Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Effects of Polyphenols and Lignans of Phyllanthus amarus Schumach. and Thonn. on IL-1β and TNF-α Secretions from LPS-induced THP-1-derived Macrophages

Author(s): Javaid Alam, Ibrahim Jantan*, Yuandani, Mohd Azlan Nafiah, Muhammed Ahmed Mesaik and Sarah Ibrahim

Volume 14, Issue 5, 2024

Published on: 10 January, 2024

Article ID: e100124225476 Pages: 10

DOI: 10.2174/0122103155285107231229060123

Price: $65

Abstract

Background: Phyllanthus amarus exhibited immunosuppressive and anti-inflammatory effects in several in vitro and in vivo studies. However, there is no report on the inhibitory effects of its secondary metabolites on pro-inflammatory cytokines secretion from human THP-1-derived macrophages.

Objective: The objective of this study was to correlate the polyphenols (ellagic acid (EA), gallic acid (GA), geraniin (GER), and corilagin (COR)) and lignans (phyllanthin (PHY), hypophyllanthin (HYPO), niranthin (NIR), phyltetralin (PHYLT), and isolintetralin (ISO)) of 80% ethanol extract of P. amarus with their inhibitory effect against IL-1β and TNF-α secretions from LPS-induced THP-1- derived macrophages.

Methods: Chemical profiling of P. amarus was carried out by LC-MS/MS analysis. Validated qualitative and quantitative reversed-phase HPLC analyses of the P. amarus extract were performed for the determination of lignan and polyphenol contents. Human THP-1-derived macrophages were prepared by treatment of THP-1 cells with phorbol 12-myristate 13-acetate (PMA). The inhibition of cytokines released by the extract, lignans and polyphenols in the cells was investigated using ELISA assay.

Results: P. amarus extract and its chemical constituents significantly reduced the levels of IL-1β and TNF-α in a dose-dependent manner. At a dose of 50 μM, COR exhibited a maximum inhibition of 81.11% on TNF-α secretion, while GER showed 72.56% inhibition on IL-1β secretion. COR demonstrated the strongest inhibition of TNF-α secretion, exhibiting an IC50 value of 9.06 μM, which was comparable to that of dexamethasone (7.07 μM). Meanwhile, GER was the most potent against IL- 1β secretion, exhibiting an IC50 value of 20.09 μM. In the case of TNF-α secretion, the order of potency observed among the active compounds, with regard to IC50 value, was COR > GER > HYPO > PHY > NIR > GA > EA >ISO > PHYLT. For IL-1β secretion, the order of potency was GER > NIR > COR > GA > EA > PHY > HYPO > PHYLT > 1SO.

Conclusion: The polyphenol contents of P. amarus, especially COR and GER, contributed significantly to the suppression of cytokines secretion, and they have the potential to be developed into agents for the treatment of pathologic inflammation.

Graphical Abstract

[1]
Gravallese, E.M.; Goldring, S.R. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. Arthritis Rheum., 2000, 43(10), 2143-2151.
[http://dx.doi.org/10.1002/1529-0131(200010)43:10<2143::AID-ANR1>3.0.CO;2-S] [PMID: 11037873]
[2]
Butterfield, T.A.; Best, T.M.; Merrick, M.A. The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair. J. Athl. Train., 2006, 41(4), 457-465.
[PMID: 17273473]
[3]
Zorrilla, E.P.; Luborsky, L.; McKay, J.R.; Rosenthal, R.; Houldin, A.; Tax, A.; McCorkle, R.; Seligman, D.A.; Schmidt, K. The relationship of depression and stressors to immunological assays: A meta-analytic review. Brain Behav. Immun., 2001, 15(3), 199-226.
[http://dx.doi.org/10.1006/brbi.2000.0597] [PMID: 11566046]
[4]
Pasparakis, M.; Courtois, G.; Hafner, M.; Schmidt-Supprian, M.; Nenci, A.; Toksoy, A.; Krampert, M.; Goebeler, M.; Gillitzer, R.; Israel, A.; Krieg, T.; Rajewsky, K.; Haase, I. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature, 2002, 417(6891), 861-866.
[http://dx.doi.org/10.1038/nature00820] [PMID: 12075355]
[5]
Bradley, J.R. TNF‐mediated inflammatory disease. J. Pathol., 2008, 214(2), 149-160.
[http://dx.doi.org/10.1002/path.2287] [PMID: 18161752]
[6]
Stacey, D.; Redlich, R.; Büschel, A.; Opel, N.; Grotegerd, D.; Zaremba, D.; Dohm, K.; Bürger, C.; Meinert, S.L.; Förster, K.; Repple, J.; Kaufmann, C.; Kugel, H.; Heindel, W.; Arolt, V.; Dannlowski, U.; Baune, B.T. TNF receptors 1 and 2 exert distinct region‐specific effects on striatal and hippocampal grey matter volumes (VBM) in healthy adults. Genes Brain Behav., 2017, 16(3), 352-360.
[http://dx.doi.org/10.1111/gbb.12318] [PMID: 27528091]
[7]
Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci., 2017, 170, 56-63.
[http://dx.doi.org/10.1016/j.lfs.2016.11.033] [PMID: 27919820]
[8]
Delavary, B.M.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J. Macrophages in skin injury and repair. Immunobiology, 2011, 216(7), 753-762.
[http://dx.doi.org/10.1016/j.imbio.2011.01.001] [PMID: 21281986]
[9]
Dunster, J.L. The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(1), 87-99.
[http://dx.doi.org/10.1002/wsbm.1320] [PMID: 26459225]
[10]
Park, E.K.; Jung, H.S.; Yang, H.I.; Yoo, M.C.; Kim, C.; Kim, K.S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm. Res., 2007, 56(1), 45-50.
[http://dx.doi.org/10.1007/s00011-007-6115-5] [PMID: 17334670]
[11]
Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol., 2011, 138(2), 286-313.
[http://dx.doi.org/10.1016/j.jep.2011.09.040] [PMID: 21982793]
[12]
Adeneye, A.A.; Amole, O.O.; Adeneye, A.K. Hypoglycemic and hypocholesterolemic activities of the aqueous leaf and seed extract of Phyllanthus amarus in mice. Fitoterapia, 2006, 77(7-8), 511-514.
[http://dx.doi.org/10.1016/j.fitote.2006.05.030] [PMID: 16905277]
[13]
Naaz, F.; Javed, S.; Abdin, M.Z. Hepatoprotective effect of ethanolic extract of Phyllanthus amarus Schum. et Thonn. on aflatoxin B1-induced liver damage in mice. J. Ethnopharmacol., 2007, 113(3), 503-509.
[http://dx.doi.org/10.1016/j.jep.2007.07.017] [PMID: 17720339]
[14]
Lee, S.H.; Jaganath, I.B.; Wang, S.M.; Sekaran, S.D. Antimetastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines. PLoS One, 2011, 6(6), e20994.
[http://dx.doi.org/10.1371/journal.pone.0020994] [PMID: 21698198]
[15]
Saralakumari, D.; Karuna, R.; Reddy, S.; Bharathi, V.G.; Ramesh, B. Protective effects of Phyllanthus amarus aqueous extract against renal oxidative stress in Streptozotocin -induced diabetic rats. Indian J. Pharmacol., 2011, 43(4), 414-418.
[http://dx.doi.org/10.4103/0253-7613.83112] [PMID: 21844996]
[16]
Ravikumar, Y.S.; Ray, U.; Nandhitha, M.; Perween, A.; Raja Naika, H.; Khanna, N.; Das, S. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res., 2011, 158(1-2), 89-97.
[http://dx.doi.org/10.1016/j.virusres.2011.03.014] [PMID: 21440018]
[17]
Surya Narayanan, B.; Latha, P.; Rukkumani, R. Protective effects of Phyllanthus amarus on fibrotic markers during alcohol and polyunsaturated fatty acid-induced toxicity. Toxicol. Mech. Methods, 2011, 21(1), 48-52.
[http://dx.doi.org/10.3109/15376516.2010.529189] [PMID: 21047178]
[18]
Yao, A.N.; Kamagaté, M.; Amonkan, A.K.; Chabert, P.; Kpahé, F.; Koffi, C.; Kouamé, M.N.; Auger, C.; Kati-Coulibaly, S.; Schini-Kerth, V.; Die-Kakou, H. The acute diuretic effect of an ethanolic fraction of Phyllanthus amarus (Euphorbiaceae) in rats involves prostaglandins. BMC Complement. Altern. Med., 2018, 18(1), 94.
[http://dx.doi.org/10.1186/s12906-018-2158-0] [PMID: 29544490]
[19]
Kiemer, A.K.; Hartung, T.; Huber, C.; Vollmar, A.M. Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-κB pathway. J. Hepatol., 2003, 38(3), 289-297.
[http://dx.doi.org/10.1016/S0168-8278(02)00417-8] [PMID: 12586294]
[20]
Ilangkovan, M.; Jantan, I.; Mesaik, M.A.; Bukhari, S.N.A. Inhibitory effects of the standardized extract of Phyllanthus amarus on cellular and humoral immune responses in balb/C mice. Phytother. Res., 2016, 30(8), 1330-1338.
[http://dx.doi.org/10.1002/ptr.5633] [PMID: 27137750]
[21]
Mohamed, S.I.A.; Jantan, I.; Nafiah, M.A.; Seyed, M.A.; Chan, K.M. Lignans and polyphenols of Phyllanthus amarus Schumach and Thonn induce apoptosis in HCT116 human colon cancer cells through Caspases-dependent pathway. Curr. Pharm. Biotechnol., 2021, 22(2), 262-273.
[http://dx.doi.org/10.2174/1389201021666200612173029] [PMID: 32532192]
[22]
Singh, U.; Tabibian, J.; Venugopal, S.K.; Devaraj, S.; Jialal, I. Development of an in vitro screening assay to test the antiinflammatory properties of dietary supplements and pharmacologic agents. Clin. Chem., 2005, 51(12), 2252-2256.
[http://dx.doi.org/10.1373/clinchem.2005.056093] [PMID: 16166164]
[23]
Laskin, D.L.; Sunil, V.R.; Gardner, C.R.; Laskin, J.D. Macrophages and tissue injury: Agents of defense or destruction? Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 267-288.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105812] [PMID: 20887196]
[24]
Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010, 5(1), e8668.
[http://dx.doi.org/10.1371/journal.pone.0008668] [PMID: 20084270]
[25]
Wright, T.M.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci., 1997, 2(4), A171.
[http://dx.doi.org/10.2741/A171] [PMID: 9159205]
[26]
Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14), 3720-3732.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[27]
Patil, B.M.; Mahat, M.A. Evaluation of antiinflammatory activity of methanol extract of <i> Phyllanthus amarus</i> in experimental animal models. Indian J. Pharm. Sci., 2007, 69(1), 33-36.
[http://dx.doi.org/10.4103/0250-474X.32104]
[28]
Vogel, H.G. Drug discovery and evaluation: pharmacological assays; Springer Science & Business Media, 2002.
[http://dx.doi.org/10.1007/3-540-29837-1]
[29]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[30]
Kassuya, C.A.; Leite, D.F.; de Melo, L.V.; Rehder, V.L.; Calixto, J.B. Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med., 2005, 71(8), 721-726.
[http://dx.doi.org/10.1055/s-2005-871258] [PMID: 16142635]
[31]
Harikrishnan, H.; Jantan, I.; Alagan, A.; Haque, M.A. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: Potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology, 2020, 28(1), 1-18.
[http://dx.doi.org/10.1007/s10787-019-00671-9] [PMID: 31792765]
[32]
Mali, S.M.; Sinnathambi, A.; Kapase, C.U.; Bodhankar, S.L.; Mahadik, K.R.; Mahadik, K.R. Anti-arthritic activity of standardised extract of Phyllanthus amarus in Freund’s complete adjuvant induced arthritis. Biomed. Aging Pathol., 2011, 1(3), 185-190.
[http://dx.doi.org/10.1016/j.biomag.2011.09.004]
[33]
Harikrishnan, H.; Jantan, I.; Haque, M.A.; Kumolosasi, E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complement. Altern. Med., 2018, 18(1), 224.
[http://dx.doi.org/10.1186/s12906-018-2289-3] [PMID: 30045725]
[34]
Harikrishnan, H.; Jantan, I.; Haque, M.A.; Kumolosasi, E. Anti-inflammatory effects of hypophyllanthin and niranthin through downregulation of NF-κB/MAPKs/PI3K-Akt signaling pathways. Inflammation, 2018, 41(3), 984-995.
[http://dx.doi.org/10.1007/s10753-018-0752-4] [PMID: 29427163]
[35]
Kassuya, C.A.L.; Silvestre, A.; Menezes-de-Lima, O., Jr; Marotta, D.M.; Rehder, V.L.G.; Calixto, J.B. Antiinflammatory and antiallodynic actions of the lignan niranthin isolated from Phyllanthus amarus. Eur. J. Pharmacol., 2006, 546(1-3), 182-188.
[http://dx.doi.org/10.1016/j.ejphar.2006.07.025] [PMID: 16925995]
[36]
Karimi-Khouzani, O.; Heidarian, E.; Amini, S.A. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol. Rep., 2017, 69(4), 830-835.
[http://dx.doi.org/10.1016/j.pharep.2017.03.011] [PMID: 28599245]
[37]
Corbett, S.; Daniel, J.; Drayton, R.; Field, M.; Steinhardt, R.; Garrett, N. Evaluation of the anti-inflammatory effects of ellagic acid. J. Perianesth. Nurs., 2010, 25(4), 214-220.
[http://dx.doi.org/10.1016/j.jopan.2010.05.011] [PMID: 20656257]
[38]
Sarkar, S.; Siddiqui, A.A.; Mazumder, S.; De, R.; Saha, S.J.; Banerjee, C.; Iqbal, M.S.; Adhikari, S.; Alam, A.; Roy, S.; Bandyopadhyay, U. Ellagic acid, a dietary polyphenol, inhibits tautomerase activity of human macrophage migration inhibitory factor and its pro-inflammatory responses in human peripheral blood mononuclear cells. J. Agric. Food Chem., 2015, 63(20), 4988-4998.
[http://dx.doi.org/10.1021/acs.jafc.5b00921] [PMID: 25929447]
[39]
Lu, Y.; He, B.; Zhang, X.; Yang, R.; Li, S.; Song, B.; Zhang, Y.; Yun, Y.; Yan, H.; Chen, P.; Shen, Z. Osteoprotective effect of geraniin against ovariectomy-induced bone loss in rats. Bioorg. Med. Chem. Lett., 2015, 25(3), 673-679.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.081] [PMID: 25532904]
[40]
Tanimura, S.; Kadomoto, R.; Tanaka, T.; Zhang, Y.J.; Kouno, I.; Kohno, M. Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem. Biophys. Res. Commun., 2005, 330(4), 1306-1313.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.116] [PMID: 15823585]
[41]
Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res., 2005, 15(1), 11-18.
[http://dx.doi.org/10.1038/sj.cr.7290257] [PMID: 15686620]
[42]
Wu, C.F.; Bi, X.L.; Yang, J.Y.; Zhan, J.Y.; Dong, Y.X.; Wang, J.H.; Wang, J.M.; Zhang, R.; Li, X. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int. Immunopharmacol., 2007, 7(3), 313-320.
[http://dx.doi.org/10.1016/j.intimp.2006.04.021] [PMID: 17276889]
[43]
Madrid, L.V.; Wang, C.Y.; Guttridge, D.C.; Schottelius, A.J.G.; Baldwin, A.S., Jr; Mayo, M.W. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol. Cell. Biol., 2000, 20(5), 1626-1638.
[http://dx.doi.org/10.1128/MCB.20.5.1626-1638.2000] [PMID: 10669740]
[44]
Ajizian, S.J.; English, B.K.; Meals, E.A. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-. J. Infect. Dis., 1999, 179(4), 939-944.
[http://dx.doi.org/10.1086/314659] [PMID: 10068590]
[45]
Kovalovsky, D.; Refojo, D.; Holsboer, F.; Arzt, E. Molecular mechanisms and Th1/Th2 pathways in corticosteroid regulation of cytokine production. J. Neuroimmunol., 2000, 109(1), 23-29.
[http://dx.doi.org/10.1016/S0165-5728(00)00298-8] [PMID: 10969177]
[46]
Bi, X.L.; Yang, J.Y.; Dong, Y.X.; Wang, J.M.; Cui, Y.H.; Ikeshima, T.; Zhao, Y.Q.; Wu, C.F. Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2005, 5(1), 185-193.
[http://dx.doi.org/10.1016/j.intimp.2004.08.008] [PMID: 15589480]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy