Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Cytokines and Regulating Epithelial Cell Division

Author(s): Basheer Abdullah Marzoog*

Volume 25, Issue 3, 2024

Published on: 11 January, 2024

Page: [190 - 200] Pages: 11

DOI: 10.2174/0113894501279979240101051345

Price: $65

Abstract

Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.

Graphical Abstract

[1]
Laphanuwat P, Jirawatnotai S. Immunomodulatory roles of cell cycle regulators. Front Cell Dev Biol 2019; 7: 23.
[http://dx.doi.org/10.3389/fcell.2019.00023] [PMID: 30863749]
[2]
Sa SM, Valdez PA, Wu J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007; 178(4): 2229-40.
[http://dx.doi.org/10.4049/jimmunol.178.4.2229] [PMID: 17277128]
[3]
Wolk K, Witte E, Wallace E, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: A potential role in psoriasis. Eur J Immunol 2006; 36(5): 1309-23.
[http://dx.doi.org/10.1002/eji.200535503] [PMID: 16619290]
[4]
Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22–IL-22R1 system. Nat Rev Drug Discov 2014; 13(1): 21-38.
[http://dx.doi.org/10.1038/nrd4176] [PMID: 24378801]
[5]
Wang K, Kim MK, Di Caro G, et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 2014; 41(6): 1052-63.
[http://dx.doi.org/10.1016/j.immuni.2014.11.009] [PMID: 25526314]
[6]
De Simone V, Franzè E, Ronchetti G, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015; 34(27): 3493-503.
[http://dx.doi.org/10.1038/onc.2014.286] [PMID: 25174402]
[7]
Kirchberger S, Royston DJ, Boulard O, et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 2013; 210(5): 917-31.
[http://dx.doi.org/10.1084/jem.20122308] [PMID: 23589566]
[8]
Kryczek I, Lin Y, Nagarsheth N, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 2014; 40(5): 772-84.
[http://dx.doi.org/10.1016/j.immuni.2014.03.010] [PMID: 24816405]
[9]
Liu H, Antony S, Roy K, et al. Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 2017; 8(24): 38113-35.
[http://dx.doi.org/10.18632/oncotarget.17494] [PMID: 28498822]
[10]
Kojima H, Matsuhisa A, Shiwa M, et al. Expression of messenger RNA for keratinocyte growth factor in human cholesteatoma. Arch Otolaryngol Head Neck Surg 1996; 122(2): 157-60.
[http://dx.doi.org/10.1001/archotol.1996.01890140043009] [PMID: 8630209]
[11]
Shiwa M, Kojima H, Kamide Y, Moriyama H. Involvement of interleukin-1 in middle ear cholesteatoma. Am J Otolaryngol 1995; 16(5): 319-24.
[http://dx.doi.org/10.1016/0196-0709(95)90060-8] [PMID: 7503375]
[12]
Ahn JM, Huang CC, Abramson M. Localization of interleukin-1 in human cholesteatoma. Am J Otolaryngol 1990; 11(2): 71-7.
[http://dx.doi.org/10.1016/0196-0709(90)90001-C] [PMID: 2188520]
[13]
Kojima H, Shiwa M, Kamide Y, Moriyama H. Expression and localization of mRNA for epidermal growth factor and epidermal growth factor receptor in human cholesteatoma. Acta Otolaryngol 1994; 114(4): 423-9.
[http://dx.doi.org/10.3109/00016489409126081] [PMID: 7976315]
[14]
Schulz P, Bujía J, Holly A, Shilling V, Kastenbauer E. Possible autocrine growth stimulation of cholesteatoma epithelium by transforming growth factor alpha. Am J Otolaryngol 1993; 14(2): 82-7.
[http://dx.doi.org/10.1016/0196-0709(93)90044-8] [PMID: 8484481]
[15]
Chedid M, Rubin JS, Csaky KG, Aaronson SA. Regulation of keratinocyte growth factor gene expression by interleukin 1. J Biol Chem 1994; 269(14): 10753-7.
[http://dx.doi.org/10.1016/S0021-9258(17)34123-6] [PMID: 7511604]
[16]
Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929-79.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104622] [PMID: 15032600]
[17]
Tanaka Y, Shiwa M, Kojima H, Miyazaki H, Kamide Y, Moriyama H. A study on epidermal proliferation ability in cholesteatoma. Laryngoscope 1998; 108(4): 537-42.
[http://dx.doi.org/10.1097/00005537-199804000-00014] [PMID: 9546266]
[18]
Pickert G, Neufert C, Leppkes M, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 2009; 206(7): 1465-72.
[http://dx.doi.org/10.1084/jem.20082683] [PMID: 19564350]
[19]
Dudakov JA, Hanash AM, van den Brink MRM. Interleukin-22: Immunobiology and pathology. Annu Rev Immunol 2015; 33(1): 747-85.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112123] [PMID: 25706098]
[20]
Wolk K, Witte E, Warszawska K, et al. The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: A novel immunological cascade with potential relevance in psoriasis. Eur J Immunol 2009; 39(12): 3570-81.
[http://dx.doi.org/10.1002/eji.200939687] [PMID: 19830738]
[21]
Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203(10): 2271-9.
[http://dx.doi.org/10.1084/jem.20061308] [PMID: 16982811]
[22]
Moniruzzaman M, Wang R, Jeet V, McGuckin MA, Hasnain SZ. Interleukin (IL)-22 from IL-20 subfamily of cytokines induces colonic epithelial cell proliferation predominantly through ERK1/2 pathway. Int J Mol Sci 2019; 20(14): 3468.
[http://dx.doi.org/10.3390/ijms20143468] [PMID: 31311100]
[23]
Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 2015; 528(7583): 560-4.
[http://dx.doi.org/10.1038/nature16460] [PMID: 26649819]
[24]
Hasnain SZ, Borg DJ, Harcourt BE, et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med 2014; 20(12): 1417-26.
[http://dx.doi.org/10.1038/nm.3705] [PMID: 25362253]
[25]
Kolumam G, Wu X, Lee WP, et al. IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice. PLoS One 2017; 12(1): e0170639.
[http://dx.doi.org/10.1371/journal.pone.0170639] [PMID: 28125663]
[26]
Turner JE, Stockinger B, Helmby H. IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. PLoS Pathog 2013; 9(10): e1003698.
[http://dx.doi.org/10.1371/journal.ppat.1003698] [PMID: 24130494]
[27]
Gwin J, Drews N, Ali S, Stamschror J, Sorenson M, Rajah TT. Effect of genistein on p90RSK phosphorylation and cell proliferation in T47D breast cancer cells. Anticancer Res 2011; 31(1): 209-14.
[PMID: 21273600]
[28]
Clark DE, Errington TM, Smith JA, Frierson HF Jr, Weber MJ, Lannigan DA. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res 2005; 65(8): 3108-16.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3151] [PMID: 15833840]
[29]
Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 2015; 212(11): 1783-91.
[http://dx.doi.org/10.1084/jem.20150318] [PMID: 26392223]
[30]
Bergstrom KSB, Morampudi V, Chan JM, et al. Goblet cell derived RELM-β recruits CD4+ T cells during infectious colitis to promote protective intestinal epithelial cell proliferation. PLoS Pathog 2015; 11(8): e1005108.
[http://dx.doi.org/10.1371/journal.ppat.1005108] [PMID: 26285214]
[31]
Ko TC, Yu W, Sakai T, et al. TGF-β1 effects on proliferation of rat intestinal epithelial cells are due to inhibition of cyclin D1 expression. Oncogene 1998; 16(26): 3445-54.
[http://dx.doi.org/10.1038/sj.onc.1201902] [PMID: 9692552]
[32]
Kondo M, Yamato M, Takagi R, Namiki H, Okano T. Membrane-permeable calpain inhibitors promote rat oral mucosal epithelial cell proliferation by inhibiting IL-1α signaling. PLoS One 2015; 10(7): e0134240.
[http://dx.doi.org/10.1371/journal.pone.0134240] [PMID: 26230502]
[33]
von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature 2016; 529(7585): 221-5.
[http://dx.doi.org/10.1038/nature16161] [PMID: 26675736]
[34]
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156: 155891.
[http://dx.doi.org/10.1016/j.cyto.2022.155891] [PMID: 35640416]
[35]
He Z, Chen L, Furtado GC, Lira SA. Interleukin 33 regulates gene expression in intestinal epithelial cells independently of its nuclear localization. Cytokine 2018; 111: 146-53.
[http://dx.doi.org/10.1016/j.cyto.2018.08.009] [PMID: 30145369]
[36]
Mahapatro M, Foersch S, Hefele M, et al. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep 2016; 15(8): 1743-56.
[http://dx.doi.org/10.1016/j.celrep.2016.04.049] [PMID: 27184849]
[37]
Gerbe F, Sidot E, Smyth DJ, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 2016; 529(7585): 226-30.
[http://dx.doi.org/10.1038/nature16527] [PMID: 26762460]
[38]
Xie L, Law BK, Aakre ME, et al. Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 2003; 5(6): R187-98.
[http://dx.doi.org/10.1186/bcr640] [PMID: 14580254]
[39]
Jeffery V, Goldson AJ, Dainty JR, Chieppa M, Sobolewski A. IL-6 signaling regulates small intestinal crypt homeostasis. J Immunol 2017; 199(1): 304-11.
[http://dx.doi.org/10.4049/jimmunol.1600960] [PMID: 28550196]
[40]
Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS One 2014; 9(12): e114195.
[http://dx.doi.org/10.1371/journal.pone.0114195] [PMID: 25478789]
[41]
Andrews C, McLean MH, Durum SK. Cytokine tuning of intestinal epithelial function. Front Immunol 2018; 9: 1270.
[http://dx.doi.org/10.3389/fimmu.2018.01270] [PMID: 29922293]
[42]
Beck PL, Rosenberg IM, Xavier RJ, Koh T, Wong JF, Podolsky DK. Transforming growth factor-β mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am J Pathol 2003; 162(2): 597-608.
[http://dx.doi.org/10.1016/S0002-9440(10)63853-9] [PMID: 12547717]
[43]
Liao Y, Zhang M, Lönnerdal B. Growth factor TGF-β induces intestinal epithelial cell (IEC-6) differentiation: miR-146b as a regulatory component in the negative feedback loop. Genes Nutr 2013; 8(1): 69-78.
[http://dx.doi.org/10.1007/s12263-012-0297-3] [PMID: 22570175]
[44]
Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: A key regulator of immune cells, epithelium, and the intestinal microbiota. J Gastroenterol 2017; 52(7): 777-87.
[http://dx.doi.org/10.1007/s00535-017-1350-1] [PMID: 28534191]
[45]
Han J, Liu N, Jin W, et al. TGF-β controls development of TCRγδ+CD8αα+ intestinal intraepithelial lymphocytes. Cell Discov 2023; 9(1): 52.
[http://dx.doi.org/10.1038/s41421-023-00542-2] [PMID: 37253786]
[46]
Howitt MR, Lavoie S, Michaud M, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 2016; 351(6279): 1329-33.
[http://dx.doi.org/10.1126/science.aaf1648] [PMID: 26847546]
[47]
Katlinskaya YV, Katlinski KV, Lasri A, et al. Type I interferons control proliferation and function of the intestinal epithelium. Mol Cell Biol 2016; 36(7): 1124-35.
[http://dx.doi.org/10.1128/MCB.00988-15] [PMID: 26811327]
[48]
Schuhmann D, Godoy P, Weiß C, et al. Interfering with interferon-γ signalling in intestinal epithelial cells: Selective inhibition of apoptosis-maintained secretion of anti-inflammatory interleukin-18 binding protein. Clin Exp Immunol 2010; 163(1): 65-76.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04250.x] [PMID: 21078084]
[49]
Jarry A, Malard F, Bou-Hanna C, et al. Interferon-alpha promotes Th1 response and epithelial apoptosis via inflammasome activation in human intestinal mucosa. Cell Mol Gastroenterol Hepatol 2017; 3(1): 72-81.
[http://dx.doi.org/10.1016/j.jcmgh.2016.09.007] [PMID: 28174758]
[50]
Scheibe K, Backert I, Wirtz S, et al. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut 2017; 66(5): 823-38.
[http://dx.doi.org/10.1136/gutjnl-2015-310374] [PMID: 26783184]
[51]
Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15(2): 103-13.
[http://dx.doi.org/10.1016/j.ccr.2009.01.001] [PMID: 19185845]
[52]
Barton CE, Johnson KN, Mays DM, et al. Novel p63 target genes involved in paracrine signaling and keratinocyte differentiation. Cell Death Dis 2010; 1(9): e74-4.
[http://dx.doi.org/10.1038/cddis.2010.49] [PMID: 21151771]
[53]
Chiriac MT, Buchen B, Wandersee A, et al. Activation of epithelial signal transducer and activator of transcription 1 by interleukin 28 controls mucosal healing in mice with colitis and is increased in mucosa of patients with inflammatory bowel disease. Gastroenterology 2017; 153(1): 123-138.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.03.015] [PMID: 28342759]
[54]
Bradford EM, Ryu SH, Singh AP, et al. Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J Immunol 2017; 199(5): 1886-97.
[http://dx.doi.org/10.4049/jimmunol.1601066] [PMID: 28747340]
[55]
Song X, Dai D, He X, et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 2015; 43(3): 488-501.
[http://dx.doi.org/10.1016/j.immuni.2015.06.024] [PMID: 26320657]
[56]
Targan SR, Feagan BG, Vermeire S, et al. Mo2083 a randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and efficacy of AMG 827 in subjects with moderate to severe crohn’s disease. Gastroenterology 2012; 143(3): e26.
[http://dx.doi.org/10.1053/j.gastro.2012.07.084]
[57]
Quiros M, Nishio H, Neumann PA, et al. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J Clin Invest 2017; 127(9): 3510-20.
[http://dx.doi.org/10.1172/JCI90229] [PMID: 28783045]
[58]
Stadnyk AW. Cytokine production by epithelial cells. FASEB J 1994; 8(13): 1041-7.
[http://dx.doi.org/10.1096/fasebj.8.13.7926369] [PMID: 7926369]
[59]
Booth BW, Adler KB, Bonner JC, Tournier F, Martin LD. Interleukin-13 induces proliferation of human airway epithelial cells in vitrovia a mechanism mediated by transforming growth factor-α. Am J Respir Cell Mol Biol 2001; 25(6): 739-43.
[http://dx.doi.org/10.1165/ajrcmb.25.6.4659] [PMID: 11726400]
[60]
Yue J, Mulder KM. Transforming growth factor-β signal transduction in epithelial cells. Pharmacol Ther 2001; 91(1): 1-34.
[http://dx.doi.org/10.1016/S0163-7258(01)00143-7] [PMID: 11707292]
[61]
de Mooij CEM, Netea MG, van der Velden WJFM, Blijlevens NMA. Targeting the interleukin-1 pathway in patients with hematological disorders. Blood 2017; 129(24): 3155-64.
[http://dx.doi.org/10.1182/blood-2016-12-754994] [PMID: 28483765]
[62]
Di Paolo NC, Shayakhmetov DM. Interleukin 1α and the inflammatory process. Nat Immunol 2016; 17(8): 906-13.
[http://dx.doi.org/10.1038/ni.3503] [PMID: 27434011]
[63]
Kondo M, Yamato M, Takagi R, Namiki H, Okano T. The regulation of epithelial cell proliferation and growth by IL-1 receptor antagonist. Biomaterials 2013; 34(1): 121-9.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.036] [PMID: 23059003]
[64]
Malik A, Kanneganti TD. Function and regulation of IL -1α in inflammatory diseases and cancer. Immunol Rev 2018; 281(1): 124-37.
[http://dx.doi.org/10.1111/imr.12615] [PMID: 29247991]
[65]
Chong HC, Tan MJ, Philippe V, et al. Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ/δ is essential for skin homeostasis and wound healing. J Cell Biol 2009; 184(6): 817-31.
[http://dx.doi.org/10.1083/jcb.200809028] [PMID: 19307598]
[66]
Masola V, Carraro A, Granata S, et al. in vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J Transl Med 2019; 17(1): 12.
[http://dx.doi.org/10.1186/s12967-019-1770-1] [PMID: 30616602]
[67]
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15(2): 87-103.
[http://dx.doi.org/10.1038/nri3787] [PMID: 25614319]
[68]
Nava P, Koch S, Laukoetter MG, et al. Interferon-γ regulates intestinal epithelial homeostasis through converging β-catenin signaling pathways. Immunity 2010; 32(3): 392-402.
[http://dx.doi.org/10.1016/j.immuni.2010.03.001] [PMID: 20303298]
[69]
Modestou MA, Manzel LJ, El-Mahdy S, Look DC. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke. Respir Res 2010; 11(1): 64.
[http://dx.doi.org/10.1186/1465-9921-11-64] [PMID: 20504369]
[70]
Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 2020; 369: 712-7.
[http://dx.doi.org/10.1126/science.abc2061]
[71]
Thelemann C, Eren RO, Coutaz M, et al. Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One 2014; 9(1): e86844.
[http://dx.doi.org/10.1371/journal.pone.0086844] [PMID: 24489792]
[72]
Heuberger J, Trimpert J, Vladimirova D, et al. Epithelial response to IFN-γ promotes SARS-CoV-2 infection. EMBO Mol Med 2021; 13(4): e13191.
[http://dx.doi.org/10.15252/emmm.202013191] [PMID: 33544398]
[73]
Marzoog BA, Vlasova TI. Transcription factors in deriving β cell regeneration: A potential novel therapeutic target. Curr Mol Med 2022; 22(5): 421-30.
[http://dx.doi.org/10.2174/1566524021666210712144638] [PMID: 34931980]
[74]
Anderson DW. Cytokines as drug targets. IDrugs 2001; 4(4): 375-7.
[PMID: 16015467]
[75]
Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta Rev Cancer 2016; 1865(2): 255-65.
[http://dx.doi.org/10.1016/j.bbcan.2016.03.005] [PMID: 26993403]
[76]
Marincola Smith P, Means A, Beauchamp R. Immunomodulatory effects of TGF-β family signaling within intestinal epithelial cells and carcinomas. Gastrointestinal Disorders 2019; 1(2): 290-300.
[http://dx.doi.org/10.3390/gidisord1020024] [PMID: 33834163]
[77]
Abdullah Marzoog B. Autophagy as an Anti-senescent in Aging Neurocytes. Curr Mol Med 2023; 23
[http://dx.doi.org/10.2174/1566524023666230120102718] [PMID: 36683318]
[78]
Marzoog BA, Bloshkina NI, Gromova VS, Gorshinina EI. Myocardial infarction; early prognostic instrumental & laboratory markers: Single cross-sectional analysis. MedRxiv 2023; 2023.02.25.23286453.
[http://dx.doi.org/10.1101/2023.02.25.23286453]
[79]
Marzoog BA. Autophagy in cancer cell transformation: A potential novel therapeutic strategy. Curr Cancer Drug Targets 2022; 22(9): 749-56.
[http://dx.doi.org/10.2174/1568009622666220428102741] [PMID: 36062863]
[80]
Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]
[81]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[82]
Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[83]
Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[84]
Marzoog BA. The metabolic syndrome puzzles; Possible pathogenesis and management. Curr Diabetes Rev 2023; 19(4): e290422204258.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[85]
Marzoog BA, Vlasova TI. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Obes Metab 2022; 18(4): 465-70.
[http://dx.doi.org/10.14341/omet12778]
[86]
Marzoog BA. Coagulopathy and brain injury pathogenesis in post-covid-19 syndrome. Cardiovasc Hematol Agents Med Chem 2022; 20(3): 178-88.
[http://dx.doi.org/10.2174/1871525720666220405124021] [PMID: 35382728]
[87]
Abdullah MB. Pathophysiology of cardiac cell injury in post-COVID-19 syndrome. Emir Med J 2023; 4(2): e280423216351.
[http://dx.doi.org/10.2174/0250688204666230428120808]
[88]
Marzoog BA. Transcription factors – the essence of heart regeneration: A potential novel therapeutic strategy. Curr Mol Med 2023; 23(3): 232-8.
[http://dx.doi.org/10.2174/1566524022666220216123650] [PMID: 35170408]
[89]
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: Endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21(2): 1903-11.
[http://dx.doi.org/10.1007/s40200-022-01088-y] [PMID: 36065330]
[90]
Marzoog BA. Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023; 23(1): 2-10.
[http://dx.doi.org/10.2174/1871529X23666230503123612] [PMID: 37138481]
[91]
Abdullah MB. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639.
[http://dx.doi.org/10.2174/0250688204666230508112229]
[92]
Abdullah MB. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. Emir Med J 2023; 4(1): e281122211293.
[http://dx.doi.org/10.2174/04666221128110145]
[93]
Marzoog BA, Romanovna AD. Early prognostic instrumental & laboratory markers in post-MI. MedRxiv 2023; 2023.05.13.23289438.
[http://dx.doi.org/10.1101/2023.05.13.23289438]
[94]
Abdullah MB. Cell physiological behavior in the context of local hypothermia. Emir Med J 2023; 5: e100723218576.
[http://dx.doi.org/10.2174/0250688204666230710102624]
[95]
Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019; 120(1): 6-15.
[http://dx.doi.org/10.1038/s41416-018-0328-y] [PMID: 30413827]
[96]
Atallah-Yunes SA, Robertson MJ. Cytokine based immunotherapy for cancer and lymphoma: Biology, challenges and future perspectives. Front Immunol 2022; 13: 872010.
[http://dx.doi.org/10.3389/fimmu.2022.872010] [PMID: 35529882]
[97]
Javed A, Yarmohammadi M, Korkmaz KS, Rubio-Tomás T. The regulation of cyclins and cyclin-dependent kinases in the development of gastric cancer. Int J Mol Sci 2023; 24(3): 2848.
[http://dx.doi.org/10.3390/ijms24032848] [PMID: 36769170]
[98]
Cytokines as Therapy. Available from: https://ccr.cancer.gov/news/landmarks/article/cytokines-as-therapy (Accessed on: November 19, 2023).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy