SARS-CoV-2 breakthrough infections in vaccinated patients with type 2 diabetes. Nat Commun 2022; 13(1): 2318.
[http://dx.doi.org/10.1038/s41467-022-30068-2] [PMID: 35484164]
[32]
Leite NC, Salles GF, Araujo ALE, Villela-Nogueira CA, Cardoso CRL. Prevalence and associated factors of non‐alcoholic fatty liver disease in patients with type‐2 diabetes mellitus. Liver Int 2009; 29(1): 113-9.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01718.x] [PMID: 18384521]
[33]
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1(1): 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[34]
Menéndez-Morales D, Peña-Arellano GA, González-Huezo MS. Frequency and characteristics of alterations in liver function tests (LFT) in adult patients with COVID-19 (preliminary report). Ann Hepatol 2020; 19: 18.
[http://dx.doi.org/10.1016/j.aohep.2020.08.040]
[35]
Dumortier J. Liver injury after mRNA-based SARS-CoV-2 vaccination in a liver transplant recipient. Clin Res Hepatol Gastroenterol 2022; 46(1): 101743.
[http://dx.doi.org/10.1016/j.clinre.2021.101743] [PMID: 34146727]
[36]
Garrido I, Lopes S, Simões MS, et al. Autoimmune hepatitis after COVID-19 vaccine - more than a coincidence. J Autoimmun 2021; 125: 102741.
[http://dx.doi.org/10.1016/j.jaut.2021.102741] [PMID: 34717185]
[37]
Uttra KM, Devrajani BR, Shah SZA, et al. Lipid profile of patients with diabetes mellitus (A multidisciplinary study). World Appl Sci J 2011; 12: 1382-4.
[38]
Ahmad A, Khan AR, Raja ZA, Mustafa G. Measurement of serum cholesterol and triglyceride: Evaluation in patients with diabetes; hypertension & cerebrovascular accident in south Punjab. Prof Med J 2003; 10: 92-8.
[39]
Alcántara-Alonso E, Molinar-Ramos F, González-López JA, et al. High triglyceride to HDL-cholesterol ratio as a biochemical marker of severe outcomes in COVID-19 patients. Clin Nutr ESPEN 2021; 44: 437-44.
[http://dx.doi.org/10.1016/j.clnesp.2021.04.020] [PMID: 34330502]
[40]
Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: A cohort study. Lancet Diabetes Endocrinol 2023; 11(2): 120-8.
[http://dx.doi.org/10.1016/S2213-8587(22)00355-2] [PMID: 36623520]
[41]
Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-Aly Z. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int 2018; 93(3): 741-52.
[http://dx.doi.org/10.1016/j.kint.2017.08.033] [PMID: 29241622]
[42]
Koppe L, Nyam E, Vivot K, et al. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease. J Clin Invest 2016; 126(9): 3598-612.
[http://dx.doi.org/10.1172/JCI86181] [PMID: 27525435]
[43]
Chen M, Zhu B, Chen D, et al. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: A 6-month prospective study. Endocr Pract 2021; 27(8): 834-41.
[http://dx.doi.org/10.1016/j.eprac.2021.04.004] [PMID: 33887468]
[44]
Muramatsu K, Takeuchi I, Ota S, Yanagawa Y. Transient decrease of insulin secretion after COVID-19 infection in a patient with hyperosmolar hyperglycemic syndrome. Am J Med Case Rep 2023; 11(2): 37-40.
[http://dx.doi.org/10.12691/ajmcr-11-2-8]
[45]
Bereda G. Dual insulin resistance causes: How frequently type 2 diabetes mellitus and COVID-19 infection caused diabetic ketoacidosis? a case report. Ann Med Surg 2023; 85(4): 1096-9.
[http://dx.doi.org/10.1097/MS9.0000000000000341] [PMID: 37113916]
[46]
Saenwongsa W, Nithichanon A, Chittaganpitch M, et al. Metformin-induced suppression of IFN-α via mTORC1 signalling following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes. Sci Rep 2020; 10(1): 3229.
[http://dx.doi.org/10.1038/s41598-020-60213-0] [PMID: 32094377]
[47]
Niel O, Florescu C. IgA nephropathy presenting as rapidly progressive glomerulonephritis following first dose of COVID-19 vaccine. Pediatr Nephrol 2022; 37(2): 461-2.
[http://dx.doi.org/10.1007/s00467-021-05351-x] [PMID: 34786589]
[48]
Liu J, Wang R, Luo N, Li Z, Mao H, Zhou Y. Mitochondrial DNA copy number in peripheral blood of IgA nephropathy: A cross-sectional study. Ren Fail 2023; 45(1): 2182133.
[http://dx.doi.org/10.1080/0886022X.2023.2182133] [PMID: 36880600]
[49]
Song DK, Hong YS, Sung YA, Lee H. Association of serum creatinine levels and risk of type 2 diabetes mellitus in Korea: A case control study. BMC Endocr Disord 2022; 22(1): 4.
[http://dx.doi.org/10.1186/s12902-021-00915-2] [PMID: 34983489]
[50]
Nishino K, Nakagawa K, Yase E, Terashima M, Murata T. Diabetic ketoacidosis after the second dose of SARS-CoV-2 mRNA vaccination in a patient with pembrolizumab-induced fulminant type 1 diabetes. Diabetol Int 2023; 14(2): 206-10.
[http://dx.doi.org/10.1007/s13340-022-00614-w] [PMID: 36575722]
[51]
Xiang F, Long B, He J, et al. Impaired antibody responses were observed in patients with type 2 diabetes mellitus after receiving the inactivated COVID-19 vaccines. Virol J 2023; 20(1): 22.
[http://dx.doi.org/10.1186/s12985-023-01983-7] [PMID: 36750902]
[52]
Paschou SA, Karalis V, Psaltopoulou T, et al. Patients with type 2 diabetes mellitus present similar immunological response to COVID-19 BNT162b2 mRNA vaccine to healthy subjects: A prospective cohort study. Hormones 2023; 22(1): 5-11.
[http://dx.doi.org/10.1007/s42000-022-00405-7] [PMID: 36269544]
[53]
Bailey JM, Wang L, McDonald JM, et al. Immune response to COVID-19 vaccination in a population with a history of elevated exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water. J Expo Sci Environ Epidemiol 2023; 33(5): 725-36.
[http://dx.doi.org/10.1038/s41370-023-00564-8] [PMID: 37337047]
[54]
Gupta GS. The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients. Inflammation 2022; 45(6): 2091-123.
[http://dx.doi.org/10.1007/s10753-022-01680-7] [PMID: 35588340]
[55]
Ashraf A, Liaquat A, Shabbir S, et al. High level of lactate dehydrogenase and ischaemia–reperfusion injury regulate the multiple organ dysfunction in patients with COVID-19. Postgrad Med J 2023; 99(1172): 576-81.
[http://dx.doi.org/10.1136/postgradmedj-2022-141573] [PMID: 37319152]
[56]
Herzog Tzarfati K, Gutwein O, Apel A, et al. BNT162b2 COVID ‐19 vaccine is significantly less effective in patients with hematologic malignancies. Am J Hematol 2021; 96(10): 1195-203.
[http://dx.doi.org/10.1002/ajh.26284] [PMID: 34185336]
[57]
Zhang S, Chao L, She L, et al. Ag85A, As an S2 vaccine carrier, reduces the toxicity of the s2 vaccine and enhances the protective ability of mice against brucella. J Immunol Res 2022 2022.
[58]
Szarpak L, Ruetzler K, Safiejko K, et al. Lactate dehydrogenase level as a COVID-19 severity marker. Am J Emerg Med 2021; 45: 638-9.
[http://dx.doi.org/10.1016/j.ajem.2020.11.025] [PMID: 33246860]
[59]
Wang Q, Wang G, Qiu Z, He X, Liu C. Elevated serum triglycerides in the prognostic assessment of acute pancreatitis. J Clin Gastroenterol 2017; 51(7): 586-93.
[http://dx.doi.org/10.1097/MCG.0000000000000846] [PMID: 28682990]
[60]
Nawaz H, Koutroumpakis E, Easler J, et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. J Am College Gastroenterol 2015; 110: 1497-503.
[http://dx.doi.org/10.1038/ajg.2015.261]
[61]
Cheung B, Hwang J, Stolarczyk A, Mahlof EN, Block RC. Case study of hypertriglyceridemia from COVID-19 Pfizer-BioNTech vaccination in a patient with familial hypercholesteremia. Eur Rev Med Pharmacol Sci 2021; 25(17): 5525-8.
[PMID: 34533798]
[62]
Chang Y, Jeon J, Song TJ, Kim J. Association of triglyceride-glucose index with prognosis of COVID-19: A population-based study. J Infect Public Health 2022; 15(8): 837-44.
[http://dx.doi.org/10.1016/j.jiph.2022.06.014] [PMID: 35779467]
[63]
Ren H, Yang Y, Wang F, et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. Cardiovasc Diabetol 2020; 19(1): 58.
[http://dx.doi.org/10.1186/s12933-020-01035-2] [PMID: 32393351]
[64]
Affinati AH, Wallia A, Gianchandani RY. Severe hyperglycemia and insulin resistance in patients with SARS-CoV-2 infection: A report of two cases. Clin Diabetes Endocrinol 2021; 7(1): 8.
[http://dx.doi.org/10.1186/s40842-021-00121-y] [PMID: 33992101]
[65]
Seggelke SA, Ingram CC, Crawley S, Low Wang CC. Insulin resistance in a hospitalized COVID-19 patient: A case review. Clin Diabetes 2021; 39(2): 228-32.
[http://dx.doi.org/10.2337/cd20-0036] [PMID: 33986579]
[66]
Langouche L, Van den Berghe G, Gunst J. Hyperglycemia and insulin resistance in COVID-19 versus non-COVID critical illness: Are they really different? Crit Care 2021; 25(1): 437.
[http://dx.doi.org/10.1186/s13054-021-03861-6] [PMID: 34920750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy