Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Quercetin Promotes the Repair of Mitochondrial Function in H9c2 Cells Through the miR-92a-3p/Mfn1 Axis

Author(s): Fen Li, Dongsheng Li, Xisheng Yan*, Fen Zhu, Shifan Tang, Jianguang Liu, Jie Yan and Haifeng Chen

Volume 25, Issue 14, 2024

Published on: 03 January, 2024

Page: [1858 - 1866] Pages: 9

DOI: 10.2174/0113892010266863231030052150

Price: $65

Abstract

Objective: Cardiocerebrovascular disease is a severe threat to human health. Quercetin has a wide range of pharmacological effects such as antitumor and antioxidant. In this study, we aimed to determine how quercetin regulates mitochondrial function in H9c2 cells.

Methods: An H9c2 cell oxygen glucose deprivation/reoxygenation (OGD/R) model was constructed. The expression of miR-92a-3p and mitofusin 1 (Mfn1) mRNA in the cells was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the mitochondrial membrane potential of cells were examined by JC-1 staining. ATP production in the cells was detected using a biochemical assay. Mitochondrial morphological changes were observed using transmission electron microscopy. Detection of miR-92a-3p binding to Mfn1 was done using dual luciferase. Western blotting was used to detect the protein expression of Mfn1 in the cells.

Results: miR-92a-3p is essential in regulating cell viability, apoptosis, and tumor cell metastasis. OGD/R induced miR-92a-3p expression, decreased mitochondrial membrane potential and mitochondrial ATP production, and increased mitochondrial damage. Mitochondria are the most critical site for ATP production. Continued opening of the mitochondrial permeability transition pore results in an abnormal mitochondrial transmembrane potential. Both quercetin and inhibition of miR-29a-3p were able to downregulate miR-29a-3p levels, increase cell viability, mitochondrial membrane potential, and ATP levels, and improve mitochondrial damage morphology. Furthermore, we found that downregulation of miR-29a-3p upregulated the protein expression of Mfn1 in cells. Additionally, miR-92a-3p was found to bind to Mfn1 in a luciferase assay. miR- 29a-3p overexpression significantly inhibited the protein expression level of Mfn1. Quercetin treatment partially reversed the effects of miR-29a-3p overexpression in H9c2 cells.

Conclusion: Quercetin promoted the recovery of mitochondrial damage in H9c2 cells through the miR-92a-3p/Mfn1 axis.

Graphical Abstract

[1]
Nitsa, A.; Toutouza, M.; MacHairas, N.; Mariolis, A.; Philippou, A.; Koutsilieris, M. Vitamin D in cardiovascular disease. In Vivo, 2018, 32(5), 977-981.
[http://dx.doi.org/10.21873/invivo.11338] [PMID: 30150419]
[2]
Sunkara, A.; Raizner, A. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. Methodist DeBakey Cardiovasc. J., 2019, 15(3), 179-184.
[http://dx.doi.org/10.14797/mdcj-15-3-179] [PMID: 31687096]
[3]
Wu, X.; Li, Y.; Zhang, S.; Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 2021, 11(7), 3052-3059.
[http://dx.doi.org/10.7150/thno.54113] [PMID: 33537073]
[4]
Qiu, Z.; He, Y.; Ming, H.; Lei, S.; Leng, Y.; Xia, Z. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ros-dependent nlrp3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J. Diabetes Res., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/8151836] [PMID: 30911553]
[5]
Gumpper-Fedus, K.; Park, K.H.; Ma, H.; Zhou, X.; Bian, Z.; Krishnamurthy, K.; Sermersheim, M.; Zhou, J.; Tan, T.; Li, L.; Liu, J.; Lin, P.H.; Zhu, H.; Ma, J. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biol., 2022, 54, 102357.
[http://dx.doi.org/10.1016/j.redox.2022.102357] [PMID: 35679798]
[6]
Gao, J.; Zhao, L.; Wang, J.; Zhang, L.; Zhou, D.; Qu, J.; Wang, H.; Yin, M.; Hong, J.; Zhao, W. C-Phycocyanin ameliorates mitochondrial fission and fusion dynamics in ischemic cardiomyocyte damage. Front. Pharmacol., 2019, 10, 733.
[http://dx.doi.org/10.3389/fphar.2019.00733] [PMID: 31316386]
[7]
Cai, Z.L.; Shen, B.; Yuan, Y.; Liu, C.; Xie, Q.W.; Hu, T.T.; Yao, Q.; Wu, Q.Q.; Tang, Q.Z. The effect of HMGA1 in LPS-induced Myocardial Inflammation. Int. J. Biol. Sci., 2020, 16(11), 1798-1810.
[http://dx.doi.org/10.7150/ijbs.39947] [PMID: 32398950]
[8]
Zeng, M.; Zhang, B.; Li, B.; Kan, Y.; Wang, S.; Feng, W.; Zheng, X. Adenosine attenuates lps-induced cardiac dysfunction by inhibition of mitochondrial function via the ER pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/1832025] [PMID: 30733807]
[9]
Tian, L.; Cao, W.; Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J. Pharmacol. Sci., 2019, 139(4), 352-360.
[http://dx.doi.org/10.1016/j.jphs.2019.02.008] [PMID: 30910451]
[10]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[11]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[12]
Cao, H.; Jia, Q.; Yan, L.; Chen, C.; Xing, S.; Shen, D. Quercetin suppresses the progression of atherosclerosis by regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 macrophage foam cells. Int. J. Mol. Sci., 2019, 20(23), 6093.
[http://dx.doi.org/10.3390/ijms20236093] [PMID: 31816893]
[13]
Chen, Y.; Zhao, Y.; Miao, C.; Yang, L.; Wang, R.; Chen, B.; Zhang, Q. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells. J. Ovarian Res., 2022, 15(1), 138.
[http://dx.doi.org/10.1186/s13048-022-01080-3] [PMID: 36572950]
[14]
Qiu, L.; Luo, Y.; Chen, X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomed. Pharmacother., 2018, 103, 1585-1591.
[http://dx.doi.org/10.1016/j.biopha.2018.05.003] [PMID: 29864946]
[15]
Li, F.; Li, D.; Tang, S.; Liu, J.; Yan, J.; Chen, H.; Yan, X. Quercetin protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced oxidative stress and mitochondrial apoptosis by regulating the ERK1/2/DRP1 signaling pathway. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/7522175] [PMID: 34457029]
[16]
Fridrichova, I.; Zmetakova, I. MicroRNAs contribute to breast cancer invasiveness. Cells, 2019, 8(11), 1361.
[http://dx.doi.org/10.3390/cells8111361] [PMID: 31683635]
[17]
Zhang, J.; Xu, Y.; Liu, H.; Pan, Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod. Biol. Endocrinol., 2019, 17(1), 9.
[http://dx.doi.org/10.1186/s12958-018-0450-y] [PMID: 30630485]
[18]
Zhu, X.; Lu, X. MiR‐423‐5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β‐catenin signaling pathway via targeting MYBL2. J. Cell. Physiol., 2019, 234(12), 22034-22043.
[http://dx.doi.org/10.1002/jcp.28766] [PMID: 31074036]
[19]
Du, J.K.; Cong, B.H.; Yu, Q.; Wang, H.; Wang, L.; Wang, C.N.; Tang, X.L.; Lu, J.Q.; Zhu, X.Y.; Ni, X. Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radic. Biol. Med., 2016, 96, 406-417.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.006] [PMID: 27174562]
[20]
Xia, W.; Chen, H.; Xie, C.; Hou, M. Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging, 2020, 12(9), 8241-8260.
[http://dx.doi.org/10.18632/aging.103136] [PMID: 32384281]
[21]
Yang, B.; Zheng, C.; Yu, H.; Zhang, R.; Zhao, C.; Cai, S. Cardio-protective effects of salvianolic acid B on oxygen and glucose deprivation (OGD)-treated H9c2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2274-2281.
[http://dx.doi.org/10.1080/21691401.2019.1621885] [PMID: 31184214]
[22]
Chen, X.; Peng, X.; Luo, Y.; You, J.; Yin, D.; Xu, Q.; He, H.; He, M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol. Mech. Methods, 2019, 29(5), 344-354.
[http://dx.doi.org/10.1080/15376516.2018.1564948] [PMID: 30636491]
[23]
Rahul, V.P.; Bhupendra, M.M.; Surendra, K.S.; Riyaz, S.; Vijay, S. Shin H-S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 15(5)
[24]
Houghton, M.J.; Kerimi, A.; Tumova, S.; Boyle, J.P.; Williamson, G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic. Biol. Med., 2018, 129, 296-309.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.037] [PMID: 30266680]
[25]
Vanani, A.R.; Mahdavinia, M.; Shirani, M.; Alizadeh, S.; Dehghani, M.A. Protective effects of quercetin against oxidative stress induced by bisphenol-A in rat cardiac mitochondria. Environ. Sci. Pollut. Res. Int., 2020, 27(13), 15093-15102.
[http://dx.doi.org/10.1007/s11356-020-08048-0] [PMID: 32064580]
[26]
Zhang, Q.; Chang, B.; Zheng, G.; Du, S.; Li, X. Quercetin stimulates osteogenic differentiation of bone marrow stromal cells through miRNA-206/connexin 43 pathway. Am. J. Transl. Res., 2020, 12(5), 2062-2070.
[PMID: 32509200]
[27]
Guo, G.; Gong, L.; Sun, L.; Xu, H. RETRACTED ARTICLE: Quercetin supports cell viability and inhibits apoptosis in cardiocytes by down-regulating miR-199a. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2909-2916.
[http://dx.doi.org/10.1080/21691401.2019.1640711] [PMID: 31307244]
[28]
Mao, Q.Q.; Chen, J.J.; Xu, W.J.; Zhao, X.Z.; Sun, X.; Zhong, L. miR-92a-3p promotes the proliferation and invasion of gastric cancer cells by targeting KLF2. J. Biol. Regul. Homeost. Agents, 2020, 34(4), 1333-1341.
[PMID: 32907305]
[29]
Norat, P.; Soldozy, S.; Sokolowski, J.D.; Gorick, C.M.; Kumar, J.S.; Chae, Y.; Yağmurlu, K.; Prada, F.; Walker, M.; Levitt, M.R.; Price, R.J.; Tvrdik, P.; Kalani, M.Y.S. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen. Med., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41536-020-00107-x] [PMID: 33298971]
[30]
Sakamuru, S.; Zhao, J.; Attene-Ramos, M.S.; Xia, M. Mitochondrial membrane potential assay. Methods Mol. Biol., 2022, 2474, 11-19.
[http://dx.doi.org/10.1007/978-1-0716-2213-1_2] [PMID: 35294751]
[31]
Gan, X.; Zhao, H.; Wei, Y.; Jiang, Q.; Wen, C.; Ying, Y. Role of miR-92a-3p, oxidative stress, and p38MAPK/NF-κB pathway in rats with central venous catheter related thrombosis. BMC Cardiovasc. Disord., 2020, 20(1), 150.
[http://dx.doi.org/10.1186/s12872-020-01436-x] [PMID: 32228467]
[32]
Rong, X.; Jia, L.; Hong, L.; Pan, L.; Xue, X.; Zhang, C.; Lu, J.; Jin, Z.; Qiu, H.; Wu, R.; Chu, M. Serum miR-92a-3p as a new potential biomarker for diagnosis of kawasaki disease with coronary artery lesions. J. Cardiovasc. Transl. Res., 2017, 10(1), 1-8.
[http://dx.doi.org/10.1007/s12265-016-9717-x] [PMID: 27981487]
[33]
Cheng, Y.; Zhang, D.; Zhu, M.; Wang, Y.; Guo, S.; Xu, B.; Hou, G.; Feng, Y.; Liu, G. Liver X receptor α is targeted by microRNA-1 to inhibit cardiomyocyte apoptosis through a ROS-mediated mitochondrial pathway. Biochem. Cell Biol., 2018, 96(1), 11-18.
[http://dx.doi.org/10.1139/bcb-2017-0154] [PMID: 29024600]
[34]
Gao, S.; Hu, J. Mitochondrial Fusion: The machineries in and out. Trends Cell Biol., 2021, 31(1), 62-74.
[http://dx.doi.org/10.1016/j.tcb.2020.09.008] [PMID: 33092941]
[35]
Chen, H.; Detmer, S.A.; Ewald, A.J.; Griffin, E.E.; Fraser, S.E.; Chan, D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol., 2003, 160(2), 189-200.
[http://dx.doi.org/10.1083/jcb.200211046] [PMID: 12527753]
[36]
Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. FASEB J., 2021, 35(6), e21620.
[http://dx.doi.org/10.1096/fj.202100067R] [PMID: 34048084]
[37]
Tan, K.Y.; Li, C.Y.; Li, Y.F.; Fei, J.; Yang, B.; Fu, Y.J.; Li, F. Real-time monitoring ATP in mitochondrion of living cells: A specific fluorescent probe for ATP by dual recognition sites. Anal. Chem., 2017, 89(3), 1749-1756.
[http://dx.doi.org/10.1021/acs.analchem.6b04020] [PMID: 28208302]
[38]
Suzuki, R.; Hotta, K.; Oka, K. Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Sci. Rep., 2018, 8(1), 2993.
[http://dx.doi.org/10.1038/s41598-018-21109-2] [PMID: 29445117]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy