Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Identification and Limit of Detection of Benzene, Chlorobenzene, Benzoic Acid, Phthalic Acid, and Mellitic Acid in Water Solutions Using Excitation, Emission, and Single-band Synchronous Fluorescence Spectroscopy

Author(s): Suresh Sunuwar and Carlos E. Manzanares*

Volume 20, Issue 1, 2024

Published on: 09 January, 2024

Page: [64 - 72] Pages: 9

DOI: 10.2174/0115734110278487231224055728

Price: $65

conference banner
Abstract

Introduction: This paper first introduces the use of computer-simulated single-band synchronous fluorescence (SF) obtained from experimental excitation and emission fluorescence spectra of a pure compound in solution. The simulation produces a single narrow band with a peak wavelength that identifies the compound.

Methods: The method is used to show single peak identification of benzene, chlorobenzene, benzoic acid, phthalic acid, and mellitic acid in water solutions. Synchronous fluorescence spectroscopy (SFS) is a variant of fluorescence technique in which excitation and emission scans are simultaneously acquired and multiplied with a predetermined wavelength difference (Δλ) between the two. Commercial instruments have this option to get the SFS signals.

Results: In response to the Δλ selected, the result will be an SFS signal producing a series of peaks that could be assigned to compounds. Instead of running the same experiment with different Δλ values to identify the compounds, our simulation program determines a specific Δλ value that generates a narrow SF band with a distinctive peak wavelength for identification purposes.

Conclusion: Finally, binary mixtures of chlorobenzene with each compound in water are prepared. The SFS of the solution is acquired and compared with the SFS bands of the components for identification purposes. With the commercial lamp fluorimeter employed, the limits of detection are obtained at the ng/g concentration level with fluorescence emission. Possible limits of detection at lower concentrations are discussed using a laser source. The presence of these molecules in astrochemical studies is discussed.

« Previous
Graphical Abstract

[1]
Lloyd, J.B.F. Synchronized excitation of fluorescence emission spectra. Nat. Phys. Sci., 1971, 231(20), 64-65.
[http://dx.doi.org/10.1038/physci231064a0]
[2]
Lloyd, J.B.F.; Evett, I.W. Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra. Anal. Chem., 1977, 49(12), 1710-1715.
[http://dx.doi.org/10.1021/ac50020a020]
[3]
Kerkhoff, M.J.; Files, L.A.; Winefordner, J.D. Identification of polyaromatic hydrocarbon mixtures by low-temperature constant energy synchronous fluorescence spectrometry. Anal. Chem., 1985, 57(8), 1673-1676.
[http://dx.doi.org/10.1021/ac00285a036] [PMID: 4037334]
[4]
Vo-Dinh, T. Multicomponent analysis by synchronous luminescence spectrometry. Anal. Chem., 1978, 50(3), 396-401.
[http://dx.doi.org/10.1021/ac50025a010] [PMID: 27541843]
[5]
Patra, D. Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons. Appl. Spectrosc. Rev., 2003, 38(2), 155-185.
[http://dx.doi.org/10.1081/ASR-120021166]
[6]
Beltrán, J.L.; Ferrer, R.; Guiteras, J. Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation–emission fluorescence spectra. Anal. Chim. Acta, 1998, 373(2-3), 311-319.
[http://dx.doi.org/10.1016/S0003-2670(98)00420-6]
[7]
Kumke, M.U.; Löhmannsröben, H.G.; Roch, T. Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring. J. Fluoresc., 1995, 5(2), 139-152.
[http://dx.doi.org/10.1007/BF00727531] [PMID: 24226656]
[8]
Santana Rodríguez, J.J.; Padrón Sanz, C. Fluorescence techniques for the determination of polycyclic aromatic hydrocarbons in marine environment: An overview. Analusis, 2000, 28(8), 710-717.
[http://dx.doi.org/10.1051/analusis:2000280710]
[9]
Wentzell, P.D.; Nair, S.S.; Guy, R.D. Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. Anal. Chem., 2001, 73(7), 1408-1415.
[http://dx.doi.org/10.1021/ac000875w] [PMID: 11321288]
[10]
Wang, S.T.; Yuan, Y.Y.; Zhu, C.Y.; Kong, D.M.; Wang, Y.T. Discrimination of polycyclic aromatic hydrocarbons based on fluorescence spectrometry coupled with CS-SVM. Measurement, 2019, 139, 475-481.
[http://dx.doi.org/10.1016/j.measurement.2019.01.087]
[11]
Mirnaghi, F.S.; Pinchin, N.P.; Yang, Z.; Hollebone, B.P.; Lambert, P.; Brown, C.E. Monitoring of polycyclic aromatic hydrocarbon contamination at four oil spill sites using fluorescence spectroscopy coupled with parallel factor-principal component analysis. Environ. Sci. Process. Impacts, 2019, 21(3), 413-426.
[http://dx.doi.org/10.1039/C8EM00493E] [PMID: 30652177]
[12]
Driskill, A.K.; Alvey, J.; Dotson, A.D.; Tomco, P.L. Monitoring polycyclic aromatic hydrocarbon (PAH) attenuation in arctic waters using fluorescence spectroscopy. Cold Reg. Sci. Technol., 2018, 145, 76-85.
[http://dx.doi.org/10.1016/j.coldregions.2017.09.014]
[13]
Pena, E.A.; Ridley, L.M.; Murphy, W.R.; Sowa, J.R.; Bentivegna, C.S. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development. Environ. Toxicol. Chem., 2015, 34(9), 1946-1958.
[http://dx.doi.org/10.1002/etc.3015] [PMID: 25867932]
[14]
Bark, K.M.; Forcé, R.K. Analysis of polynuclear aromatic hydrocarbon mixtures in various environments by time-resolved fluorescence spectroscopy. Talanta, 1991, 38(2), 181-188.
[http://dx.doi.org/10.1016/0039-9140(91)80127-L] [PMID: 18965125]
[15]
Apicella, B.; Ciajolo, A.; Tregrossi, A. Fluorescence spectroscopy of complex aromatic mixtures. Anal. Chem., 2004, 76(7), 2138-2143.
[http://dx.doi.org/10.1021/ac034860k] [PMID: 15053681]
[16]
Selli, E.; Zaccaria, C.; Sena, F.; Tomasi, G.; Bidoglio, G. Application of multi-way models to the time-resolved fluorescence of polycyclic aromatic hydrocarbons mixtures in water. Water Res., 2004, 38(9), 2269-2276.
[http://dx.doi.org/10.1016/j.watres.2004.01.042] [PMID: 15142787]
[17]
Nakashima, K.; Yashuda, S.; Ozaki, Y.; Noda, I. Two-dimensional fluorescence correlation spectroscopy. I. Analysis of polynuclear aromatic hydrocarbons in cyclohexane solutions. J. Phys. Chem. A, 2000, 104(40), 9113-9120.
[http://dx.doi.org/10.1021/jp9939165]
[18]
Sinski, J.F.; Exner, J. Concentration dependence in the spectra of polycyclic aromatic hydrocarbon mixtures by front-surface fluorescence analysis. Appl. Spectrosc., 2007, 61(9), 970-977.
[http://dx.doi.org/10.1366/000370207781746026] [PMID: 17910794]
[19]
Bark, K.M.; Forcé, R.K. Analysis of polynuclear aromatic hydrocarbon mixtures desorbed from particulate matter in a low-temperature matrix by Shpol’skii time-resolved fluorescence spectroscopy. Appl. Spectrosc., 1990, 44(8), 1373-1376.
[http://dx.doi.org/10.1366/000370290789619612]
[20]
Faisal, T.; Solntsev, K.M.; Kahs, T.; Saleh, N.; Commins, P.; Whelan, J.; Mohamed, S.; Naumov, P. Formation of noncovalent complexes between complex mixtures of polycyclic aromatic hydrocarbons (Asphaltenes) and substituted aromatics studied by fluorescence spectroscopy. Energy Fuels, 2021, 35(10), 8742-8755.
[http://dx.doi.org/10.1021/acs.energyfuels.1c00555]
[21]
Bass, A.M.; Sponer, H. Fluorescence studies of some simple benzene derivatives in the near ultraviolet I fluorobenzene and chlorobenzene. J. Opt. Soc. Am., 1950, 40(6), 389-396.
[http://dx.doi.org/10.1364/JOSA.40.000389]
[22]
Bridgeman, J.; Bieroza, M.; Baker, A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment. Rev. Environ. Sci. Biotechnol., 2011, 10(3), 277-290.
[http://dx.doi.org/10.1007/s11157-011-9243-x]
[23]
Naresh, K. Applications of fluorescence spectroscopy. J. Chem. Pharm. Sci., 2014, 974, 2115.
[24]
Van Duuren, B.L. Effects of the environment on the fluorescence of aromatic compounds in solution. Chem. Rev., 1963, 63(4), 325-354.
[http://dx.doi.org/10.1021/cr60224a001]
[25]
Carstea, E.M. Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems. Water Pollution., 2012, 24, 1.
[http://dx.doi.org/10.5772/28979]
[26]
Patra, D.; Mishra, A.K. Investigation on simultaneous analysis of multicomponent polycyclic aromatic hydrocarbon mixtures in water samples: A simple synchronous fluorimetric method. Talanta, 2001, 55(1), 143-153.
[http://dx.doi.org/10.1016/S0039-9140(01)00404-0] [PMID: 18968356]
[27]
Hua, G.; Killham, K.; Singleton, I. Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts. Environ. Pollut., 2006, 139(2), 272-278.
[http://dx.doi.org/10.1016/j.envpol.2005.05.012] [PMID: 16040173]
[28]
Sharma, H.; Jain, V.K.; Khan, Z.H. Identification of polycyclic aromatic hydrocarbons (PAHs) in suspended particulate matter by synchronous fluorescence spectroscopic technique. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 68(1), 43-49.
[http://dx.doi.org/10.1016/j.saa.2006.10.054] [PMID: 17182272]
[29]
Ariese, F.; Kok, S.J.; Verkaik, M.; Gooijer, C.; Velthorst, N.H.; Hofstraat, J.W. Synchronous fluorescence spectrometry of fish bile: A rapid screening method for the biomonitoring of PAH exposure. Aquat. Toxicol., 1993, 26(3-4), 273-286.
[http://dx.doi.org/10.1016/0166-445X(93)90034-X]
[30]
Reynolds, D.M. Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy. Water Res., 2003, 37(13), 3055-3060.
[http://dx.doi.org/10.1016/S0043-1354(03)00153-2] [PMID: 14509692]
[31]
Li, R.; Dhankhar, D.; Chen, J.; Cesario, T.C.; Rentzepis, P.M. A tryptophan synchronous and normal fluorescence study on bacteria inactivation mechanism. Proc. Natl. Acad. Sci. USA, 2019, 116(38), 18822-18826.
[http://dx.doi.org/10.1073/pnas.1909722116] [PMID: 31481620]
[32]
Borisova, E.; Semyachkina-Glushkovskaya, O.; Genova, T.; Penkov, N.; Terziev, I.; Vladimirov, B.; Avramov, L. Synchronous fluorescence spectroscopy of colon neoplasia. Proc. SPIE, 2017, 1033602, 1-6.
[http://dx.doi.org/10.1117/12.2269382]
[33]
Dujmov, J. Sučcevlča, P. Application of synchronous fluorescence spectroscopy for characterization of the aromatic hydrocarbons in sediments of the middle adriatic. Chem. Ecol., 1990, 4(4), 189-195.
[http://dx.doi.org/10.1080/02757549008035233]
[34]
Belzile, C.; Vincent, W.F.; Gibson, J.A.E.; Hove, P.V. Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the high arctic. Can. J. Fish. Aquat. Sci., 2001, 58(12), 2405-2418.
[http://dx.doi.org/10.1139/f01-187]
[35]
Ahmad, S.R.; Reynolds, D.M. Synchronous fluorescence spectroscopy of wastewater and some potential constituents. Water Res., 1995, 29(6), 1599-1602.
[http://dx.doi.org/10.1016/0043-1354(94)00266-A]
[36]
Samokhvalov, A. Analysis of various solid samples by synchronous fluorescence spectroscopy and related methods: A review. Talanta, 2020, 216, 120944.
[http://dx.doi.org/10.1016/j.talanta.2020.120944] [PMID: 32456909]
[37]
Li, Y.Q.; Li, X.Y.; Shindi, A.A.; Zou, Z.X.; Liu, Q.; Lin, L.R.; Li, N. Synchronous fluorescence spectroscopy and its applications in clinical analysis and food safety evaluation. In: Reviews in fluorescence; , 2012; p. 95-117.
[http://dx.doi.org/10.1007/978-1-4419-9828-6_5]
[38]
Sahar, A.; Rahman, U.; Kondjoyan, A.; Portanguen, S.; Dufour, E. Monitoring of thermal changes in meat by synchronous fluorescence spectroscopy. J. Food Eng., 2016, 168, 160-165.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.07.038]
[39]
Poulli, K.I.; Chantzos, N.V.; Mousdis, G.A.; Georgiou, C.A. Synchronous fluorescence spectroscopy: Tool for monitoring thermally stressed edible oils. J. Agric. Food Chem., 2009, 57(18), 8194-8201.
[http://dx.doi.org/10.1021/jf902758d] [PMID: 19722493]
[40]
Sunuwar, S.; Manzanares, C.E. Excitation, emission, and synchronous fluorescence for astrochemical applications: Experiments and computer simulations of synchronous spectra of polycyclic aromatic hydrocarbons and their mixtures. Icarus, 2021, 370, 114689.
[http://dx.doi.org/10.1016/j.icarus.2021.114689]
[41]
Crovisier, J. Recent results and future prospects for the spectroscopy of comets. Mol. Phys., 2006, 104(16-17), 2737-2751.
[http://dx.doi.org/10.1080/00268970600836127]
[42]
Hoover, R.B. Microfossils and biomolecules in carbonaceous meteorites: Implications to the possibility of life in water-bearing asteroids and comets. In: Nanophotonics and Macrophotonics for Space Environments VIII; SPIE, 2014; Vol. 9226, p. 922602.
[http://dx.doi.org/10.1117/12.2065571]
[43]
Despois, D.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J. Observations of molecules in comets. Proc. Int. Astron. Union, 2005, 1(S231), 469-478.
[http://dx.doi.org/10.1017/S1743921306007484]
[44]
Crovisier, J. The molecular composition of comets and its interrelation with other small bodies of the solar system. Proc. Int. Astron. Union, 2005, 1(S229), 133-152.
[http://dx.doi.org/10.1017/S174392130500671X]
[45]
Villanueva, G.L.; Mumma, M.J.; Bonev, B.P.; Novak, R.E.; Barber, R.J.; DiSanti, M.A. Water in planetary and cometary atmospheres: H2O/HDO transmittance and fluorescence models. J. Quant. Spectrosc. Radiat. Transf., 2012, 113(3), 202-220.
[http://dx.doi.org/10.1016/j.jqsrt.2011.11.001]
[46]
Clairemidi, J; Moreels, G; Mousis, O; Bréchignac, P Identification of anthracene in comet 1P/halley. 2008.
[http://dx.doi.org/10.1051/0004-6361:200809497]
[47]
Clairemidi, J.; Bréchignac, P.; Moreels, G.; Pautet, D. Tentative identification of pyrene as a polycyclic aromatic molecule in UV spectra of comet P/Halley: An emission from 368 to. Planet. Space Sci., 2004, 52(8), 761-772.
[http://dx.doi.org/10.1016/j.pss.2003.08.029]
[48]
Moreels, G.; Clairemidi, J.; Hermine, P.; Brechignac, P.; Rousselot, P. Detection of a polycyclic aromatic molecule in comet P/Halley. Astron. Astrophys., 1994, 282, 643-656.
[http://dx.doi.org/10.1051/0004-6361:200809497]
[49]
Sandford, S.A.; Nuevo, M.; Bera, P.P.; Lee, T.J. Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chem. Rev., 2020, 120(11), 4616-4659.
[http://dx.doi.org/10.1021/acs.chemrev.9b00560] [PMID: 32227889]
[50]
Kwok, S. Complex organics in space from Solar System to distant galaxies. Astron. Astrophys. Rev., 2016, 24(1), 8.
[http://dx.doi.org/10.1007/s00159-016-0093-y]
[51]
Cruikshank, D.P.; Dalle Ore, C.M.; Clark, R.N.; Pendleton, Y.J. Aromatic and aliphatic organic materials on Iapetus: Analysis of cassini VIMS data. Icarus, 2014, 233, 306-315.
[http://dx.doi.org/10.1016/j.icarus.2014.02.011]
[52]
Cruikshank, D.P.; Wegryn, E.; Dalle Ore, C.M.; Brown, R.H.; Bibring, J-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, C.; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V. Hydrocarbons on saturn’s satellites iapetus and phoebe. Icarus, 2008, 193(2), 334-343.
[http://dx.doi.org/10.1016/j.icarus.2007.04.036]
[53]
Dartnell, L.R.; Patel, M.R.; Storrie-Lombardi, M.C.; Ward, J.M.; Muller, J.P. Experimental determination of photostability and fluorescence‐based detection of PAHs on the martian surface. Meteorit. Planet. Sci., 2012, 47(5), 806-819.
[http://dx.doi.org/10.1111/j.1945-5100.2012.01351.x]
[54]
Sharma, S.; Roppel, R.D.; Murphy, A.E.; Beegle, L.W.; Bhartia, R.; Steele, A.; Hollis, J.R.; Siljeström, S.; McCubbin, F.M.; Asher, S.A.; Abbey, W.J.; Allwood, A.C.; Berger, E.L.; Bleefeld, B.L.; Burton, A.S.; Bykov, S.V.; Cardarelli, E.L.; Conrad, P.G.; Corpolongo, A.; Czaja, A.D.; DeFlores, L.P.; Edgett, K.; Farley, K.A.; Fornaro, T.; Fox, A.C.; Fries, M.D.; Harker, D.; Hickman-Lewis, K.; Huggett, J.; Imbeah, S.; Jakubek, R.S.; Kah, L.C.; Lee, C.; Liu, Y.; Magee, A.; Minitti, M.; Moore, K.R.; Pascuzzo, A.; Rodriguez Sanchez-Vahamonde, C.; Scheller, E.L.; Shkolyar, S.; Stack, K.M.; Steadman, K.; Tuite, M.; Uckert, K.; Werynski, A.; Wiens, R.C.; Williams, A.J.; Winchell, K.; Kennedy, M.R.; Yanchilina, A. Diverse organic-mineral associations in Jezero crater, Mars. Nature, 2023, 619(7971), 724-732.
[http://dx.doi.org/10.1038/s41586-023-06143-z] [PMID: 37438522]
[55]
Levin, G.V. Detection of metabolically produced labeled gas: The viking mars lander. Icarus, 1972, 16(1), 153-166.
[http://dx.doi.org/10.1016/0019-1035(72)90143-1]
[56]
Levin, G.V.; Ann Straat, P. Labeled release? An experiment in radiorespirometry. Orig. Life, 1976, 7(3), 293-311.
[http://dx.doi.org/10.1007/BF00926948] [PMID: 1012719]
[57]
Levin, G.V.; Straat, P.A. Recent results from the viking labeled release experiment on Mars. J. Geophys. Res., 1977, 82(28), 4663-4667.
[http://dx.doi.org/10.1029/JS082i028p04663]
[58]
Levin, G.V.; Straat, P.A. Completion of the viking labeled release experiment on mars. J. Mol. Evol., 1979, 14(1-3), 167-183.
[http://dx.doi.org/10.1007/BF01732376] [PMID: 522152]
[59]
Horowitz, N.H.; Hubbard, J.S.; Hobby, G.L. The carbon-assimilation experiment: The viking mars lander. Icarus, 1972, 16(1), 147-152.
[http://dx.doi.org/10.1016/0019-1035(72)90142-X]
[60]
Klein, H.P.; Horowitz, N.H.; Levin, G.V.; Oyama, V.I.; Lederberg, J.; Rich, A.; Hubbard, J.S.; Hobby, G.L.; Straat, P.A.; Berdahl, B.J.; Carle, G.C.; Brown, F.S.; Johnson, R.D. The viking biological investigation: Preliminary results. Science, 1976, 194(4260), 99-105.
[http://dx.doi.org/10.1126/science.194.4260.99] [PMID: 17793090]
[61]
Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L.E.; Nier, A.O.; Anderson, D.M.; Simmonds, P.G.; Flory, D.; Diaz, A.V.; Rushneck, D.R.; Biller, J.E.; Lafleur, A.L. The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res., 1977, 82(28), 4641-4658.
[http://dx.doi.org/10.1029/JS082i028p04641]
[62]
Zent, A.P.; McKay, C.P. The chemical reactivity of the martian soil and implications for future missions. Icarus, 1994, 108(1), 146-157.
[http://dx.doi.org/10.1006/icar.1994.1047]
[63]
Guzman, M.; McKay, C.P.; Quinn, R.C.; Szopa, C.; Davila, A.F.; Navarro-González, R.; Freissinet, C. Identification of chlorobenzene in the viking gas chromatograph-mass spectrometer data sets: Reanalysis of viking mission data consistent with aromatic organic compounds on mars. J. Geophys. Res. Planets, 2018, 123(7), 1674-1683.
[http://dx.doi.org/10.1029/2018JE005544]
[64]
Hecht, M.H.; Kounaves, S.P.; Quinn, R.C.; West, S.J.; Young, S.M.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; DeFlores, L.P.; Gospodinova, K.; Kapit, J.; Smith, P.H. Detection of perchlorate and the soluble chemistry of martian soil at the phoenix lander site. Science, 2009, 325(5936), 64-67.
[http://dx.doi.org/10.1126/science.1172466] [PMID: 19574385]
[65]
Glavin, D.P.; Freissinet, C.; Miller, K.E.; Eigenbrode, J.L.; Brunner, A.E.; Buch, A.; Sutter, B.; Archer, P.D., Jr; Atreya, S.K.; Brinckerhoff, W.B.; Cabane, M.; Coll, P.; Conrad, P.G.; Coscia, D.; Dworkin, J.P.; Franz, H.B.; Grotzinger, J.P.; Leshin, L.A.; Martin, M.G.; McKay, C.; Ming, D.W.; Navarro-González, R.; Pavlov, A.; Steele, A.; Summons, R.E.; Szopa, C.; Teinturier, S.; Mahaffy, P.R. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the rocknest aeolian deposit in gale crater. J. Geophys. Res. Planets, 2013, 118(10), 1955-1973.
[http://dx.doi.org/10.1002/jgre.20144]
[66]
Martín-Torres, F.J.; Zorzano, M.P.; Valentín-Serrano, P.; Harri, A.M.; Genzer, M.; Kemppinen, O.; Rivera-Valentin, E.G.; Jun, I.; Wray, J.; Bo Madsen, M.; Goetz, W. Transient liquid water and water activity at gale crater on Mars. Nat. Geosci., 2015, 8(5), 357-361.
[http://dx.doi.org/10.1038/ngeo2412]
[67]
Rennó, N.O.; Bos, B.J.; Catling, D.; Clark, B.C.; Drube, L.; Fisher, D.; Goetz, W.; Hviid, S.F.; Keller, H.U.; Kok, J.F.; Kounaves, S.P.; Leer, K.; Lemmon, M.; Madsen, M.B.; Markiewicz, W.J.; Marshall, J.; McKay, C.; Mehta, M.; Smith, M.; Zorzano, M.P.; Smith, P.H.; Stoker, C.; Young, S.M.M. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res., 2009, 114(E1), 2009JE003362.
[http://dx.doi.org/10.1029/2009JE003362]
[68]
Ojha, L.; Wilhelm, M.B.; Murchie, S.L.; McEwen, A.S.; Wray, J.J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci., 2015, 8(11), 829-832.
[http://dx.doi.org/10.1038/ngeo2546]
[69]
Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong release of methane on Mars in northern summer 2003. Science, 2009, 323(5917), 1041-1045.
[http://dx.doi.org/10.1126/science.1165243] [PMID: 19150811]
[70]
Ming, D.W.; Archer, P.D., Jr; Glavin, D.P.; Eigenbrode, J.L.; Franz, H.B.; Sutter, B.; Brunner, A.E.; Stern, J.C.; Freissinet, C.; McAdam, A.C.; Mahaffy, P.R. Volatile and organic compositions of sedimentary rocks in yellowknife bay, gale crater, Mars. Science, 2014, 343(6169), 1245267.
[http://dx.doi.org/10.1126/science.1245267]
[71]
Campbell, J.D.; Sidiropoulos, P.; Muller, J-P. A search for polycyclic aromatic hydrocarbons over the martian south polar residual cap. Icarus, 2018, 308, 61-70.
[http://dx.doi.org/10.1016/j.icarus.2018.03.008]
[72]
Freissinet, C.; Glavin, D.P.; Mahaffy, P.R.; Miller, K.E.; Eigenbrode, J.L.; Summons, R.E.; Brunner, A.E.; Buch, A.; Szopa, C.; Archer, P.D., Jr; Franz, H.B.; Atreya, S.K.; Brinckerhoff, W.B.; Cabane, M.; Coll, P.; Conrad, P.G.; Des Marais, D.J.; Dworkin, J.P.; Fairén, A.G.; François, P.; Grotzinger, J.P.; Kashyap, S.; ten Kate, I.L.; Leshin, L.A.; Malespin, C.A.; Martin, M.G.; Martin-Torres, F.J.; McAdam, A.C.; Ming, D.W.; Navarro-González, R.; Pavlov, A.A.; Prats, B.D.; Squyres, S.W.; Steele, A.; Stern, J.C.; Sumner, D.Y.; Sutter, B.; Zorzano, M.P. Organic molecules in the sheepbed mudstone, gale crater. Mars. J. Geophys. Res. Planets, 2015, 120(3), 495-514.
[http://dx.doi.org/10.1002/2014JE004737] [PMID: 26690960]
[73]
Miller, K.E.; Eigenbrode, J.L.; Freissinet, C.; Glavin, D.P.; Kotrc, B.; Francois, P.; Summons, R.E. Potential precursor compounds for chlorohydrocarbons detected in gale crater, mars, by the SAM instrument suite on the curiosity rover. J. Geophys. Res. Planets, 2016, 121(3), 296-308.
[http://dx.doi.org/10.1002/2015JE004939]
[74]
Koskinen, T.T.; Moses, J.I.; West, R.A.; Guerlet, S.; Jouchoux, A. The detection of benzene in Saturn’s upper atmosphere. Geophys. Res. Lett., 2016, 43(15), 7895-7901.
[http://dx.doi.org/10.1002/2016GL070000]
[75]
Guerlet, S.; Fouchet, T.; Vinatier, S.; Simon, A.A.; Dartois, E.; Spiga, A. Stratospheric benzene and hydrocarbon aerosols detected in saturn’s auroral regions. Astron. Astrophys., 2015, 580, A89.
[http://dx.doi.org/10.1051/0004-6361/201424745]
[76]
Bézard, B.; Drossart, P.; Encrenaz, T.; Feuchtgruber, H. Benzene on the giant planets. Icarus, 2001, 154(2), 492-500.
[http://dx.doi.org/10.1006/icar.2001.6719]
[77]
Cernicharo, J.; Heras, A.M.; Tielens, A.G.G.M.; Pardo, J.R.; Herpin, F.; Guélin, G.; Waters, L.B.F.M. Infrared space observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J., 2001, 546, L123-L126.
[http://dx.doi.org/10.1086/318871]
[78]
Freissinet, C.; Knudson, C.A.; Graham, H.V. Benzoic acid as the preferred precursor for the chlorobenzene detected on mars: Insights from the unique cumberland analog investigation. Planet. Sci. J., 2020, 41, 11.
[http://dx.doi.org/10.3847/PSJ/aba690]
[79]
Aydin, D.C.; Zamudio Pineres, J.; Al-Manji, F.; Rijnaarts, H.; Grotenhuis, T. Direct analysis of aromatic pollutants using a HPLC-FLD/DAD method for monitoring biodegradation processes. Anal. Methods, 2021, 13(13), 1635-1642.
[http://dx.doi.org/10.1039/D1AY00083G] [PMID: 33861254]
[80]
Schwarz, F.P.; Wasik, S.P. Fluorescence measurements of benzene, naphthalene, anthracene, pyrene, fluoranthene, and benzo[e]pyrene in water. Anal. Chem., 1976, 48(3), 524-528.
[http://dx.doi.org/10.1021/ac60367a046] [PMID: 1252005]
[81]
Richardson, J.H.; Ando, M.E. Sub-part-per-trillion detection of polycyclic aromatic hydrocarbons by laser induced molecular fluorescence. Anal. Chem., 1977, 49(7), 955-959.
[http://dx.doi.org/10.1021/ac50015a021] [PMID: 860839]
[82]
Wise, S.A.; Hilpert, L.R.; Byrd, G.D.; May, W.E. Comparison of liquid chromatography with fluorescence detection and gas chromatography/mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental samples. Polycycl. Aromat. Compd., 1990, 1(1-2), 81-98.
[http://dx.doi.org/10.1080/10406639008034751]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy