Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Mitigating Effect of Matricin Against Benzo(a)pyrene-induced Lung Carcinogenesis in Experimental Mice Model

Author(s): Guang Yang, Huining Liu, Siwei Xu and Ziqiang Tian*

Volume 27, Issue 11, 2024

Published on: 09 January, 2024

Page: [1602 - 1610] Pages: 9

DOI: 10.2174/0113862073273177231130094833

Price: $65

Abstract

Background: Lung cancer is a life-threatening disease that is still prevalent worldwide. This study aims to evaluate the effects of matricin, a sesquiterpene, on the carcinogenic agent benzo(a)pyrene [B(a)P]-induced lung cancer in Swiss albino mice.

Methods: Lung cancer was induced by oral administration of B(a)P at 50 mg/kg b. wt. in model Swiss-albino mice (group II) as well in experimental group III, and treated with matricin (100 mg/kg b. wt.) in group III. Upon completion of treatment for 18 weeks, the changes in body weight, tumor formation, enzymatic and non-enzymatic antioxidant levels (GSH, SOD, GPx, GR, QR, CAT), lipid peroxidation (LPO) level, pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), immunoglobulin levels (IgG, IgM), apoptosis markers (Bax, Bcl-xL), tumor markers (carcinoembryogenic antigen (CEA), neuron-specific enolase (NSE)), and histopathological (H&E) alterations were determined.

Results: The results indicate that B(a)P caused a significant increase of tumor formation in the lungs, increased tumor markers and inflammatory cytokines in serum, and depletion of enzymatic/ non-enzymatic antioxidants and immunoglobulins, compared to the untreated control group. Matricin treatment significantly reversed the changes caused by B(a)P as evidenced by the biochemical and histopathological assays.

Conclusion: The changes caused by matricin clearly indicate the cancer-preventive effects of matricin against B(a)P-induced lung cancer in animal models, which can be attributed to the antioxidant activity, immunomodulation, and mitigation of the NF-kβ pathway.

Graphical Abstract

[1]
Cheng, T.Y.D.; Cramb, S.M.; Baade, P.D.; Youlden, D.R.; Nwogu, C.; Reid, M.E. The International Epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. J. Thorac. Oncol., 2016, 11(10), 1653-1671.
[http://dx.doi.org/10.1016/j.jtho.2016.05.021] [PMID: 27364315]
[2]
Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N.E.; Rissel, M.; Dimanche-Boitrel, M.T.; Baffet, G.; Holme, J.A.; Lagadic-Gossmann, D. The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis. Toxicol. Appl. Pharmacol., 2010, 242(2), 231-240.
[http://dx.doi.org/10.1016/j.taap.2009.10.012] [PMID: 19874837]
[3]
Sehgal, A.; Kumar, M.; Jain, M.; Dhawan, D.K. Synergistic effects of piperine and curcumin in modulating benzo(a)pyrene induced redox imbalance in mice lungs. Toxicol. Mech. Methods, 2012, 22(1), 74-80.
[http://dx.doi.org/10.3109/15376516.2011.603392] [PMID: 21859361]
[4]
Kasala, E.R.; Bodduluru, L.N.; Barua, C.C.; Sriram, C.S.; Gogoi, R. Benzo(a)pyrene induced lung cancer: Role of dietary phytochemicals in chemoprevention. Pharmacol. Rep., 2015, 67(5), 996-1009.
[http://dx.doi.org/10.1016/j.pharep.2015.03.004] [PMID: 26398396]
[5]
Stahl, J.M.; Corso, C.D.; Verma, V.; Park, H.S.; Nath, S.K.; Husain, Z.A.; Simone, C.B., II; Kim, A.W.; Decker, R.H. Trends in stereotactic body radiation therapy for stage I small cell lung cancer. Lung Cancer, 2017, 103, 11-16.
[http://dx.doi.org/10.1016/j.lungcan.2016.11.009] [PMID: 28024690]
[6]
Alsharairi, N.A. Dietary antioxidants and lung cancer risk in smokers and non-Smokers. Healthcare, 2022, 10(12), 2501.
[http://dx.doi.org/10.3390/healthcare10122501] [PMID: 36554027]
[7]
Yang, J.; Qian, S.; Na, X.; Zhao, A. Association between dietary and supplemental antioxidants intake and Lung Cancer Risk: Evidence from a cancer screening trial. Antioxidants, 2023, 12(2), 338.
[http://dx.doi.org/10.3390/antiox12020338] [PMID: 36829901]
[8]
Song, H.S.; Song, Y.H.; Singh, N.; Kim, H.; Jeon, H.; Kim, I.; Kang, S.C.; Chi, K.W. New self-assembled supramolecular bowls as potent anticancer agents for human hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 242.
[http://dx.doi.org/10.1038/s41598-018-36755-9] [PMID: 30659228]
[9]
Flemming, M.; Kraus, B.; Rascle, A.; Jürgenliemk, G.; Fuchs, S.; Fürst, R.; Heilmann, J. Revisited anti-inflammatory activity of matricine in vitro: Comparison with chamazulene. Fitoterapia, 2015, 106, 122-128.
[http://dx.doi.org/10.1016/j.fitote.2015.08.010] [PMID: 26304764]
[10]
Zadeh, J.B.; Kor, N.M.; Kor, Z.M. Chamomile (Matricaria recutita) as valuable medicinal plant. Int. J. Adv. Biol. Biom. Res., 2014, 2(3), 823-829.
[11]
Bai, X.; Wang, W.; Wang, Y.; Li, J. Anti-proliferative and apoptosis-inducing effects of matricin on human non-small cell lung cancer H1299 cells via MAPK pathway activation. Eur. J. Inflamm., 2020, 18.
[http://dx.doi.org/10.1177/2058739220942335]
[12]
Velli, S.; Sundaram, J.; Murugan, M.; Balaraman, G.; Thiruvengadam, D. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice. J. Biochem. Mol. Toxicol., 2019, 33(10), e22382.
[http://dx.doi.org/10.1002/jbt.22382] [PMID: 31468657]
[13]
Shahid, A.; Ali, R.; Ali, N.; Kazim Hasan, S.; Barnwal, P.; Mohammad Afzal, S.; Vafa, A.; Sultana, S. Methanolic bark extract of Acacia catechu ameliorates benzo(a)pyrene induced lung toxicity by abrogation of oxidative stress, inflammation, and apoptosis in mice. Environ. Toxicol., 2017, 32(5), 1566-1577.
[http://dx.doi.org/10.1002/tox.22382] [PMID: 28032951]
[14]
Gong, G.; Zhao, R.; Zhu, Y.; Yu, J.; Wei, B.; Xu, Y.; Cui, Z.; Liang, G. Gastroprotective effect of cirsilineol against hydrochloric acid/ethanol-induced gastric ulcer in rats. Korean J. Physiol. Pharmacol., 2021, 25(5), 403-411.
[http://dx.doi.org/10.4196/kjpp.2021.25.5.403] [PMID: 34448458]
[15]
Gnanaraj, C.; Shah, M.D.; Haque, A.T.M.E.; Makki, J.S.; Iqbal, M. Hepatoprotective and immunosuppressive effect of Synedrella nodiflora L. On Carbon Tetrachloride (ccl4)-intoxicated rats. J. Environ. Pathol. Toxicol. Oncol., 2016, 35(1), 29-42.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2016013802] [PMID: 27279582]
[16]
Divyashri, G.; Krishna Murthy, T.P.; Ragavan, K.V.; Sumukh, G.M.; Sudha, L.S.; Nishka, S.; Himanshi, G.; Misriya, N.; Sharada, B.; Anjanapura Venkataramanaiah, R. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon, 2023, 9(9), e20212.
[http://dx.doi.org/10.1016/j.heliyon.2023.e20212] [PMID: 37809968]
[17]
Anandakumar, P.; Kamaraj, S.; Jagan, S.; Ramakrishnan, G.; Vinodhkumar, R.; Devaki, T. Capsaicin modulates pulmonary antioxidant defense system during benzo(a)pyrene-induced lung cancer in swiss albino mice. Phytother. Res., 2008, 22(4), 529-533.
[http://dx.doi.org/10.1002/ptr.2393] [PMID: 18338764]
[18]
Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134.
[http://dx.doi.org/10.1016/j.canlet.2017.11.002] [PMID: 29113871]
[19]
Gong, C.; Qi, L.; Huo, Y.; Zhang, S.; Ning, X.; Bai, L.; Wang, Z. Anticancer effect of Limonin against benzo(a)pyrene‐induced lung carcinogenesis in Swiss albino mice and the inhibition of A549 cell proliferation through apoptotic pathway. J. Biochem. Mol. Toxicol., 2019, 33(12), e22374.
[http://dx.doi.org/10.1002/jbt.22374] [PMID: 31702096]
[20]
Hu, X.; Geetha, R.V.; Surapaneni, K.M.; Veeraraghavan, V.P.; Chinnathambi, A.; Alahmadi, T.A.; Manikandan, V.; Manokaran, K. Lung cancer induced by Benzo(A)Pyrene: ChemoProtective effect of sinapic acid in swiss albino mice. Saudi J. Biol. Sci., 2021, 28(12), 7125-7133.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.001] [PMID: 34867015]
[21]
Rajendran, P.; Ekambaram, G.; Sakthisekaran, D. Cytoprotective effect of mangiferin on benzo(a)pyrene-induced lung carcinogenesis in swiss albino mice. Basic Clin. Pharmacol. Toxicol., 2008, 103(2), 137-142.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00254.x] [PMID: 18816296]
[22]
Xu, Y.; Huang, Y.; Chen, Y.; Cao, K.; Liu, Z.; Wan, Z.; Liao, Z.; Li, B.; Cui, J.; Yang, Y.; Xu, X.; Cai, J.; Gao, F. Grape seed proanthocyanidins play the roles of radioprotection on Normal Lung and radiosensitization on lung cancer via differential regulation of the MAPK signaling pathway. J. Cancer, 2021, 12(10), 2844-2854.
[http://dx.doi.org/10.7150/jca.49987] [PMID: 33854585]
[23]
El-Kott, A.F. Anti-angiogenic effectiveness of the pomegranate against benzo(a)pyrene induced lung carcinoma in mice. Int. J. Cancer Res., 2015, 11(4), 164-174.
[http://dx.doi.org/10.3923/ijcr.2015.164.174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy