Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease

Author(s): Yi-Ming Li, Hong-Wei He and Na Zhang*

Volume 25, Issue 3, 2024

Published on: 11 January, 2024

Page: [171 - 189] Pages: 19

DOI: 10.2174/0113894501278886231221092522

Price: $65

Abstract

There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.

Graphical Abstract

[1]
Hunter T. The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol 2014; 6(5): a020644.
[http://dx.doi.org/10.1101/cshperspect.a020644] [PMID: 24789824]
[2]
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22(4): 273-94.
[http://dx.doi.org/10.1038/s41573-022-00618-w] [PMID: 36693907]
[3]
Czernilofsky AP, Levinson AD, Varmus HE, Bishop JM, Tischer E, Goodman HM. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 1980; 287(5779): 198-203.
[http://dx.doi.org/10.1038/287198a0] [PMID: 6253794]
[4]
Alonso A, Pulido R. The extended human PTP ome: A growing tyrosine phosphatase family. FEBS J 2016; 283(11): 2197-201.
[http://dx.doi.org/10.1111/febs.13748] [PMID: 27263510]
[5]
Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell 2004; 117(6): 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]
[6]
Shi Y. Serine/threonine phosphatases: Mechanism through structure. Cell 2009; 139(3): 468-84.
[http://dx.doi.org/10.1016/j.cell.2009.10.006] [PMID: 19879837]
[7]
Brautigan DL, Shenolikar S. Protein serine/threonine phosphatases: keys to unlocking regulators and substrates. Annu Rev Biochem 2018; 87(1): 921-64.
[http://dx.doi.org/10.1146/annurev-biochem-062917-012332] [PMID: 29925267]
[8]
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144: 55-93.
[http://dx.doi.org/10.1016/bs.acr.2019.03.009] [PMID: 31349904]
[9]
Kamada R, Kudoh F, Ito S, et al. Metal-dependent ser/thr protein phosphatase ppm family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215: 107622.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107622] [PMID: 32650009]
[10]
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19(1): 45.
[http://dx.doi.org/10.1186/s12964-021-00722-1] [PMID: 33882943]
[11]
Maj MC, MacKay N, Levandovskiy V, et al. Pyruvate dehydrogenase phosphatase deficiency: Identification of the first mutation in two brothers and restoration of activity by protein complementation. J Clin Endocrinol Metab 2005; 90(7): 4101-7.
[http://dx.doi.org/10.1210/jc.2005-0123] [PMID: 15855260]
[12]
Lawson JE, Niu XD, Browning KS, Trong HL, Yan J, Reed LJ. Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity with protein phosphatase 2C. Biochemistry 1993; 32(35): 8987-93.
[http://dx.doi.org/10.1021/bi00086a002] [PMID: 8396421]
[13]
Seely BL, Staubs PA, Reichart DR, et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 1996; 45(10): 1379-85.
[http://dx.doi.org/10.2337/diab.45.10.1379] [PMID: 8826975]
[14]
Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell 2002; 2(4): 489-95.
[http://dx.doi.org/10.1016/S1534-5807(02)00148-X] [PMID: 11970898]
[15]
Sangwan V, Paliouras GN, Cheng A, Dubé N, Tremblay ML, Park M. Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. J Biol Chem 2006; 281(1): 221-8.
[http://dx.doi.org/10.1074/jbc.M507858200] [PMID: 16234234]
[16]
Sanderson SO, Smyrk TC. The use of protein tyrosine phosphatase 1B and insulin receptor immunostains to differentiate nonalcoholic from alcoholic steatohepatitis in liver biopsy specimens. Am J Clin Pathol 2005; 123(4): 503-9.
[http://dx.doi.org/10.1309/1PX2LMPQUH1EE12U] [PMID: 15743753]
[17]
Revuelta-Cervantes J, Mayoral R, Miranda S, et al. Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol 2011; 178(4): 1591-604.
[http://dx.doi.org/10.1016/j.ajpath.2010.12.020] [PMID: 21406170]
[18]
Aberdein N, Dambrino RJ, do Carmo JM, et al. Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance. Am J Physiol Regul Integr Comp Physiol 2018; 314(3): R478-88.
[http://dx.doi.org/10.1152/ajpregu.00287.2017] [PMID: 29351427]
[19]
Owen C, Lees EK, Grant L, et al. Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia 2013; 56(10): 2286-96.
[http://dx.doi.org/10.1007/s00125-013-2992-z] [PMID: 23832083]
[20]
Agouni A, Mody N, Owen C, et al. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem J 2011; 438(2): 369-78.
[http://dx.doi.org/10.1042/BJ20110373] [PMID: 21605081]
[21]
Rubio C, Puerto M, García-Rodríquez JJ, et al. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol Metab 2020; 35: 100954.
[http://dx.doi.org/10.1016/j.molmet.2020.01.018] [PMID: 32244182]
[22]
González-Rodríguez Á, Valdecantos MP, Rada P, et al. Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Mol Metab 2018; 7: 132-46.
[http://dx.doi.org/10.1016/j.molmet.2017.10.008] [PMID: 29126873]
[23]
Jarc E, Petan T. Lipid droplets and the management of cellular stress. Yale J Biol Med 2019; 92(3): 435-52. [doi].
[PMID: 31543707]
[24]
Barahona I, Rada P, Calero-Pérez S, et al. Ptpn1 deletion protects oval cells against lipoapoptosis by favoring lipid droplet formation and dynamics. Cell Death Differ 2022; 29(12): 2362-80.
[http://dx.doi.org/10.1038/s41418-022-01023-x] [PMID: 35681014]
[25]
Shirpoor A, Heshmati E, Kheradmand F, et al. Increased hepatic FAT/CD36, PTP1B and decreased HNF4A expression contributes to dyslipidemia associated with ethanol-induced liver dysfunction: Rescue effect of ginger extract, Biomedicine & pharmacotherapy. Biomedecine & pharmacotherapie 2018; 105: 144-50.
[http://dx.doi.org/10.1016/j.biopha.2018.05.121] [PMID: 29852391]
[26]
Krishnan N, Konidaris KF, Gasser G, Tonks NK. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J Biol Chem 2018; 293(5): 1517-25.
[http://dx.doi.org/10.1074/jbc.C117.819110] [PMID: 29217773]
[27]
Hsu MF, Koike S, Mello A, Nagy LE, Haj FG. Hepatic protein-tyrosine phosphatase 1B disruption and pharmacological inhibition attenuate ethanol-induced oxidative stress and ameliorate alcoholic liver disease in mice. Redox Biol 2020; 36: 101658.
[http://dx.doi.org/10.1016/j.redox.2020.101658] [PMID: 32769011]
[28]
Yang L, Sun Y, Liu Y, et al. PTP1B promotes macrophage activation by regulating the NF-κB pathway in alcoholic liver injury. Toxicol Lett 2020; 319: 11-21.
[http://dx.doi.org/10.1016/j.toxlet.2019.11.001] [PMID: 31711802]
[29]
Mobasher MA, González-Rodriguez Á, Santamaría B, et al. Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis 2013; 4(5): e626.
[http://dx.doi.org/10.1038/cddis.2013.150] [PMID: 23661004]
[30]
Chen PJ, Cai SP, Yang Y, et al. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells. Toxicol Appl Pharmacol 2016; 292: 8-18.
[http://dx.doi.org/10.1016/j.taap.2015.12.021] [PMID: 26739621]
[31]
García-Ruiz I, Blanes Ruiz N, Rada P, et al. Protein tyrosine phosphatase 1b deficiency protects against hepatic fibrosis by modulating nadph oxidases. Redox Biol 2019; 26: 101263.
[http://dx.doi.org/10.1016/j.redox.2019.101263] [PMID: 31299613]
[32]
Zheng LY, Zhou DX, Lu J, Zhang WJ, Zou DJ. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma. Biochem Biophys Res Commun 2012; 420(3): 680-4.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.066] [PMID: 22450318]
[33]
Tai WT, Chen YL, Chu PY, et al. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology 2016; 63(5): 1528-43.
[http://dx.doi.org/10.1002/hep.28478] [PMID: 26840794]
[34]
Yang Q, Zhang L, Zhong Y, Lai L, Li X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci Rep 2019; 39(5): BSR20181823.
[http://dx.doi.org/10.1042/BSR20181823] [PMID: 31048362]
[35]
Song Z, Wang M, Ge Y, et al. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm Sin B 2021; 11(1): 13-29.
[http://dx.doi.org/10.1016/j.apsb.2020.07.010] [PMID: 33532178]
[36]
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7(1): 177.
[http://dx.doi.org/10.1038/s41392-022-01038-3] [PMID: 35665742]
[37]
Song Y, Zhao M, Zhang H, Yu B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2022; 230: 107966.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107966] [PMID: 34403682]
[38]
Ivins Zito C, Kontaridis MI, Fornaro M, Feng GS, Bennett AM. SHP-2 regulates the phosphatidylinositide 3′-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol 2004; 199(2): 227-36.
[http://dx.doi.org/10.1002/jcp.10446] [PMID: 15040005]
[39]
Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021; 11(12): 3908-24.
[http://dx.doi.org/10.1016/j.apsb.2021.03.037] [PMID: 35024315]
[40]
Liu W, Yin Y, Wang M, et al. Disrupting phosphatase SHP2 in macrophages protects mice from high-fat diet-induced hepatic steatosis and insulin resistance by elevating IL-18 levels. J Biol Chem 2020; 295(31): 10842-56.
[http://dx.doi.org/10.1074/jbc.RA119.011840] [PMID: 32546483]
[41]
Luo X, Liao R, Hanley KL, et al. Dual Shp2 and Pten deficiencies promote non-alcoholic steatohepatitis and genesis of liver tumor-initiating cells. Cell Rep 2016; 17(11): 2979-93.
[http://dx.doi.org/10.1016/j.celrep.2016.11.048] [PMID: 27974211]
[42]
Gao J, Wei B, de Assuncao TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73(5): 1144-54.
[http://dx.doi.org/10.1016/j.jhep.2020.04.044] [PMID: 32389810]
[43]
Kostallari E, Hirsova P, Prasnicka A, et al. Hepatic stellate cell–derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 2018; 68(1): 333-48.
[http://dx.doi.org/10.1002/hep.29803] [PMID: 29360139]
[44]
Li S, Hsu DDF, Li B, et al. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab 2014; 20(2): 320-32.
[http://dx.doi.org/10.1016/j.cmet.2014.05.020] [PMID: 24981838]
[45]
Xiang D, Cheng Z, Liu H, et al. Shp2 promotes liver cancer stem cell expansion by augmenting β-catenin signaling and predicts chemotherapeutic response of patients. Hepatology 2017; 65(5): 1566-80.
[http://dx.doi.org/10.1002/hep.28919] [PMID: 28059452]
[46]
Han T, Xiang DM, Sun W, et al. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol 2015; 63(3): 651-60.
[http://dx.doi.org/10.1016/j.jhep.2015.03.036] [PMID: 25865556]
[47]
Bard-Chapeau EA, Li S, Ding J, et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011; 19(5): 629-39.
[http://dx.doi.org/10.1016/j.ccr.2011.03.023] [PMID: 21575863]
[48]
Du L, Ji Y, Xin B, et al. Shp2 deficiency in kupffer cells and hepatocytes aggravates hepatocarcinogenesis by recruiting non-kupffer macrophages. Cell Mol Gastroenterol Hepatol 2023; 15(6): 1351-69.
[http://dx.doi.org/10.1016/j.jcmgh.2023.02.011] [PMID: 36828281]
[49]
Liu JJ, Li Y, Chen WS, et al. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol 2018; 69(1): 79-88.
[http://dx.doi.org/10.1016/j.jhep.2018.02.014] [PMID: 29505847]
[50]
Cho US, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 2007; 445(7123): 53-7.
[http://dx.doi.org/10.1038/nature05351] [PMID: 17086192]
[51]
Zolnierowicz S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem Pharmacol 2000; 60(8): 1225-35.
[http://dx.doi.org/10.1016/S0006-2952(00)00424-X] [PMID: 11007961]
[52]
Wlodarchak N, Xing Y. PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol 2016; 51(3): 162-84.
[http://dx.doi.org/10.3109/10409238.2016.1143913] [PMID: 26906453]
[53]
Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 2013; 335(1): 9-18.
[http://dx.doi.org/10.1016/j.canlet.2013.02.036] [PMID: 23454242]
[54]
Maitiabula G, Tian F, Wang P, et al. Liver PP2A-Cα protects from parenteral nutrition-associated hepatic steatosis. Cell Mol Gastroenterol Hepatol 2022; 14(3): 669-92.
[http://dx.doi.org/10.1016/j.jcmgh.2022.05.008] [PMID: 35643235]
[55]
Patel SJ, Liu N, Piaker S, et al. Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of Ppp2r1b. Sci Transl Med 2022; 14(637): eabh3831.
[http://dx.doi.org/10.1126/scitranslmed.abh3831] [PMID: 35320000]
[56]
Zubiete-Franco I, García-Rodríguez JL, Martínez-Uña M, et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J Hepatol 2016; 64(2): 409-18.
[http://dx.doi.org/10.1016/j.jhep.2015.08.037] [PMID: 26394163]
[57]
Liangpunsakul S, Rahmini Y, Ross RA, Zhao Z, Xu Y, Crabb DW. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol 2012; 302(5): G515-23.
[http://dx.doi.org/10.1152/ajpgi.00455.2011] [PMID: 22194417]
[58]
Supakul R, Liangpunsakul S. Alcoholic-induced hepatic steatosis—role of ceramide and protein phosphatase 2A. Transl Res 2011; 158(2): 77-81.
[http://dx.doi.org/10.1016/j.trsl.2011.03.005] [PMID: 21757150]
[59]
Davuluri G, Welch N, Sekar J, et al. Activated protein phosphatase 2A disrupts nutrient sensing balance between mechanistic target of rapamycin complex 1 and adenosine monophosphate–activated protein kinase, causing sarcopenia in alcohol-associated liver disease. Hepatology 2021; 73(5): 1892-908.
[http://dx.doi.org/10.1002/hep.31524] [PMID: 32799332]
[60]
Zhang Y, Yuan T, Su Z, et al. Reduced methylation of PP2Ac promotes ethanol–induced lipid accumulation through FOXO1 phosphorylation in vitro and in vivo. Toxicol Lett 2020; 331: 65-74.
[http://dx.doi.org/10.1016/j.toxlet.2020.05.035] [PMID: 32492475]
[61]
Bernsmeier C, Duong FHT, Christen V, et al. Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J Hepatol 2008; 49(3): 429-40.
[http://dx.doi.org/10.1016/j.jhep.2008.04.007] [PMID: 18486982]
[62]
Duong FHT, Christen V, Filipowicz M, Heim MH. S-adenosylmethionine and betaine correct hepatitis C virus induced inhibition of interferon signaling in vitro. Hepatology 2006; 43(4): 796-806.
[http://dx.doi.org/10.1002/hep.21116] [PMID: 16557551]
[63]
Duong FHT, Christen V, Berke JM, Penna SH, Moradpour D, Heim MH. Upregulation of protein phosphatase 2Ac by hepatitis C virus modulates NS3 helicase activity through inhibition of protein arginine methyltransferase 1. J Virol 2005; 79(24): 15342-50.
[http://dx.doi.org/10.1128/JVI.79.24.15342-15350.2005] [PMID: 16306605]
[64]
Jiang X, Li W, Tan M, et al. Identification of miRNAs involved in liver injury induced by chronic exposure to cadmium. Toxicology 2022; 469: 153133.
[http://dx.doi.org/10.1016/j.tox.2022.153133] [PMID: 35183672]
[65]
Chen L, Guo P, Li W, et al. Perturbation of specific signaling pathways is involved in initiation of mouse liver fibrosis. Hepatology 2021; 73(4): 1551-69.
[http://dx.doi.org/10.1002/hep.31457] [PMID: 32654205]
[66]
Lu N, Liu Y, Tang A, Chen L, Miao D, Yuan X. Hepatocyte-specific ablation of PP2A catalytic subunit α attenuates liver fibrosis progression via TGF-β1/Smad signaling. BioMed Res Int 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/794862] [PMID: 25710025]
[67]
Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res 2012; 347(1): 245-56.
[http://dx.doi.org/10.1007/s00441-011-1246-y] [PMID: 22006249]
[68]
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201: 181-201.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.016] [PMID: 31158394]
[69]
Yang CL, Qiu X, Lin JY, et al. Potential role and clinical value of ppp2ca in hepatocellular carcinoma. J Clin Transl Hepatol 2021; 9(5): 661-671.
[http://dx.doi.org/10.14218/JCTH.2020.00168] [PMID: 34722181]
[70]
Gong SJ, Feng XJ, Song WH, et al. Upregulation of PP2Ac predicts poor prognosis and contributes to aggressiveness in hepatocellular carcinoma. Cancer Biol Ther 2016; 17(2): 151-62.
[http://dx.doi.org/10.1080/15384047.2015.1121345] [PMID: 26618405]
[71]
Zhuang Q, Zhou T, He C, et al. Protein phosphatase 2A-B55δ enhances chemotherapy sensitivity of human hepatocellular carcinoma under the regulation of microRNA-133b. J Exp Clin Cancer Res 2016; 35(1): 67.
[http://dx.doi.org/10.1186/s13046-016-0341-z] [PMID: 27074866]
[72]
Qian B, Che L, Du ZB, et al. Protein phosphatase 2A-B55β mediated mitochondrial p-GPX4 dephosphorylation promoted sorafenib-induced ferroptosis in hepatocellular carcinoma via regulating p53 retrograde signaling. Theranostics 2023; 13(12): 4288-302.
[http://dx.doi.org/10.7150/thno.82132] [PMID: 37554285]
[73]
Li J, Zhou JK, Mu X, et al. Regulation of XPO5 phosphorylation by PP2A in hepatocellular carcinoma. MedComm 2022; 3(2): e125.
[http://dx.doi.org/10.1002/mco2.125] [PMID: 35441157]
[74]
Liu L, Huang Z, Chen J, Wang J, Wang S. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells. J Cell Biochem 2018; 119(8): 6633-43.
[http://dx.doi.org/10.1002/jcb.26845] [PMID: 29693750]
[75]
Liu L, Huang Z, Chen J, Wang J, Wang S. Protein phosphatase 2A activation mechanism contributes to JS-K induced caspase-dependent apoptosis in human hepatocellular carcinoma cells. J Exp Clin Cancer Res 2018; 37(1): 142.
[http://dx.doi.org/10.1186/s13046-018-0823-2] [PMID: 29986744]
[76]
He R, Yu Z, Zhang R, Zhang Z. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35(10): 1227-46.
[http://dx.doi.org/10.1038/aps.2014.80] [PMID: 25220640]
[77]
Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273(22): 13375-8.
[http://dx.doi.org/10.1074/jbc.273.22.13375] [PMID: 9593664]
[78]
Myers MP, Stolarov JP, Eng C, et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci 1997; 94(17): 9052-7.
[http://dx.doi.org/10.1073/pnas.94.17.9052] [PMID: 9256433]
[79]
Horie Y, Suzuki A, Kataoka E, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113(12): 1774-83.
[http://dx.doi.org/10.1172/JCI20513] [PMID: 15199412]
[80]
Watanabe S, Horie Y, Suzuki A. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatology research : the official journal of the Japan Society of Hepatology 2005; 33(2): 161-6.
[http://dx.doi.org/10.1016/j.hepres.2005.09.026] [PMID: 16214396]
[81]
Matsuda S, Kobayashi M, Kitagishi Y. Roles for PI3K/AKT/PTEN pathway in cell signaling of nonalcoholic fatty liver disease. ISRN Endocrinol 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/472432] [PMID: 23431468]
[82]
Vinciguerra M, Veyrat-Durebex C, Moukil MA, Rubbia-Brandt L, Rohner-Jeanrenaud F, Foti M. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 2008; 134(1): 268-80.
[http://dx.doi.org/10.1053/j.gastro.2007.10.010] [PMID: 18166358]
[83]
Han J, He Y, Zhao H, Xu X. Hypoxia inducible factor-1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway. J Cell Biochem 2019; 120(9): 14735-44.
[http://dx.doi.org/10.1002/jcb.28734] [PMID: 31009107]
[84]
Anezaki Y, Ohshima S, Ishii H, et al. Sex difference in the liver of hepatocyte-specific Pten-deficient mice: A model of nonalcoholic steatohepatitis. Hepatology research : the official journal of the Japan Society of Hepatology 2009; 39(6): 609-18.
[http://dx.doi.org/10.1111/j.1872-034X.2009.00494.x] [PMID: 19527485]
[85]
Sanchez-Pareja A, Clément S, Peyrou M, et al. Phosphatase and tensin homolog is a differential diagnostic marker between nonalcoholic and alcoholic fatty liver disease. World J Gastroenterol 2016; 22(14): 3735-45.
[http://dx.doi.org/10.3748/wjg.v22.i14.3735] [PMID: 27076758]
[86]
Awad A, Gassama-Diagne A. PI3K/SHIP2/PTEN pathway in cell polarity and hepatitis C virus pathogenesis. World J Hepatol 2017; 9(1): 18-29.
[http://dx.doi.org/10.4254/wjh.v9.i1.18] [PMID: 28105255]
[87]
Bao W, Florea L, Wu N, et al. Loss of nuclear PTEN in HCV-infected human hepatocytes. Infect Agent Cancer 2014; 9(1): 23.
[http://dx.doi.org/10.1186/1750-9378-9-23] [PMID: 25075209]
[88]
Peyrou M, Clément S, Maier C, et al. PTEN protein phosphatase activity regulates hepatitis C virus secretion through modulation of cholesterol metabolism. J Hepatol 2013; 59(3): 420-6.
[http://dx.doi.org/10.1016/j.jhep.2013.04.012] [PMID: 23623999]
[89]
Wu Q, Li Z, Mellor P, Zhou Y, Anderson DH, Liu Q. The role of PTEN - HCV core interaction in hepatitis C virus replication. Sci Rep 2017; 7(1): 3695.
[http://dx.doi.org/10.1038/s41598-017-03052-w] [PMID: 28623358]
[90]
Kang-Park S, Im JH, Lee JH, Lee YI. PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res 2006; 122(1-2): 53-60.
[http://dx.doi.org/10.1016/j.virusres.2006.06.010] [PMID: 16872708]
[91]
Hu TH, Huang CC, Lin PR, et al. Expression and prognostic role of tumor suppressor gene PTEN / MMAC1 / TEP1 in hepatocellular carcinoma. Cancer 2003; 97(8): 1929-40.
[http://dx.doi.org/10.1002/cncr.11266] [PMID: 12673720]
[92]
Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008; 135(6): 1972-83.
[http://dx.doi.org/10.1053/j.gastro.2008.08.008] [PMID: 18929564]
[93]
Khalid A, Hussain T, Manzoor S, Saalim M, Khaliq S. PTEN: A potential prognostic marker in virus-induced hepatocellular carcinoma. Tumour Biol 2017; 39(6)
[http://dx.doi.org/10.1177/1010428317705754] [PMID: 28621226]
[94]
Xiao ZD, Jiao CY, Huang HT, et al. miR-218 modulate hepatocellular carcinoma cell proliferation through PTEN/AKT/PI3K pathway and HoxA10. Int J Clin Exp Pathol 2014; 7(7): 4039-44. [doi].
[PMID: 25120782]
[95]
Tu K, Liu Z, Yao B, Han S, Yang W. MicroRNA-519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Int J Oncol 2016; 48(3): 965-74.
[http://dx.doi.org/10.3892/ijo.2015.3309] [PMID: 26708293]
[96]
Fu X, Wen H, Jing L, et al. Micro RNA -155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI 3K/Akt pathway. Cancer Sci 2017; 108(4): 620-31.
[http://dx.doi.org/10.1111/cas.13177] [PMID: 28132399]
[97]
Yan S, Chen M, Li G, Wang Y, Fan J. MiR-32 induces cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting PTEN. Tumour Biol 2015; 36(6): 4747-55.
[http://dx.doi.org/10.1007/s13277-015-3124-9] [PMID: 25647261]
[98]
Zhang T, Wang Y, Zhang X, Yang K, Miao X, Zhao G. MiR-200c-3p Regulates DUSP1/MAPK pathway in the nonalcoholic fatty liver after laparoscopic sleeve gastrectomy. Front Endocrinol 2022; 13: 792439.
[http://dx.doi.org/10.3389/fendo.2022.792439] [PMID: 35299961]
[99]
Li R, Dai Z, Liu X, et al. Interaction between dual specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver disease by restoring p62-mediated mitophagy. Int J Biol Sci 2023; 19(6): 1831-45.
[http://dx.doi.org/10.7150/ijbs.81447] [PMID: 37063418]
[100]
Jacques S, Arjomand A, Perée H, et al. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep 2021; 11(1): 5817.
[http://dx.doi.org/10.1038/s41598-021-85089-6] [PMID: 33712680]
[101]
Fernando S, Sellers J, Smith S, et al. Metabolic Impact of MKP-2 upregulation in obesity promotes insulin resistance and fatty liver disease. Nutrients 2022; 14(12): 2475.
[http://dx.doi.org/10.3390/nu14122475] [PMID: 35745205]
[102]
Huang Z, Wu LM, Zhang JL, et al. Dual specificity phosphatase 12 regulates hepatic lipid metabolism through inhibition of the lipogenesis and apoptosis signal–regulating kinase 1 pathways. Hepatology 2019; 70(4): 1099-118.
[http://dx.doi.org/10.1002/hep.30597] [PMID: 30820969]
[103]
Ye P, Xiang M, Liao H, et al. Dual-specificity phosphatase 9 protects against nonalcoholic fatty liver disease in mice through ask1 suppression. Hepatology 2019; 69(1): 76-93.
[http://dx.doi.org/10.1002/hep.30198] [PMID: 30063256]
[104]
Wang S, Yan ZZ, Yang X, et al. Hepatocyte DUSP14 maintains metabolic homeostasis and suppresses inflammation in the liver. Hepatology 2018; 67(4): 1320-38.
[http://dx.doi.org/10.1002/hep.29616] [PMID: 29077210]
[105]
Ye P, Liu J, Xu W, et al. Dual-specificity phosphatase 26 protects against nonalcoholic fatty liver disease in mice through transforming growth factor beta–activated kinase 1 suppression. Hepatology 2019; 69(5): 1946-64.
[http://dx.doi.org/10.1002/hep.30485] [PMID: 30582764]
[106]
Wu YK, Hu LF, Lou DS, Wang BC, Tan J. Targeting DUSP16/TAK1 signaling alleviates hepatic dyslipidemia and inflammation in high fat diet (HFD)-challenged mice through suppressing JNK MAPK. Biochem Biophys Res Commun 2020; 524(1): 142-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.037] [PMID: 31982140]
[107]
Ge C, Tan J, Dai X, et al. Hepatocyte phosphatase DUSP22 mitigates NASH-HCC progression by targeting FAK. Nat Commun 2022; 13(1): 5945.
[http://dx.doi.org/10.1038/s41467-022-33493-5] [PMID: 36209205]
[108]
Wen LZ, Ding K, Wang ZR, et al. SHP-1 acts as a tumor suppressor in hepatocarcinogenesis and HCC progression. Cancer Res 2018; 78(16): 4680-91.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3896] [PMID: 29776962]
[109]
Gurzov EN, Tran M, Fernandez-Rojo MA, et al. Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 2014; 20(1): 85-102.
[http://dx.doi.org/10.1016/j.cmet.2014.05.011] [PMID: 24954415]
[110]
Grohmann M, Wiede F, Dodd GT, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell 2018; 175(5): 1289-1306.e20.
[http://dx.doi.org/10.1016/j.cell.2018.09.053] [PMID: 30454647]
[111]
Zhang D, Wu F, Song J, et al. A role for the NPM1/PTPN14/YAP axis in mediating hypoxia-induced chemoresistance to sorafenib in hepatocellular carcinoma. Cancer Cell Int 2022; 22(1): 65.
[http://dx.doi.org/10.1186/s12935-022-02479-0] [PMID: 35135548]
[112]
Li F, Li N, Zhu Q, et al. Association of PTPN22 gene polymorphisms with chronic hepatitis B virus infection in Chinese Han population. Hum Immunol 2015; 76(10): 736-41.
[http://dx.doi.org/10.1016/j.humimm.2015.09.030] [PMID: 26429315]
[113]
Kim K, Ryu D, Dongiovanni P, et al. Degradation of PHLPP2 by KCTD17, via a glucagon-dependent pathway. Promotes Hepatic Steatosis, Gastroenterology 2017; 153(6): 1568-80.
[http://dx.doi.org/10.1053/j.gastro.2017.08.039] [PMID: 28859855]
[114]
Kim K, Kang JK, Jung YH, et al. Adipocyte PHLPP2 inhibition prevents obesity-induced fatty liver. Nat Commun 2021; 12(1): 1822.
[http://dx.doi.org/10.1038/s41467-021-22106-2] [PMID: 33758172]
[115]
Chen D, Zhao Z, Chen L, Li Q, Zou J, Liu S. PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3. Cell Death Dis 2021; 12(8): 722.
[http://dx.doi.org/10.1038/s41419-021-04013-y] [PMID: 34290239]
[116]
Shetty A, Syn W-K. Current treatment options for nonalcoholic fatty liver disease 2019; 35(3): 168-76.
[http://dx.doi.org/10.1097/MOG.0000000000000528] [PMID: 30844893]
[117]
Ansari S, Hasan K, Bhat S. Anticancer, antioxidant, and hepatoprotective activity of Saussurea lappa, C.B. clarke (qust) on human hepatoma cell line. J Cancer Res Ther 2021; 17(2): 499-503.
[http://dx.doi.org/10.4103/jcrt.JCRT_571_19] [PMID: 34121698]
[118]
Bean P. The use of alternative medicine in the treatment of hepatitis C. Am Clin Lab 2002; 21(4): 19-21.
[PMID: 12087634]
[119]
Kim MH, Kang KS. Isoflavones as a smart curer for non-alcoholic fatty liver disease and pathological adiposity via ChREBP and Wnt signaling. Prev Med 2012; 54 (Suppl.): S57-63.
[http://dx.doi.org/10.1016/j.ypmed.2011.12.018] [PMID: 22227283]
[120]
Qiu LX, Chen T. Novel insights into the mechanisms whereby isoflavones protect against fatty liver disease. World J Gastroenterol 2015; 21(4): 1099-107.
[http://dx.doi.org/10.3748/wjg.v21.i4.1099] [PMID: 25632182]
[121]
Kim MH, Kang KS, Lee YS. The inhibitory effect of genistein on hepatic steatosis is linked to visceral adipocyte metabolism in mice with diet-induced non-alcoholic fatty liver disease. Br J Nutr 2010; 104(9): 1333-42.
[http://dx.doi.org/10.1017/S0007114510002266] [PMID: 20687969]
[122]
Kim M-H, Park J-S, Jung J-W, Byun K-W, Kang K-S, Lee Y-S. Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism. Int J Obes 2011; 35(8): 1019-30.
[http://dx.doi.org/10.1038/ijo.2010.256] [PMID: 21157426]
[123]
Park H, Hwang YH, Kim DG, Jeon J, Ma J. Hepatoprotective effect of herb formula KIOM2012H against nonalcoholic fatty liver disease. Nutrients 2015; 7(4): 2440-55.
[http://dx.doi.org/10.3390/nu7042440] [PMID: 25849950]
[124]
Zhang C, Shi Z, Lei H, et al. Dietary isoquercetin reduces hepatic cholesterol and triglyceride in NAFLD mice by modulating bile acid metabolism via intestinal FXR-FGF15 Signaling. J Agric Food Chem 2023; 71(20): 7723-33.
[http://dx.doi.org/10.1021/acs.jafc.3c00952] [PMID: 37166409]
[125]
Teschke R, Schulze J, Schwarzenboeck A, Eickhoff A, Frenzel C. Herbal hepatotoxicity. Eur J Gastroenterol Hepatol 2013; 25(9): 1093-8.
[http://dx.doi.org/10.1097/MEG.0b013e3283603e89] [PMID: 23510966]
[126]
Zhang Q, Fan Z, Zhang L, You Q, Wang L. Strategies for targeting serine/threonine protein phosphatases with small molecules in cancer. J Med Chem 2021; 64(13): 8916-38.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00631] [PMID: 34156850]
[127]
Hao J, Qian Z, Liu Z, Zhang G, Wang D, Han W. The antidiabetic activities of neocryptotanshinone: Screened by molecular docking and related to the modulation of PTP1B. Nutrients 2022; 14(15): 3031.
[http://dx.doi.org/10.3390/nu14153031] [PMID: 35893885]
[128]
Bourebaba L, Łyczko J, Alicka M, et al. Inhibition of protein-tyrosine phosphatase ptp1b and lmptp promotes palmitate/oleate-challenged hepg2 cell survival by reducing lipoapoptosis, improving mitochondrial dynamics and mitigating oxidative and endoplasmic reticulum stress. J Clin Med 2020; 9(5): 1294.
[http://dx.doi.org/10.3390/jcm9051294] [PMID: 32369900]
[129]
Zhou X, Wang LL, Tang WJ, Tang B. Astragaloside IV inhibits protein tyrosine phosphatase 1B and improves insulin resistance in insulin-resistant HepG2 cells and triglyceride accumulation in oleic acid (OA)-treated HepG2 cells. J Ethnopharmacol 2021; 268: 113556.
[http://dx.doi.org/10.1016/j.jep.2020.113556] [PMID: 33157223]
[130]
Li J, Zhang X, Tian J, et al. CX08005, a protein tyrosine phosphatase 1b inhibitor, attenuated hepatic lipid accumulation and microcirculation dysfunction associated with nonalcoholic fatty liver disease. Pharmaceuticals 2023; 16(1): 106.
[http://dx.doi.org/10.3390/ph16010106] [PMID: 36678603]
[131]
Pereira ENGS, Silvares RR, Flores EEI, et al. Hepatic microvascular dysfunction and increased advanced glycation end products are components of non-alcoholic fatty liver disease. PLoS One 2017; 12(6): e0179654.
[http://dx.doi.org/10.1371/journal.pone.0179654] [PMID: 28628674]
[132]
Chen YNP, LaMarche MJ, Chan HM, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016; 535(7610): 148-52.
[http://dx.doi.org/10.1038/nature18621] [PMID: 27362227]
[133]
Liu JJ, Xin B, Du L, Chen L, Long Y, Feng GS. Pharmaceutical SH2 domain–containing protein tyrosine phosphatase 2 inhibition suppresses primary and metastasized liver tumors by provoking hepatic innate immunity. Hepatology 2023; 77(5): 1512-26.
[http://dx.doi.org/10.1002/hep.32555] [PMID: 35503714]
[134]
Mulero-Sánchez A, Ramirez CFA, du Chatinier A, et al. Rational combination of SHP2 and MTOR inhibition for the treatment of hepatocellular carcinoma. Mol Oncol 2023; 17(6): 964-80.
[http://dx.doi.org/10.1002/1878-0261.13377] [PMID: 36650715]
[135]
Albadrani M, Seth RK, Sarkar S, et al. Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. Am J Physiol Gastrointest Liver Physiol 2019; 317(4): G408-28.
[http://dx.doi.org/10.1152/ajpgi.00061.2019] [PMID: 31393787]
[136]
Sarkar S, Saha P, Seth RK, et al. Higher intestinal and circulatory lactate associated NOX2 activation leads to an ectopic fibrotic pathology following microcystin co-exposure in murine fatty liver disease. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238: 108854.
[http://dx.doi.org/10.1016/j.cbpc.2020.108854] [PMID: 32781293]
[137]
Hung M-H, Chen Y-L, Chu P-Y, et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene 2016; 35(37): 4891-902.
[http://dx.doi.org/10.1038/onc.2016.21] [PMID: 26876205]
[138]
Ronk H, Rosenblum JS, Kung T, Zhuang Z. Targeting PP2A for cancer therapeutic modulation. Cancer Biol Med 2022; 19(10): 1428-39.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0330] [PMID: 36342229]
[139]
Chen XY, Cai CZ, Yu ML, et al. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol 2019; 25(45): 6607-18.
[http://dx.doi.org/10.3748/wjg.v25.i45.6607] [PMID: 31832001]
[140]
Gordan JD, Kennedy EB, Abou-Alfa GK, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline, Journal of Clinical Oncology 2020; 38(36): 4317.
[http://dx.doi.org/10.1200/JCO.20.02672] [PMID: 33197225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy