Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Phytochemical Studies of Alstonia scholaris, Chemical Transformation and Biological Evaluation against a Breast Cancer Cell Line

Author(s): Salome Ghansenyuy, Eyong Kenneth Oben*, Pierre Yemback, Nziko Vincent de Paul Nzuwah, Ali Muhammad Shaiq, Folefoc Gabriel Ngosong., Davis Samantha, Tobin Jenna, Haleigh Parker and Taube Joseph

Volume 14, Issue 4, 2024

Published on: 05 January, 2024

Article ID: e050124225279 Pages: 7

DOI: 10.2174/0122103155260546231113052349

Price: $65

Abstract

Background: Some Alstonia species are used in traditional medicine to treat diseases such as cancer, dysentery, diarrhea, jaundice, malaria, gastrointestinal troubles, and snake-bites.

Objective: In this study, we aim to evaluate the ethanol leaf extract of Alstonia scholaris for anticancer constituents and structural modification to introduce a privilege medicinal α,β-unsaturated scaffold.

Methods: The relative viability of the MDA-MB-231 breast cancer cell line exposed to isolated compounds at different concentrations was assayed. Chemical analysis was carried out by high resolution mass spectrometry and one and two-dimensional NMR techniques.

Results: Structures of purified compounds were determined as betulin 1, α-amyrin acetate 2, mixture of β-sitosterol 3 and stigmasterol 4, tetratriacontyl-trans-p-coumarate 5, ursolic acid 6, β-sitosterol glucoside 7, picralstonine 8 and scholaricine 9. To introduce privilege medicinal scaffold, compounds 1 and 2 under SeO2 oxidation condition afford new acrylaldehye derivatines. Compound 1 afforded Betulin acrylaldehyde 10 while compound 2 afforded lupeolacetate acryl aldehyde 11 in an intriguing mechanism with the conversion of ursane to lupane scafford. Compound 11 equally showed interesting activity against MDA MB 231 breast cancer cell line with an IC50 of 4.63 ± 0.09 μg/ml.

Conclusion: From these findings, the medicinal α,β-unsaturated scaffold could have pharmacological effects in treating MDA-MB-231 breast cancer.

Graphical Abstract

[1]
Khyade, M.S.; Kasote, D.M.; Vaikos, N.P. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2014, 153(1), 1-18.
[http://dx.doi.org/10.1016/j.jep.2014.01.025] [PMID: 24486598]
[2]
Tan, S.J.; Low, Y.Y.; Choo, Y.M.; Abdullah, Z.; Etoh, T.; Hayashi, M.; Komiyama, K.; Kam, T.S. Strychnan and secoangustilobine A type alkaloids from Alstonia spatulata. Revision of the C-20 configuration of scholaricine. J. Nat. Prod., 2010, 73(11), 1891-1897.
[http://dx.doi.org/10.1021/np100552b] [PMID: 21043460]
[3]
Atta-Ur-Rahman, A.; Asif, M.; Ghazala, M.; Fatima, J.; Alvi, K.A. 1H and 13C NMR studies on picralstonine. J. Chem. Soc., 1986, 8, 421-423.
[4]
Toh-Seok, K.; Kok-Tih, N.; Kooi-Mow, S.; Yoganathan, K. Alkaloids from alstonia scholaris. Phytochemistry, 1997, 45(6), 1303-1305.
[http://dx.doi.org/10.1016/S0031-9422(97)00106-4]
[5]
Surya, S.P.; Jayanthi, G.; Smitha, K.R. In Vitro evaluation of the anticancer effect of methanolic extract of alstonia scholaris leaves on mammary carcinoma. J. Appl. Pharm. Sci., 2012, 2, 142-149.
[http://dx.doi.org/10.7324/JAPS.2012.2526]
[6]
Wiart, C. Antiparasitic asian medicinal plants in the clade lamiids. In: Med. Plants Asia and Pacific Paras. Infec; Academic press, 2021; pp. 363-463.
[http://dx.doi.org/10.1016/B978-0-12-816811-0.00010-X]
[7]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[8]
Mitra, S.; Prova, S.R.; Sultana, S.A.; Das, R.; Nainu, F.; Emran, T.B.; Tareq, A.M.; Uddin, M.S.; Alqahtani, A.M.; Dhama, K.; Simal-Gandara, J. Therapeutic potential of indole alkaloids in respiratory diseases: A comprehensive review. Phytomedicine, 2021, 90, 153649.
[http://dx.doi.org/10.1016/j.phymed.2021.153649] [PMID: 34325978]
[9]
Mason, J.D.; Weinreb, S.M. The alstoscholarisine alkaloids: Isolation, structure determination, biogenesis, biological evaluation, and synthesis. Alkaloids Chem. Biol., 2019, 81, 115-150.
[http://dx.doi.org/10.1016/bs.alkal.2018.09.001] [PMID: 30685049]
[10]
Singh, H.; Bhushan, S.; Arora, R.; Singh Buttar, H.; Arora, S.; Singh, B. Alternative treatment strategies for neuropathic pain: Role of Indian medicinal plants and compounds of plant origin-A review. Biomed. Pharmacother., 2017, 92, 634-650.
[http://dx.doi.org/10.1016/j.biopha.2017.05.079] [PMID: 28578258]
[11]
Lee, S.; Sperry, J. Isolation and biological activity of azocine and azocane alkaloids. Bioorg. Med. Chem., 2022, 54, 116560.
[http://dx.doi.org/10.1016/j.bmc.2021.116560] [PMID: 34923389]
[12]
Anand, U.; Nandy, S.; Mundhra, A.; Das, N.; Pandey, D.K.; Dey, A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic micro-organisms. Drug Resist. Updat., 2020, 51, 100695.
[http://dx.doi.org/10.1016/j.drup.2020.100695] [PMID: 32442892]
[13]
Sultana, N.; Saify, Z.S.; Saleem, M.; Kamal, M. Two new triterpenes from Alstonia scholaris flowers. Nat. Prod. Res., 2013, 27(14), 1277-1286.
[http://dx.doi.org/10.1080/14786419.2012.730046] [PMID: 23075080]
[14]
Anupam, M.; Subash, C.V.; Rampratap, M.; Jayanthy, A.; Anupam, S.; Madhira, B.S.; Rajeev, K.S. Phytochemistry and chromatographic analysis of Alstonia scholaris (L.) R.Br. used as a traditional medicine: a review. World J. Pharm. Res., 2015, 5(1), 1503-1519.
[15]
Wang, C.M.; Tsai, S-J.; Jhan, Y-L.; Yeh, K-L.; Chou, C.H. Anti-proliferative activity of triterpenoids and sterols isolated from alstonia scholaris against non-small-cell lung carcinoma cells. Molecules, 2017, 22(12), 2119.
[http://dx.doi.org/10.3390/molecules22122119] [PMID: 29194373]
[16]
Pandey, K.; Shevkar, C.; Bairwa, K.; Kate, A.S. Pharmaceutical perspective on bioactives from Alstonia scholaris: Ethnomedicinal knowledge, phytochemistry, clinical status, patent space, and future directions. Phytochem. Rev., 2020, 19(1), 191-233.
[http://dx.doi.org/10.1007/s11101-020-09662-z]
[17]
Gurupriya, S.; Cathrine, L. molecular docking studies of isolated compounds andrographolide and betulin from methanolic leaves extract of Andrographis echioides as alphaamylase and alpha-glucosidase activators. Int. J. Appl.Pharmac., 2021, 13(3), 121-129.
[http://dx.doi.org/10.22159/ijap.2021v13i3.39641]
[18]
Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B.C. beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol., 2014, 52(11), 1478-1486.
[http://dx.doi.org/10.3109/13880209.2014.898078] [PMID: 25026352]
[19]
Luhata, L.P.; Munkombwe, N.M. Isolation and characterisation of stigmasterol and β-sitosterol from odontonema strictum (acanthaceae). J. Innov. Pharm. Biol. Sci., 2015, 2(1), 88-96.
[20]
Mahmood, U.; Kaul, V.K.; Acharya, R.; Jirovetz, L. p -Coumaric acid esters from Tanacetum longifolium. Phytochemistry, 2003, 64(4), 851-853.
[http://dx.doi.org/10.1016/j.phytochem.2003.08.023] [PMID: 14559280]
[21]
Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Spectral assignments and reference data. complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18a-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem., 2003, 41, 636-638.
[http://dx.doi.org/10.1002/mrc.1214]
[22]
Faizi, S.; Ali, M.; Saleem, R.; Irfanullah Bibi, S. Spectral assignments and reference data. complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn. Reson. Chem., 2001, 39, 399-405.
[http://dx.doi.org/10.1002/mrc.855]
[23]
Atta-Ur-Rahman, A.; Asif, M.; Ghazala, M.; Fatima, J.; Alvi, K.A. Scholaricine, an alkaloid from alstonia scholaris. Phytochemistry, 1985, 24(11), 2771-2773.
[http://dx.doi.org/10.1016/S0031-9422(00)80725-6]
[24]
Eyong, K.O.; Chinthapally, K.; Senthilkumar, S.; Lamshöft, M.; Folefoc, G.N.; Baskaran, S. Conversion of lapachol to lomatiol: Synthesis of novel naphthoquinone derivatives. New J. Chem., 2015, 39(12), 9611-9616.
[http://dx.doi.org/10.1039/C5NJ01484K]
[25]
Machado, V.R.; Sandjo, L.P.; Pinheiro, G.L.; Moraes, M.H.; Steindel, M.; Pizzolatti, M.G.; Biavatti, M.W. Synthesis of lupeol derivatives and their antileishmanial and antitrypanosomal activities. Nat. Prod. Res., 2018, 32(3), 275-281.
[http://dx.doi.org/10.1080/14786419.2017.1353982] [PMID: 28715940]
[26]
Castro, M.J.; Richmond, V.; Faraoni, M.B.; Murray, A.P. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids. Bioorg. Chem., 2018, 79, 301-309.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.012] [PMID: 29793143]
[27]
Dasari, S.; Wudayagiri, R.; Valluru, L. Cervical cancer: Biomarkers for diagnosis and treatment. Clin. Chim. Acta, 2015, 445, 7-11.
[http://dx.doi.org/10.1016/j.cca.2015.03.005] [PMID: 25773118]
[28]
Lacroix, M.; Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat., 2004, 83(3), 249-289.
[http://dx.doi.org/10.1023/B:BREA.0000014042.54925.cc] [PMID: 14758095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy