Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Mechanical Activation as a Stage of Coal Sample Preparation in the Analysis of Rare Earth Elements Content by Inductively Coupled Plasma Mass Spectrometry

Author(s): Lidiya I. Yudina*, Tatiana S. Skripkina and Svetlana S. Shatskaya

Volume 20, Issue 1, 2024

Published on: 09 January, 2024

Page: [52 - 63] Pages: 12

DOI: 10.2174/0115734110288231231229105645

Price: $65

Abstract

Background: Brown coals are recognized as promising sources of rare earth elements (REEs). Rare earths are present in both the mineral and organic parts of brown coal.

Objectives: This study was conducted to investigate the influence of preliminary mechanical activation in the process of sample preparation prior to analyzing the concentrations of rare earth elements in brown coal samples of various origins and compositions.

Methods: Four coal samples from different deposits in Russia were selected for the study. Samples were treated with mechanical activation, without reagents, or mechanochemical activation, with humic acids added externally as reagents. X-ray phase analysis was carried out with the selected samples. The quantities of rare-earth elements present in the samples were studied by the method of high-sensitivity inductively coupled plasma mass spectrometry (ICP-MS).

Results: It was found that the mechanical activation of coal before dissolution in a mixture of nitric and hydrofluoric acids leads to an increase in the determined concentration of rare earth elements. For this study, the expediency of using only nitric acid as an optimal solvent for the elemental analysis of coal samples was shown. The total concentration of all REE after dissolution of nitric acid and mechanochemical activation with humic acid reached 2456 g/t in Vanchin coal, 968 g/t in Azeysky coal, and 24 g/t and 150 g/t in Itatsky and Spetsugli coals, respectively.

Conclusion: Mechanical activation and mechanochemical treatment can greatly help to facilitate sample preparation of natural objects, such as coals for elemental analysis, but in some cases, only a change of solvent is sufficient. When developing technology for concentrating rare earth elements from coal involving grinding, it is necessary to take into account the fact that mechanical activation of coal changes its tendency to dissolve, which may affect the results of the analysis and should be taken into account during experiments.

Graphical Abstract

[1]
Boxleiter, A.; Elliott, W.C. Rare-earth minerals in kaolin ore, mine tailings, and sands – central georgia, upper coastal plain. Clays Clay Miner., 2023, 71(3), 274-308.
[http://dx.doi.org/10.1007/s42860-023-00235-7]
[2]
Condie, K.C. Another look at rare earth elements in shales. Geochim. Cosmochim. Acta, 1991, 55(9), 2527-2531.
[http://dx.doi.org/10.1016/0016-7037(91)90370-K]
[3]
Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 2019, 10(4), 1285-1303.
[http://dx.doi.org/10.1016/j.gsf.2018.12.005]
[4]
Laudal, D.A.; Benson, S.A.; Addleman, R.S.; Palo, D. Leaching behavior of rare earth elements in Fort Union lignite coals of North America. Int. J. Coal Geol., 2018, 191, 112-124.
[http://dx.doi.org/10.1016/j.coal.2018.03.010]
[5]
Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 2014, 3(4), 614-635.
[http://dx.doi.org/10.3390/resources3040614]
[6]
Charalampides, G.; Vatalis, K.I.; Apostoplos, B.; Ploutarch-Nikolas, B. Rare earth elements: Industrial applications and economic dependency of europe. Procedia Econ. Finance, 2015, 24, 126-135.
[http://dx.doi.org/10.1016/S2212-5671(15)00630-9]
[7]
Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; Bertrand, G.; Arvanitidis, N.; Eliopoulos, D.G.; Shaw, R.A.; Thrane, K.; Keulen, N. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev., 2016, 72, 838-856.
[http://dx.doi.org/10.1016/j.oregeorev.2015.09.019]
[8]
Balaram, V. Potential future alternative resources for rare earth elements: Opportunities and challenges. Minerals, 2023, 13(3), 425.
[http://dx.doi.org/10.3390/min13030425]
[9]
Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol., 2018, 186, 155-164.
[http://dx.doi.org/10.1016/j.coal.2017.06.005]
[10]
Arbuzov, S.I.; Spears, D.A.; Vergunov, A.V.; Ilenok, S.S.; Mezhibor, A.M.; Ivanov, V.P.; Zarubina, N.A. Geochemistry, mineralogy and genesis of rare metal (Nb-Ta-Zr-Hf-Y-REE-Ga) coals of the seam XI in the south of Kuznetsk Basin, Russia. Ore Geol. Rev., 2019, 113, 103073.
[http://dx.doi.org/10.1016/j.oregeorev.2019.103073]
[11]
Pehlivan, E.; Arslan, G. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia. J. Hazard. Mater., 2006, 138(2), 401-408.
[http://dx.doi.org/10.1016/j.jhazmat.2006.05.063] [PMID: 16962233]
[12]
Schnitzer, M. Chapter 1 humic substances: Chemistry and reactions. In: Developments in Soil Science; Elsevier, 1978; 8, p. 1-64.
[13]
Hayes, M.H.B.; Mylotte, R.; Swift, R.S. Chapter Two - Humin: Its composition and importance in soil organic matter. In: Advances in Agronomy; Elsevier, 2017; 143, p. 47-138.
[14]
Gaffney, J.S.; Marley, N.A.; Clark, S.B. Humic and fulvic acids and organic colloidal materials in the environment. In: Humic/Fulvic Acids and Organic Colloidal Materials in the Environment; American Chemical Society, 1996.
[http://dx.doi.org/10.1021/bk-1996-0651]
[15]
Kleinhempel, D. Ein beitrag zur theorie des huminstoffzustandes. Arch. Agron. Soil Sci., 1970, 14(1), 3-14.
[http://dx.doi.org/10.1080/03650347009412655]
[16]
Huggins, F.E. Overview of analytical methods for inorganic constituents in coal. Int. J. Coal Geol., 2002, 50(1-4), 169-214.
[http://dx.doi.org/10.1016/S0166-5162(02)00118-0]
[17]
Norrish, K.; Hutton, J.T. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta, 1969, 33(4), 431-453.
[http://dx.doi.org/10.1016/0016-7037(69)90126-4]
[18]
Soylak, M.; Unsal, Y.E.; Kizil, N.; Aydin, A. Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry. Food Chem. Toxicol., 2010, 48(2), 517-521.
[http://dx.doi.org/10.1016/j.fct.2009.11.005] [PMID: 19913067]
[19]
Pradhan, S.K.; Ambade, B. Extractive separation of rare earth elements and their determination by inductively coupled plasma optical emission spectrometry in geological samples. J. Anal. At. Spectrom., 2020, 35(7), 1395-1404.
[http://dx.doi.org/10.1039/D0JA00190B]
[20]
Al-Merey, R.; Karajou, J.; Issa, H. X-ray fluorescence analysis of geological samples: Exploring the effect of sample thickness on the accuracy of results. Appl. Radiat. Isot., 2005, 62(3), 501-508.
[http://dx.doi.org/10.1016/j.apradiso.2004.04.020] [PMID: 15607928]
[21]
Nikolaeva, I.V.; Palesskii, S.V.; Koz’menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int., 2008, 46(10), 1016-1022.
[http://dx.doi.org/10.1134/S0016702908100066]
[22]
Satyanarayanan, M.; Balaram, V.; Sawant, S.S.; Subramanyam, K.S.V.; Vamsi Krishna, G. Dasaram, B Rapid Determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. Spectroscopy, 2018, 39(01), 1-15.
[23]
Kallithrakas-Kontos, N.; Foteinis, S. Recent advances in the analysis of mercury in water - review. Curr. Anal. Chem., 2015, 12(1), 22-36.
[http://dx.doi.org/10.2174/157341101201151007120324]
[24]
Zuma, M.C.; Lakkakula, J.; Mketo, N. Recent trends in sample preparation methods and plasma-based spectrometric techniques for the determination of rare earth elements in geological and fossil fuel samples. Appl. Spectrosc. Rev., 2022, 57(5), 353-377.
[http://dx.doi.org/10.1080/05704928.2020.1858093]
[25]
Pinto, F.G.; Junior, R.E.; Saint’Pierre, T.D. Sample preparation for determination of rare earth elements in geological samples by ICP-MS: A critical review. Anal. Lett., 2012, 45(12), 1537-1556.
[http://dx.doi.org/10.1080/00032719.2012.677778]
[26]
Meermann, B.; Nischwitz, V. ICP-MS for the analysis at the nanoscale – A tutorial review. J. Anal. At. Spectrom., 2018, 33(9), 1432-1468.
[http://dx.doi.org/10.1039/C8JA00037A]
[27]
Limbeck, A.; Galler, P.; Bonta, M.; Bauer, G.; Nischkauer, W.; Vanhaecke, F. Recent advances in quantitative LA-ICP-MS analysis: Challenges and solutions in the life sciences and environmental chemistry. Anal. Bioanal. Chem., 2015, 407(22), 6593-6617.
[http://dx.doi.org/10.1007/s00216-015-8858-0] [PMID: 26168964]
[28]
Gibson, B.; Carter, S.; Fisher, A.S.; Lancaster, S.; Marshall, J.; Whiteside, I. Atomic spectrometry update. Review of advances in the analysis of metals, chemicals and functional materials. J. Anal. At. Spectrom., 2014, 29(11), 1969-2021.
[http://dx.doi.org/10.1039/C4JA90045F]
[29]
Bourgeois, D.; Lacanau, V.; Mastretta, R.; Contino-Pépin, C.; Meyer, D. A simple process for the recovery of palladium from wastes of printed circuit boards. Hydrometallurgy, 2020, 191, 105241.
[http://dx.doi.org/10.1016/j.hydromet.2019.105241]
[30]
Baer, M.D.; Fulton, J.L.; Balasubramanian, M.; Schenter, G.K.; Mundy, C.J. Persistent ion pairing in aqueous hydrochloric acid. J. Phys. Chem. B, 2014, 118(26), 7211-7220.
[http://dx.doi.org/10.1021/jp501091h] [PMID: 24837190]
[31]
Todolí, J.L.; Mermet, J.M. Acid interferences in atomic spectrometry: Analyte signal effects and subsequent reduction. Spectrochim. Acta B At. Spectrosc., 1999, 54(6), 895-929.
[http://dx.doi.org/10.1016/S0584-8547(99)00041-5]
[32]
Bandura, D.R.; Baranov, V.I.; Tanner, S.D. Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem., 2002, 74(7), 1497-1502.
[http://dx.doi.org/10.1021/ac011031v] [PMID: 12033236]
[33]
Yokoyama, T.; Makishima, A.; Nakamura, E. Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chem. Geol., 1999, 157(3-4), 175-187.
[http://dx.doi.org/10.1016/S0009-2541(98)00206-X]
[34]
Lu, Y.; Makishima, A.; Nakamura, E. Coprecipitation of Ti, Mo, Sn and Sb with fluorides and application to determination of B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by ICP-MS. Chem. Geol., 2007, 236(1-2), 13-26.
[http://dx.doi.org/10.1016/j.chemgeo.2006.08.007]
[35]
Liang, Q.; Jing, H.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000, 51(3), 507-513.
[http://dx.doi.org/10.1016/S0039-9140(99)00318-5] [PMID: 18967881]
[36]
Troitskii, D.Yu.; Plyusnin, P.E.; Shuvaeva, O.V. Optimization of the sample preparation procedure and determination of the content of REE and Ge in low carbonized rocks by the isp-ms method using a triple quadrupole. J. Siberian Federal Univ. Chem., 2022, 15(3), 353-364.
[37]
Lomovskiy, I.; Bychkov, A.; Lomovsky, O.; Skripkina, T. Mechanochemical and size reduction machines for biorefining. Molecules, 2020, 25(22), 5345.
[http://dx.doi.org/10.3390/molecules25225345] [PMID: 33207746]
[38]
Dong, D.; Zhang, Y.; Xiao, Y.; Wang, T.; Wang, J.; Gao, W. Mechanochemistry coupled with MgCO3 one-step activation to prepare coal-based hierarchical porous carbon for supercapacitors. J. Power Sources, 2021, 503, 230049.
[http://dx.doi.org/10.1016/j.jpowsour.2021.230049]
[39]
Ji, H.; Mi, X.; Tian, Q.; Liu, C.; Yao, J.; Ma, S.; Zeng, G. Recycling of mullite from high-alumina coal fly ash by a mechanochemical activation method: Effect of particle size and mechanism research. Sci. Total Environ., 2021, 784, 147100.
[http://dx.doi.org/10.1016/j.scitotenv.2021.147100] [PMID: 33892322]
[40]
Szczęśniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. Mater. Horiz., 2020, 7(6), 1457-1473.
[http://dx.doi.org/10.1039/D0MH00081G]
[41]
Mukhtar, A.; Ullah, S.; Al-Sehemi, A.G.; Assiri, M.A.; Saqib, S.; Amen, R.; Babar, M.; Bustam, M.A.; Ahmad, T. Synthesis and stability of metal-organic frameworks (MOFs) Photocatalysts for the removal of persistent organic pollutants (POPs) from wastewater. Curr. Anal. Chem., 2020, 17(1), 61-81.
[http://dx.doi.org/10.2174/1573411016999200507121320]
[42]
Yan, S.; Zhang, N.; Li, J.; Wang, Y.; Liu, Y.; Cao, M.; Yan, Q. Characterization of humic acids from original coal and its oxidization production. Sci. Rep., 2021, 11(1), 15381.
[http://dx.doi.org/10.1038/s41598-021-94949-0] [PMID: 34321585]
[43]
Mirzobekzoda, M.P.; Maltseva, E.V.; Shekhovtsova, N.S. Analysis of structural features of humic acids fractions after mechanochemical modification. Adv. Mat. Res., 2015, 1085, 3-6.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.1085.3]
[44]
Hou, Q.; Han, Y.; Wang, J.; Dong, Y.; Pan, J. The impacts of stress on the chemical structure of coals: a mini-review based on the recent development of mechanochemistry. Sci. Bull., 2017, 62(13), 965-970.
[http://dx.doi.org/10.1016/j.scib.2017.06.004] [PMID: 36659468]
[45]
Estévez, M.; Juan, R.; Ruiz, C.; Andrés, J.M. Formation of humic acids in lignites and subbituminous coals by dry air oxidation. Fuel, 1990, 69(2), 157-160.
[http://dx.doi.org/10.1016/0016-2361(90)90166-N]
[46]
Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res., 1999, 33(10), 2265-2276.
[http://dx.doi.org/10.1016/S0043-1354(98)00447-3]
[47]
Ryabikin, Y.A.; Kairbekov, Z.K.; Zashkvara, O.V.; Eshova, Z.T. Paramagnetic properties of brown coal from the Kiyaktinskoe deposit before and after mechanical treatment and electron irradiation. Solid Fuel Chem., 2011, 45(2), 118-123.
[http://dx.doi.org/10.3103/S0361521911020108]
[48]
Konchits, A.A.; Shanina, B.D.; Valakh, M.Y.; Yanchuk, I.B.; Yukhymchuk, V.O.; Alexeev, A.D.; Vasilenko, T.A.; Molchanov, A.N.; Kirillov, A.K. Local structure, paramagnetic properties, and porosity of natural coals: Spectroscopic studies. J. Appl. Phys., 2012, 112(4), 043504.
[http://dx.doi.org/10.1063/1.4745015]
[49]
Liu, J.; Jiang, X.; Shen, J.; Zhang, H. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics. Adv. Powder Technol., 2014, 25(3), 916-925.
[http://dx.doi.org/10.1016/j.apt.2014.01.021]
[50]
Khil’ko, S.L.; Rogatko, M.I.; Makarova, R.A.; Semenova, R.G. Specific features of the formation of adsorption layers from products of mechanochemical modification of humic acids at a liquid–gas interface. Colloid J., 2020, 82(6), 746-757.
[http://dx.doi.org/10.1134/S1061933X2006006X]
[51]
Skybová, M. Turčániová, Ľ.; Čuvanová, S.; Zubrik, A.; Hredzák, S.; Hudymáčová, Ľ. Mechanochemical activation of humic acids in the brown coal. J. Alloys Compd., 2007, 434-435, 842-845.
[http://dx.doi.org/10.1016/j.jallcom.2006.08.310]
[52]
Skripkina, T.; Belokozenko, M.; Shatskaya, S.; Tikhova, V.; Lomovskiy, I. Concentrating rare earth elements in brown coal humic acids by mechanochemical treatment. RSC Advances, 2021, 11(57), 36016-36022.
[http://dx.doi.org/10.1039/D1RA07228E] [PMID: 35492764]
[53]
Tang, Y.; Yang, Y.; Cheng, D.; Gao, B.; Wan, Y.; Li, Y.C. Value-added humic acid derived from lignite using novel solid-phase activation process with Pd/CeO 2 nanocatalyst: A physiochemical study. ACS Sustain. Chem.& Eng., 2017, 5(11), 10099-10110.
[http://dx.doi.org/10.1021/acssuschemeng.7b02094]
[54]
Birk, D.; White, J.C. Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, distribution, mineralogy. Int. J. Coal Geol., 1991, 19(1-4), 219-251.
[http://dx.doi.org/10.1016/0166-5162(91)90022-B]
[55]
Arbuzov, S.I.; Finkelman, R.B.; Il’enok, S.S.; Maslov, S.G.; Mezhibor, A.M.; Blokhin, M.G. Modes of occurrence of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) in coals of northern asia (Review). Solid Fuel Chem., 2019, 53(1), 1-21.
[http://dx.doi.org/10.3103/S0361521919010026]
[56]
Seredin, V.V.; Chekryzhov, I.Y. Ore potentiality of the vanchin graben, primorye, Russia. Geol. Ore Deposits, 2011, 53(3), 202-220.
[http://dx.doi.org/10.1134/S107570151103007X]
[57]
Arbuzov, S.I.; Chekryzhov, I.Y.; Spears, D.A.; Ilenok, S.S.; Soktoev, B.R.; Popov, N.Y. Geology, geochemistry, mineralogy and genesis of the Spetsugli high-germanium coal deposit in the Pavlovsk coalfield. Russian Far East. Ore Geol. Rev., 2021, 139, 104537.
[http://dx.doi.org/10.1016/j.oregeorev.2021.104537]
[58]
Arbuzov, S.I.; Spears, D.A.; Ilenok, S.S.; Chekryzhov, I.Y.; Ivanov, V.P. Modes of occurrence of germanium and tungsten in the Spetsugli germanium ore field, Pavlovka brown coal deposit. Russian Far East. Ore Geol. Rev., 2021, 132, 103986.
[http://dx.doi.org/10.1016/j.oregeorev.2021.103986]
[59]
Tumanov, I.A.; Michalchuk, A.A.L.; Politov, A.A.; Boldyreva, E.V.; Boldyrev, V.V. Inhibition of organic mechanochemical synthesis by water vapor. Dokl. Chem., 2017, 472(1), 17-19.
[http://dx.doi.org/10.1134/S0012500817010050]
[60]
Sun, J.; Yang, Y.; Guo, Y.; Xu, Y.; Li, W.; Zhao, C.; Liu, W.; Lu, P. Stabilized CO2 capture performance of wet mechanically activated dolomite. Fuel, 2018, 222, 334-342.
[http://dx.doi.org/10.1016/j.fuel.2018.02.162]
[61]
Boldyrev, V.V. Hydrothermal reactions under mechanochemical action. Powder Technol., 2002, 122(2-3), 247-254.
[http://dx.doi.org/10.1016/S0032-5910(01)00421-1]
[62]
Skripkina, T.; Ulihin, A.; Bychkov, A.; Mamylov, S.; Podgorbunskikh, E.; Lomovskiy, I.; Lomovsky, O. Unbound water in mechanochemical reactions of brown coal. RSC Advances, 2020, 10(36), 21108-21114.
[http://dx.doi.org/10.1039/D0RA03131C] [PMID: 35518752]
[63]
Bu, X.; Ma, G.; Peng, Y.; Xie, G.; Zhan, H.; Liu, B. Grinding kinetics of coal in wet ball-milling using the Taguchi method. Int. J. Coal Prep. Util., 2022, 42(3), 369-388.
[http://dx.doi.org/10.1080/19392699.2019.1603147]
[64]
Bu, X.; Chen, Y.; Ma, G.; Sun, Y.; Ni, C.; Xie, G. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time. Adv. Powder Technol., 2019, 30(11), 2703-2711.
[http://dx.doi.org/10.1016/j.apt.2019.08.016]
[65]
Bu, X.; Chen, Y.; Ma, G.; Sun, Y.; Ni, C.; Xie, G. Wet and dry grinding of coal in a laboratory-scale ball mill: Particle-size distributions. Powder Technol., 2020, 359, 305-313.
[http://dx.doi.org/10.1016/j.powtec.2019.09.062]
[66]
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60(2), 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[67]
Gregg, S.J.; Sing, K.S.W.; Salzberg, H.W. Adsorption surface area and porosity. J. Electrochem. Soc., 1967, 114(11), 279C.
[http://dx.doi.org/10.1149/1.2426447]
[68]
Wang, J.; He, Y.; Li, H.; Yu, J.; Xie, W.; Wei, H. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques. Fuel, 2017, 203, 764-773.
[http://dx.doi.org/10.1016/j.fuel.2017.05.042]
[69]
Abniki, M.; Moghimi, A. Removal of Cd (II) ions from water solutions using dispersive solid-phase extraction method with 2-aminopyridine/graphene oxide nano-plates. Curr. Anal. Chem., 2022, 18(10), 1070-1085.
[http://dx.doi.org/10.2174/1573411018666220505000009]
[70]
Li, S.; Zhu, Y.; Wang, Y.; Liu, J. The chemical and alignment structural properties of coal: Insights from raman, solid-state 13C NMR, XRD, and HRTEM techniques. ACS Omega, 2021, 6(17), 11266-11279.
[http://dx.doi.org/10.1021/acsomega.1c00111] [PMID: 34056282]
[71]
Geng, J.; Zhou, M.; Li, Y.; Chen, Y.; Han, Y.; Wan, S.; Zhou, X.; Hou, H. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Constr. Build. Mater., 2017, 153, 185-192.
[http://dx.doi.org/10.1016/j.conbuildmat.2017.07.045]
[72]
Stefanski, J.; Jahn, S. Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations. Solid Earth, 2020, 11(3), 767-789.
[http://dx.doi.org/10.5194/se-11-767-2020]
[73]
Honaker, R.Q.; Zhang, W.; Yang, X.; Rezaee, M. Conception of an integrated flowsheet for rare earth elements recovery from coal coarse refuse. Miner. Eng., 2018, 122, 233-240.
[http://dx.doi.org/10.1016/j.mineng.2018.04.005]
[74]
Fiket, Ž. Medunić G.; Furdek Turk, M.; Kniewald, G. Rare earth elements in superhigh-organic-sulfur Raša coal ash (Croatia). Int. J. Coal Geol., 2018, 194, 1-10.
[http://dx.doi.org/10.1016/j.coal.2018.05.002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy