Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Disulfidptosis-related Protein RPN1 may be a Novel Anti-osteoporosis Target of Kaempferol

Author(s): Chengzhen Pan, Chi Zhang, Zonghan Lin, Zhou Liang, Yinhang Cui, Zhihao Shang, Yuanxun Wei and Feng Chen*

Volume 27, Issue 11, 2024

Published on: 10 January, 2024

Page: [1611 - 1628] Pages: 18

DOI: 10.2174/0113862073273655231213070619

Price: $65

conference banner
Abstract

Background: Osteoporosis (OP) is an age-related skeletal disease. Kaempferol can regulate bone mesenchymal stem cells (BMSCs) osteogenesis to improve OP, but its mechanism related to disulfidptosis, a newly discovered cell death mechanism, remains unclear.

Objective: The study aimed to investigate the biological function and immune mechanism of disulfidptosis- related ribophorin I (RPN1) in OP and to experimentally confirm that RPN1 is the target for the treatment of OP with kaempferol.

Methods: Differential expression analysis was conducted on disulfide-related genes extracted from the GSE56815 and GSE7158 datasets. Four machine learning algorithms identified disease signature genes, with RPN1 identified as a significant risk factor for OP through the nomogram. Validation of RPN1 differential expression in OP patients was performed using the GSE56116 dataset. The impact of RPN1 on immune alterations and biological processes was explored. Predictive ceRNA regulatory networks associated with RPN1 were generated via miRanda, miRDB, and TargetScan databases. Molecular docking estimated the binding model between kaempferol and RPN1. The targeting mechanism of kaempferol on RPN1 was confirmed through pathological HE staining and immunohistochemistry in ovariectomized (OVX) rats.

Results: RPN1 was abnormally overexpressed in the OP cohort, associated with TNF signaling, hematopoietic cell lineage, and NF-kappa B pathway. Immune infiltration analysis showed a positive correlation between RPN1 expression and CD8+ T cells and resting NK cells, while a negative correlation with CD4+ naive T cells, macrophage M1, T cell gamma delta, T cell follicular helper cells, activated mast cells, NK cells, and dendritic cells, was found. Four miRNAs and 17 lncRNAs associated with RPN1 were identified. Kaempferol exhibited high binding affinity (-7.2 kcal/mol) and good stability towards the RPN1. The experimental results verified that kaempferol could improve bone microstructure destruction and reverse the abnormally high expression of RPN1 in the femur of ovariectomized rats.

Conclusion: RPN1 may be a new diagnostic biomarker in patients with OP, and may serve as a new target for kaempferol to improve OP.

[1]
Iolascon, G.; de SIRE, A.; Curci, C.; Paoletta, M.; Liguori, S.; Calafiore, D.; Gimigliano, F.; Moretti, A. Osteoporosis guidelines from a rehabilitation perspective: systematic analysis and quality appraisal using AGREE II. Eur. J. Phys. Rehabil. Med., 2021, 57(2), 273-279.
[http://dx.doi.org/10.23736/S1973-9087.21.06581-3] [PMID: 33650841]
[2]
Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci., 2020, 21(20), 7623.
[http://dx.doi.org/10.3390/ijms21207623] [PMID: 33076329]
[3]
Zou, Z.; Liu, W.; Cao, L.; Liu, Y.; He, T.; Peng, S.; Shuai, C. Advances in the occurrence and biotherapy of osteoporosis. Biochem. Soc. Trans., 2020, 48(4), 1623-1636.
[http://dx.doi.org/10.1042/BST20200005] [PMID: 32627832]
[4]
Reid, I.R. A broader strategy for osteoporosis interventions. Nat. Rev. Endocrinol., 2020, 16(6), 333-339.
[http://dx.doi.org/10.1038/s41574-020-0339-7] [PMID: 32203407]
[5]
Shen, Y.; Huang, X.; Wu, J.; Lin, X.; Zhou, X.; Zhu, Z.; Pan, X.; Xu, J.; Qiao, J.; Zhang, T.; Ye, L.; Jiang, H.; Ren, Y.; Shan, P.F. The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990-2019. Front. Endocrinol., 2022, 13, 882241.
[http://dx.doi.org/10.3389/fendo.2022.882241] [PMID: 35669691]
[6]
Shen, L.; Luo, K.; Deng, X.; Liu, J.; Yuan, W.Q.; Sun, C.G.; Zhang, Z.S.; Wei, C.; Wang, J.X.; Cummings, S.R.; Xia, W.B.; Wang, S.F.; Zhan, S.Y.; Song, C.L. A commentary on ‘Incidence and cost of vertebral fracture in urban China: A five-year population-based cohort study’. Int. J. Surg., 2023, 109(10), 3203-3204.
[http://dx.doi.org/10.1097/JS9.0000000000000583] [PMID: 37418569]
[7]
Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull., 2020, 133(1), ldaa005.
[http://dx.doi.org/10.1093/bmb/ldaa005] [PMID: 32282039]
[8]
Yu, F.; Xia, W. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch. Osteoporos., 2019, 14(1), 32.
[http://dx.doi.org/10.1007/s11657-018-0549-y] [PMID: 30848398]
[9]
Li, N.; Zheng, B.; Liu, M.; Zhou, H.; Zhao, L.; Cai, H.; Huang, J. Cost-effectiveness of antiosteoporosis strategies for postmenopausal women with osteoporosis in China. Menopause, 2019, 26(8), 906-914.
[http://dx.doi.org/10.1097/GME.0000000000001339] [PMID: 30994577]
[10]
Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules, 2020, 25(18), 4073.
[http://dx.doi.org/10.3390/molecules25184073] [PMID: 32906577]
[11]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods, 2017, 30, 203-219.
[http://dx.doi.org/10.1016/j.jff.2017.01.022] [PMID: 32288791]
[12]
Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med., 2019, 18(4), 2759-2776.
[http://dx.doi.org/10.3892/etm.2019.7886] [PMID: 31572524]
[13]
Huang, A.Y.; Xiong, Z.; Liu, K.; Chang, Y.; Shu, L.; Gao, G.; Zhang, C. Identification of kaempferol as an OSX upregulator by network pharmacology-based analysis of qianggu Capsule for osteoporosis. Front. Pharmacol., 2022, 13, 1011561.
[http://dx.doi.org/10.3389/fphar.2022.1011561] [PMID: 36210811]
[14]
Gan, L.; Leng, Y.; Min, J.; Luo, X.M.; Wang, F.; Zhao, J. Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur. J. Pharmacol., 2022, 927, 174954.
[http://dx.doi.org/10.1016/j.ejphar.2022.174954] [PMID: 35421359]
[15]
Mistry, R.K.; Brewer, A.C. Redox-Dependent Regulation of Sulfur Metabolism in Biomolecules: Implications for Cardiovascular Health. Antioxid. Redox Signal., 2019, 30(7), 972-991.
[http://dx.doi.org/10.1089/ars.2017.7224] [PMID: 28661184]
[16]
Liu, X.; Nie, L.; Zhang, Y.; Yan, Y.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G.; Mao, C.; Wu, S.; Zhuang, L.; Poyurovsky, M.V.; James You, M.; Hart, T.; Billadeau, D.D.; Chen, J.; Gan, B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol., 2023, 25(3), 404-414.
[http://dx.doi.org/10.1038/s41556-023-01091-2] [PMID: 36747082]
[17]
Law, M.E.; Yaaghubi, E.; Ghilardi, A.F.; Davis, B.J.; Ferreira, R.B.; Koh, J.; Chen, S.; DePeter, S.F.; Schilson, C.M.; Chiang, C.W.; Heldermon, C.D.; Nørgaard, P.; Castellano, R.K.; Law, B.K. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Lett., 2022, 534, 215604.
[http://dx.doi.org/10.1016/j.canlet.2022.215604] [PMID: 35247515]
[18]
Nakajima, K.; Ono, M.; Radović, U.; Dizdarević, S.; Tomizawa, S.I.; Kuroha, K.; Nagamatsu, G.; Hoshi, I.; Matsunaga, R.; Shirakawa, T.; Kurosawa, T.; Miyazaki, Y.; Seki, M.; Suzuki, Y.; Koseki, H.; Nakamura, M.; Suda, T.; Ohbo, K. Lack of whey acidic protein (WAP) four-disulfide core domain protease inhibitor 2 (WFDC2) causes neonatal death from respiratory failure in mice. Dis. Model. Mech., 2019, 12(11), dmm040139.
[http://dx.doi.org/10.1242/dmm.040139] [PMID: 31562139]
[19]
Zhong, Z.X.; Li, X.Z.; Liu, J.T.; Qin, N.; Duan, H.Q.; Duan, X.C. Disulfide bond-based sn38 prodrug nanoassemblies with high drug loading and reduction-triggered drug release for pancreatic cancer therapy. Int. J. Nanomedicine, 2023, 18, 1281-1298.
[http://dx.doi.org/10.2147/IJN.S404848] [PMID: 36945256]
[20]
Toro-Domínguez, D.; Martorell-Marugán, J.; López-Domínguez, R.; García-Moreno, A.; González-Rumayor, V.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics, 2019, 35(5), 880-882.
[http://dx.doi.org/10.1093/bioinformatics/bty721] [PMID: 30137226]
[21]
Halyo, V.; Martin, L. Martin L. Perl (1927–2014). Nature, 2014, 516(7531), 330.
[http://dx.doi.org/10.1038/516330a] [PMID: 25519123]
[22]
Jia, L.; Yao, W.; Jiang, Y.; Li, Y.; Wang, Z.; Li, H.; Huang, F.; Li, J.; Chen, T.; Zhang, H. Development of interactive biological web applications with R/Shiny. Brief. Bioinform., 2022, 23(1), bbab415.
[http://dx.doi.org/10.1093/bib/bbab415] [PMID: 34642739]
[23]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[24]
Zhang, H.; Meltzer, P.; Davis, S. RCircos: An R package for Circos 2D track plots. BMC Bioinformatics, 2013, 14(1), 244.
[http://dx.doi.org/10.1186/1471-2105-14-244] [PMID: 23937229]
[25]
Beck, M.W. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. J. Stat. Softw., 2018, 85(11), 1-20.
[http://dx.doi.org/10.18637/jss.v085.i11] [PMID: 30505247]
[26]
Buckley, S.J.; Harvey, R.J. Lessons learnt from using the machine learning random forest algorithm to predict virulence in streptococcus pyogenes. Front. Cell. Infect. Microbiol., 2021, 11, 809560.
[http://dx.doi.org/10.3389/fcimb.2021.809560] [PMID: 35004362]
[27]
Naqvi, A.A.T.; Rizvi, S.A.M.; Hassan, M.I. Pan-cancer analysis of Chromobox (CBX) genes for prognostic significance and cancer classification. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(1), 166561.
[http://dx.doi.org/10.1016/j.bbadis.2022.166561] [PMID: 36183965]
[28]
Satake, H.; Osugi, T.; Shiraishi, A. Impact of machine learning-associated research strategies on the identification of peptide-receptor interactions in the post-omics era. Neuroendocrinology, 2023, 113(2), 251-261.
[http://dx.doi.org/10.1159/000518572] [PMID: 34348315]
[29]
Altamimi, A.S.; El-Azab, A.S.; Abdelhamid, S.G.; Alamri, M.A.; Bayoumi, A.H.; Alqahtani, S.M.; Alabbas, A.B.; Altharawi, A.I.; Alossaimi, M.A.; Mohamed, M.A. Synthesis, anticancer screening of some novel trimethoxy quinazolines and vegfr2, egfr tyrosine kinase inhibitors assay; molecular docking studies. Molecules, 2021, 26(10), 2992.
[http://dx.doi.org/10.3390/molecules26102992] [PMID: 34069962]
[30]
Mahdy, N.E.; Abdel-Baki, P.M.; El-Rashedy, A.A.; Ibrahim, R.M. Modulatory effect of pyrus pyrifolia fruit and its phenolics on key enzymes against metabolic syndrome: bioassay-guided approach, hplc analysis, and in silico study. Plant Foods Hum. Nutr., 2023, 78(2), 383-389.
[http://dx.doi.org/10.1007/s11130-023-01069-3] [PMID: 37219720]
[31]
Pereira, S.V.; Colombo, F.B.; de Freitas, L.A.P. Ultrasound influence on the solubility of solid dispersions prepared for a poorly soluble drug. Ultrason. Sonochem., 2016, 29, 461-469.
[http://dx.doi.org/10.1016/j.ultsonch.2015.10.022] [PMID: 26548840]
[32]
Shi, Y.; Chen, X.; Elsasser, S.; Stocks, B.B.; Tian, G.; Lee, B.H.; Shi, Y.; Zhang, N.; de Poot, S.A.H.; Tuebing, F.; Sun, S.; Vannoy, J.; Tarasov, S.G.; Engen, J.R.; Finley, D.; Walters, K.J. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science, 2016, 351(6275), aad9421.
[http://dx.doi.org/10.1126/science.aad9421] [PMID: 26912900]
[33]
Cunchillos, C.; Lecointre, G. Early steps of metabolism evolution inferred by cladistic analysis of amino acid catabolic pathways. C. R. Biol., 2002, 325(2), 119-129.
[http://dx.doi.org/10.1016/S1631-0691(02)01411-7] [PMID: 11980173]
[34]
Ning, K.; Liu, S.; Yang, B.; Wang, R.; Man, G.; Wang, D.; Xu, H. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol. Metab., 2022, 58, 101450.
[http://dx.doi.org/10.1016/j.molmet.2022.101450] [PMID: 35121170]
[35]
Wilson, C.M.; High, S. Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J. Cell Sci., 2007, 120(4), 648-657.
[http://dx.doi.org/10.1242/jcs.000729] [PMID: 17264154]
[36]
Ding, J.; Xu, J.; Deng, Q.; Ma, W.; Zhang, R.; He, X.; Liu, S.; Zhang, L. Knockdown of oligosaccharyltransferase subunit ribophorin 1 induces endoplasmic-reticulum-stress-dependent cell apoptosis in breast cancer. Front. Oncol., 2021, 11, 722624.
[http://dx.doi.org/10.3389/fonc.2021.722624] [PMID: 34778038]
[37]
Cheray, M.; Bessette, B.; Lacroix, A.; Mélin, C.; Jawhari, S.; Pinet, S.; Deluche, E.; Clavère, P.; Durand, K.; Sanchez-Prieto, R.; Jauberteau, M.O.; Battu, S.; Lalloué, F. KLRC 3, a Natural Killer receptor gene, is a key factor involved in glioblastoma tumourigenesis and aggressiveness. J. Cell. Mol. Med., 2017, 21(2), 244-253.
[http://dx.doi.org/10.1111/jcmm.12960] [PMID: 27641066]
[38]
Gokturk, B.; Keles, S.; Kirac, M.; Artac, H.; Tokgoz, H.; Guner, S.N.; Caliskan, U.; Caliskaner, Z.; van der Burg, M.; van Dongen, J.; Morgan, N.V.; Reisli, I. CD3G gene defects in familial autoimmune thyroiditis. Scand. J. Immunol., 2014, 80(5), 354-361.
[http://dx.doi.org/10.1111/sji.12200] [PMID: 24910257]
[39]
Okamoto, K.; Takayanagi, H. Effect of T cells on bone. Bone, 2023, 168, 116675.
[http://dx.doi.org/10.1016/j.bone.2023.116675] [PMID: 36638904]
[40]
Soysa, N.S.; Alles, N. The role of IL‐3 in bone. J. Cell. Biochem., 2019, 120(5), 6851-6859.
[http://dx.doi.org/10.1002/jcb.27956] [PMID: 30320936]
[41]
Griffith, J.F.; Yeung, D.K.W.; Ahuja, A.T.; Choy, C.W.Y.; Mei, W.Y.; Lam, S.S.L.; Lam, T.P.; Chen, Z.Y.; Leung, P.C. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone, 2009, 44(6), 1092-1096.
[http://dx.doi.org/10.1016/j.bone.2009.02.022] [PMID: 19268721]
[42]
Lundberg, P.; Boström, I.; Mukohyama, H.; Bjurholm, A.; Smans, K.; Lerner, U.H. Neuro-hormonal control of bone metabolism. Regul. Pept., 1999, 85(1), 47-58.
[http://dx.doi.org/10.1016/S0167-0115(99)00069-5] [PMID: 10588449]
[43]
Zhang, W.; Gao, R.; Rong, X.; Zhu, S.; Cui, Y.; Liu, H.; Li, M. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front. Endocrinol., 2022, 13, 965258.
[http://dx.doi.org/10.3389/fendo.2022.965258] [PMID: 36147571]
[44]
Yao, Z.; Getting, S.J.; Locke, I.C. Regulation of TNF-Induced osteoclast differentiation. Cells, 2021, 11(1), 132.
[http://dx.doi.org/10.3390/cells11010132] [PMID: 35011694]
[45]
Zha, L.; He, L.; Liang, Y.; Qin, H.; Yu, B.; Chang, L.; Xue, L. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed. Pharmacother., 2018, 102, 369-374.
[http://dx.doi.org/10.1016/j.biopha.2018.03.080] [PMID: 29571022]
[46]
Rachner, T.D.; Link-Rachner, C.S.; Bornhäuser, M.; Hofbauer, L.C. Skeletal health in patients following allogeneic hematopoietic cell transplantation. Bone, 2022, 158, 115684.
[http://dx.doi.org/10.1016/j.bone.2020.115684] [PMID: 33049368]
[47]
Capece, D.; Verzella, D.; Flati, I.; Arboretto, P.; Cornice, J.; Franzoso, G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol., 2022, 43(9), 757-775.
[http://dx.doi.org/10.1016/j.it.2022.07.004] [PMID: 35965153]
[48]
Mishra, R. Sehring, I.; Cederlund, M.; Mulaw, M.; Weidinger, G. NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration. Dev. Cell, 2020, 52(2), 167-182.e7.
[http://dx.doi.org/10.1016/j.devcel.2019.11.016] [PMID: 31866203]
[49]
Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol., 2010, 28(1), 445-489.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101212] [PMID: 20192806]
[50]
Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609), 1057-1061.
[http://dx.doi.org/10.1126/science.1079490] [PMID: 12522256]
[51]
Martín-Fontecha, A.; Thomsen, L.L.; Brett, S.; Gerard, C.; Lipp, M.; Lanzavecchia, A.; Sallusto, F. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol., 2004, 5(12), 1260-1265.
[http://dx.doi.org/10.1038/ni1138] [PMID: 15531883]
[52]
Murphy, K.M.; Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol., 2002, 2(12), 933-944.
[http://dx.doi.org/10.1038/nri954] [PMID: 12461566]
[53]
Sato, K.; Suematsu, A.; Okamoto, K.; Yamaguchi, A.; Morishita, Y.; Kadono, Y.; Tanaka, S.; Kodama, T.; Akira, S.; Iwakura, Y.; Cua, D.J.; Takayanagi, H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med., 2006, 203(12), 2673-2682.
[http://dx.doi.org/10.1084/jem.20061775] [PMID: 17088434]
[54]
Dar, H.Y.; Shukla, P.; Mishra, P.K.; Anupam, R.; Mondal, R.K.; Tomar, G.B.; Sharma, V.; Srivastava, R.K. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep., 2018, 8, 46-56.
[http://dx.doi.org/10.1016/j.bonr.2018.02.001] [PMID: 29955622]
[55]
Dar, H.Y.; Singh, A.; Shukla, P.; Anupam, R.; Mondal, R.K.; Mishra, P.K.; Srivastava, R.K. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci. Rep., 2018, 8(1), 2503.
[http://dx.doi.org/10.1038/s41598-018-20896-y] [PMID: 29410520]
[56]
Zaiss, M.M.; Axmann, R.; Zwerina, J.; Polzer, K.; Gückel, E.; Skapenko, A.; Schulze-Koops, H.; Horwood, N.; Cope, A.; Schett, G. Treg cells suppress osteoclast formation: A new link between the immune system and bone. Arthritis Rheum., 2007, 56(12), 4104-4112.
[http://dx.doi.org/10.1002/art.23138] [PMID: 18050211]
[57]
Shashkova, E.V.; Trivedi, J.; Cline-Smith, A.B.; Ferris, C.; Buchwald, Z.S.; Gibbs, J.; Novack, D.; Aurora, R. Osteoclast-Primed Foxp3+ CD8 T Cells Induce T-bet, Eomesodermin, and IFN-γ To Regulate Bone Resorption. J. Immunol., 2016, 197(3), 726-735.
[http://dx.doi.org/10.4049/jimmunol.1600253] [PMID: 27324129]
[58]
Peng, C.; Guo, Z.; Zhao, Y.; Li, R.; Wang, L.; Gong, W. Effect of lymphocyte subsets on bone density in senile osteoporosis: A retrospective study. J. Immunol. Res., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/3337622] [PMID: 36339939]
[59]
Xue, X.; Zhao, X.; Wang, J.; Wang, C.; Ma, C.; Zhang, Y.; Li, Y.; Peng, C. Carthami flos extract against carbon tetrachloride-induced liver fibrosis via alleviating angiogenesis in mice. Phytomedicine, 2023, 108, 154517.
[http://dx.doi.org/10.1016/j.phymed.2022.154517]
[60]
Najar, M.; Fayyad-Kazan, M.; Meuleman, N.; Bron, D.; Fayyad-Kazan, H.; Lagneaux, L. Mesenchymal stromal cells of the bone marrow and natural killer cells: Cell interactions and cross modulation. J. Cell Commun. Signal., 2018, 12(4), 673-688.
[http://dx.doi.org/10.1007/s12079-018-0448-4] [PMID: 29350342]
[61]
Najar, M.; Fayyad-Kazan, M.; Meuleman, N.; Bron, D.; Fayyad-Kazan, H.; Lagneaux, L. Immunomodulatory effects of foreskin mesenchymal stromal cells on natural killer cells. J. Cell. Physiol., 2018, 233(7), 5243-5254.
[http://dx.doi.org/10.1002/jcp.26305] [PMID: 29194614]
[62]
Bondeson, J.; Blom, A.B.; Wainwright, S.; Hughes, C.; Caterson, B.; van den Berg, W.B. The role of synovial macrophages and macrophage‐produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum., 2010, 62(3), 647-657.
[http://dx.doi.org/10.1002/art.27290] [PMID: 20187160]
[63]
Li, C.J.; Xiao, Y.; Yang, M.; Su, T.; Sun, X.; Guo, Q.; Huang, Y.; Luo, X.H. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J. Clin. Invest., 2018, 128(12), 5251-5266.
[http://dx.doi.org/10.1172/JCI99044] [PMID: 30352426]
[64]
Nicolaidou, V.; Wong, M.M.; Redpath, A.N.; Ersek, A.; Baban, D.F.; Williams, L.M.; Cope, A.P.; Horwood, N.J. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One, 2012, 7(7), e39871.
[http://dx.doi.org/10.1371/journal.pone.0039871] [PMID: 22802946]
[65]
Zhang, L.; Liu, T.; Chen, H.; Zhao, Q.; Liu, H. Predicting lncRNA–miRNA interactions based on interactome network and graphlet interaction. Genomics, 2021, 113(3), 874-880.
[http://dx.doi.org/10.1016/j.ygeno.2021.02.002] [PMID: 33588070]
[66]
Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: From experimental results to computational models. Brief. Bioinform., 2019, 20(2), 515-539.
[http://dx.doi.org/10.1093/bib/bbx130] [PMID: 29045685]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy