Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Insight into Herbal Bioactives-based Novel Approaches for Chronic Intestinal Inflammatory Disorders Therapy

Author(s): Ranjit K. Harwansh*, Sonia Chauhan, Rohitas Deshmukh and Rupa Mazumder

Volume 25, Issue 14, 2024

Published on: 02 January, 2024

Page: [1835 - 1857] Pages: 23

DOI: 10.2174/0113892010282432231222060355

Price: $65

Abstract

Inflammatory bowel disease (IBD) is a life-threatening complex disease. It causes chronic intestinal inflammation in GIT. IBD significantly affects people’s lifestyles and carries a high risk of colon cancer. IBD involves the rectum, ileum, and colon, with clinical manifestations of bloody stools, weight loss, diarrhea, and abdominal pain. The prevalence of inflammatory disease is increasing dramatically worldwide. Over 16 million people are affected annually in India, with an economic burden of $6.8- $8.8 billion for treatment. Modern medicine can manage IBD as immunosuppressive agents, corticosteroids, tumor necrosis factor antagonists, integrin blockers, and amino-salicylates. However, these approaches are allied with limitations such as limited efficacy, drug resistance, undesired side effects, and overall cost, which cannot be ignored. Hence, the herbal bioactives derived from various plant resources can be employed in managing IBD. Science Direct, PubMed, Google, and Scopus databases have been searched for conclusively relevant herbal plant-based anti-inflammatory agent compositions. Studies were screened through analysis of previously published review articles. Eminent herbal bioactives, namely curcumin, resveratrol, ellagic acid, silybin, catechin, kaempferol, icariin, glycyrrhizin acid, berberine, quercetin, rutin, and thymol are reported to be effective against IBD. Herbal leads are promising treatment options for IBD; they have been shown to display antiinflammatory and antioxidant properties by targeting enzymes and regulating the expressions of various inflammatory mediators. Natural products have been reported to have anti-inflammatory properties in various clinical and preclinical studies, and some are available as herbal preparations. Herbal medicine would be promising in association with the implication of a novel drug delivery system for managing IBD.

Graphical Abstract

[1]
Dasgupta, Y.; Golovine, K.; Nieborowska-Skorska, M.; Luo, L.; Matlawska-Wasowska, K.; Mullighan, C.G.; Skorski, T. Drugging DNA repair to target T-ALL cells. Leuk. Lymphoma, 2018, 59(7), 1746-1749.
[http://dx.doi.org/10.1080/10428194.2017.1397662] [PMID: 29115896]
[2]
Deshmukh, R.; Prajapati, M.; Harwansh, R.K. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med. Oncol., 2023, 40(6), 159.
[http://dx.doi.org/10.1007/s12032-023-02020-x] [PMID: 37097307]
[3]
Sairenji, T.; Collins, K.L.; Evans, D.V. An update on inflammatory bowel disease. Prim. Care, 2017, 44(4), 673-692.
[http://dx.doi.org/10.1016/j.pop.2017.07.010] [PMID: 29132528]
[4]
Kaplan, G.G.; Ng, S.C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology, 2017, 152(2), 313-321.e2.
[http://dx.doi.org/10.1053/j.gastro.2016.10.020] [PMID: 27793607]
[5]
Guan, Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/7247238] [PMID: 31886308]
[6]
Deshmukh, R. Kumari, S Inflammatory bowel disease: A snapshot of current knowledge. J. Gastroenterol. Hepatol., 2020, 13, 956-962.
[7]
Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1), 56-66.
[http://dx.doi.org/10.1038/s41575-020-00360-x] [PMID: 33033392]
[8]
Lee, S.H.; Kwon, J.; Cho, M.L. Immunological pathogenesis of inflammatory bowel disease. Intest. Res., 2018, 16(1), 26-42.
[http://dx.doi.org/10.5217/ir.2018.16.1.26] [PMID: 29422795]
[9]
Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The epidemiology of inflammatory bowel disease: East meets west. J. Gastroenterol. Hepatol., 2020, 35(3), 380-389.
[http://dx.doi.org/10.1111/jgh.14872] [PMID: 31596960]
[10]
Lo, C.H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Dietary inflammatory potential and risk of crohn’s disease and ulcerative colitis. Gastroenterology, 2020, 159(3), 873-883.e1.
[http://dx.doi.org/10.1053/j.gastro.2020.05.011] [PMID: 32389666]
[11]
Antoni, L.; Nuding, S.; Wehkamp, J.; Stange, E.F. Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol., 2014, 20(5), 1165-1179.
[http://dx.doi.org/10.3748/wjg.v20.i5.1165] [PMID: 24574793]
[12]
Salim, S.Y.; Söderholm, J.D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis., 2011, 17(1), 362-381.
[http://dx.doi.org/10.1002/ibd.21403] [PMID: 20725949]
[13]
Sgambato, D.; Miranda, A.; Ranaldo, R.; Federico, A.; Romano, M. The role of stress in inflammatory bowel diseases. Curr. Pharm. Des., 2017, 23(27), 3997-4002.
[PMID: 28245757]
[14]
Uhlig, H.H. Monogenic diseases associated with intestinal inflammation: Implications for the understanding of inflammatory bowel disease. Gut, 2013, 62(12), 1795-1805.
[http://dx.doi.org/10.1136/gutjnl-2012-303956] [PMID: 24203055]
[15]
Ananthakrishnan, A.N. Environmental risk factors for inflammatory bowel diseases: A review. Dig. Dis. Sci., 2015, 60(2), 290-298.
[http://dx.doi.org/10.1007/s10620-014-3350-9] [PMID: 25204669]
[16]
Ananthakrishnan, A.N. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol., 2013, 9(6), 367-374.
[PMID: 23935543]
[17]
Schoultz, I.; Keita, Å. Cellular and molecular therapeutic targets in inflammatory bowel disease—focusing on intestinal barrier function. Cells, 2019, 8(2), 193.
[http://dx.doi.org/10.3390/cells8020193] [PMID: 30813280]
[18]
Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology, 2019, 157(3), 647-659.e4.
[http://dx.doi.org/10.1053/j.gastro.2019.04.016] [PMID: 31014995]
[19]
Shanahan, F. Crohn’s disease. Lancet, 2002, 359(9300), 62-69.
[http://dx.doi.org/10.1016/S0140-6736(02)07284-7] [PMID: 11809204]
[20]
Greuter, T.; Vavricka, S.R. Extraintestinal manifestations in inflammatory bowel disease - epidemiology, genetics, and pathogenesis. Expert Rev. Gastroenterol. Hepatol., 2019, 13(4), 307-317.
[http://dx.doi.org/10.1080/17474124.2019.1574569] [PMID: 30791773]
[21]
Sartor, R.B. Mechanisms of Disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, 3(7), 390-407.
[http://dx.doi.org/10.1038/ncpgasthep0528] [PMID: 16819502]
[22]
Pizarro, T.T.; Stappenbeck, T.S.; Rieder, F.; Rosen, M.J.; Colombel, J.F.; Donowitz, M.; Towne, J.; Mazmanian, S.K.; Faith, J.J.; Hodin, R.A.; Garrett, W.S.; Fichera, A.; Poritz, L.S.; Cortes, C.J.; Shtraizent, N.; Honig, G.; Snapper, S.B.; Hurtado-Lorenzo, A.; Salzman, N.H.; Chang, E.B. Challenges in IBD research: Preclinical human IBD mechanisms. Inflamm. Bowel Dis., 2019, 25(S2), S5-S12.
[http://dx.doi.org/10.1093/ibd/izz075] [PMID: 31095706]
[23]
Qin, X. Etiology of inflammatory bowel disease: A unified hypothesis. World J. Gastroenterol., 2012, 18(15), 1708-1722.
[http://dx.doi.org/10.3748/wjg.v18.i15.1708] [PMID: 22553395]
[24]
Ahluwalia, B.; Moraes, L.; Magnusson, M.K.; Öhman, L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand. J. Gastroenterol., 2018, 53(4), 379-389.
[http://dx.doi.org/10.1080/00365521.2018.1447597] [PMID: 29523023]
[25]
Magnusson, M.K.; Brynjólfsson, S.F.; Dige, A.; Uronen-Hansson, H.; Börjesson, L.G.; Bengtsson, J.L.; Gudjonsson, S.; Öhman, L.; Agnholt, J.; Sjövall, H.; Agace, W.W.; Wick, M.J. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation. Mucosal Immunol., 2016, 9(1), 171-182.
[http://dx.doi.org/10.1038/mi.2015.48] [PMID: 26080709]
[26]
Tatiya-aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Immune response and inflammatory pathway of ulcerative colitis. J. Basic Clin. Physiol. Pharmacol., 2018, 30(1), 1-10.
[http://dx.doi.org/10.1515/jbcpp-2018-0036] [PMID: 30063466]
[27]
Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448(7152), 427-434.
[http://dx.doi.org/10.1038/nature06005] [PMID: 17653185]
[28]
Powrie, F.; Mauze, S.; Coffman, R.L. CD4+ T-cells in the regulation of inflammatory responses in the intestine. Res. Immunol., 1997, 148(8-9), 576-581.
[http://dx.doi.org/10.1016/S0923-2494(98)80152-1] [PMID: 9588837]
[29]
Pazmandi, J.; Kalinichenko, A.; Ardy, R.C.; Boztug, K. Early‐onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol. Rev., 2019, 287(1), 162-185.
[http://dx.doi.org/10.1111/imr.12726] [PMID: 30565237]
[30]
Oka, A.; Sartor, R.B. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases. Dig. Dis. Sci., 2020, 65(3), 757-788.
[http://dx.doi.org/10.1007/s10620-020-06090-z] [PMID: 32006212]
[31]
Tap, J.; Mondot, S.; Levenez, F.; Pelletier, E.; Caron, C.; Furet, J.P.; Ugarte, E.; Muñoz-Tamayo, R.; Paslier, D.L.E.; Nalin, R.; Dore, J.; Leclerc, M. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol., 2009, 11(10), 2574-2584.
[http://dx.doi.org/10.1111/j.1462-2920.2009.01982.x] [PMID: 19601958]
[32]
Schmitz, J.M.; Tonkonogy, S.L.; Dogan, B.; Leblond, A.; Whitehead, K.J.; Kim, S.C.; Simpson, K.W.; Sartor, R.B. Murine adherent and invasive E. coli induces chronic inflammation and immune responses in the small and large intestines of monoassociated IL-10-/- mice independent of long polar fimbriae adhesin A. Inflamm. Bowel Dis., 2019, 25(5), 875-885.
[http://dx.doi.org/10.1093/ibd/izy386] [PMID: 30576451]
[33]
Allez, M.; Lemann, M.; Bonnet, J.; Cattan, P.; Jian, R.; Modigliani, R. Long term outcome of patients with active Crohn’s disease exhibiting extensive and deep ulcerations at colonoscopy. Am. J. Gastroenterol., 2002, 97(4), 947-953.
[http://dx.doi.org/10.1016/S0002-9270(02)03970-9] [PMID: 12003431]
[34]
Takenaka, K.; Kitazume, Y.; Fujii, T.; Tsuchiya, K.; Watanabe, M.; Ohtsuka, K. Objective evaluation for treat to target in Crohn’s disease. J. Gastroenterol., 2020, 55(6), 579-587.
[http://dx.doi.org/10.1007/s00535-020-01678-8] [PMID: 32130521]
[35]
De Cruz, P.; Kamm, M.A.; Hamilton, A.L.; Ritchie, K.J.; Krejany, E.O.; Gorelik, A.; Liew, D.; Prideaux, L.; Lawrance, I.C.; Andrews, J.M.; Bampton, P.A.; Gibson, P.R.; Sparrow, M.; Leong, R.W.; Florin, T.H.; Gearry, R.B.; Radford-Smith, G.; Macrae, F.A.; Debinski, H.; Selby, W.; Kronborg, I.; Johnston, M.J.; Woods, R.; Elliott, P.R.; Bell, S.J.; Brown, S.J.; Connell, W.R.; Desmond, P.V. Crohn’s disease management after intestinal resection: a randomised trial. Lancet, 2015, 385(9976), 1406-1417.
[http://dx.doi.org/10.1016/S0140-6736(14)61908-5] [PMID: 25542620]
[36]
Chatu, S.; Poullis, A.; Holmes, R.; Greenhalgh, R.; Pollok, R.C.G. Temporal trends in imaging and associated radiation exposure in inflammatory bowel disease. Int. J. Clin. Pract., 2013, 67(10), 1057-1065.
[http://dx.doi.org/10.1111/ijcp.12187] [PMID: 24073979]
[37]
Paulsen, S.R.; Huprich, J.E.; Fletcher, J.G.; Booya, F.; Young, B.M.; Fidler, J.L.; Johnson, C.D.; Barlow, J.M.; Earnest, F. IV CT enterography as a diagnostic tool in evaluating small bowel disorders: review of clinical experience with over 700 cases. Radiographics, 2006, 26(3), 641-657.
[http://dx.doi.org/10.1148/rg.263055162] [PMID: 16702444]
[38]
Manno, M.; Barbera, C.; Bertani, H.; Manta, R.; Mirante, V.G.; Dabizzi, E.; Caruso, A.; Pigo, F.; Olivetti, G.; Conigliaro, R. Single balloon enteroscopy: Technical aspects and clinical applications. World J. Gastrointest. Endosc., 2012, 4(2), 28-32.
[http://dx.doi.org/10.4253/wjge.v4.i2.28] [PMID: 22347529]
[39]
Fan, R.; Zhong, J.; Wang, Z.T.; Li, S.Y.; Zhou, J.; Tang, Y.H. Evaluation of “top-down” treatment of early Crohn’s disease by double balloon enteroscopy. World J. Gastroenterol., 2014, 20(39), 14479-14487.
[http://dx.doi.org/10.3748/wjg.v20.i39.14479] [PMID: 25339835]
[40]
Hirai, F.; Andoh, A.; Ueno, F.; Watanabe, K.; Ohmiya, N.; Nakase, H.; Kato, S.; Esaki, M.; Endo, Y.; Yamamoto, H.; Matsui, T.; Iida, M.; Hibi, T.; Watanabe, M.; Suzuki, Y.; Matsumoto, T. Efficacy of endoscopic balloon dilation for small bowel strictures in patients with Crohn’s Disease: A nationwide, multi-centre, open-label, prospective cohort study. J. Crohn’s Colitis, 2018, 12(4), 394-401.
[http://dx.doi.org/10.1093/ecco-jcc/jjx159] [PMID: 29194463]
[41]
Arulanandan, A.; Dulai, P.S.; Singh, S.; Sandborn, W.J.; Kalmaz, D. Systematic review: Safety of balloon assisted enteroscopy in Crohn’s disease. World J. Gastroenterol., 2016, 22(40), 8999-9011.
[http://dx.doi.org/10.3748/wjg.v22.i40.8999] [PMID: 27833391]
[42]
Orlando, S.; Fraquelli, M.; Coletta, M.; Branchi, F.; Magarotto, A.; Conti, C.B.; Mazza, S.; Conte, D.; Basilisco, G.; Caprioli, F. Ultrasound elasticity imaging predicts therapeutic outcomes of patients with crohn’s disease treated with anti-tumour necrosis factor antibodies. J. Crohn’s Colitis, 2018, 12(1), 63-70.
[http://dx.doi.org/10.1093/ecco-jcc/jjx116] [PMID: 28961950]
[43]
Dillman, J.R.; Smith, E.A.; Sanchez, R.; DiPietro, M.A.; Fazeli Dehkordy, S.; Adler, J.; DeMatos-Maillard, V.; Khalatbari, S.; Davenport, M.S. Prospective cohort study of ultrasound-ultrasound and ultrasound-MR enterography agreement in the evaluation of pediatric small bowel Crohn disease. Pediatr. Radiol., 2016, 46(4), 490-497.
[http://dx.doi.org/10.1007/s00247-015-3517-3] [PMID: 26718197]
[44]
Knieling, F.; Neufert, C.; Hartmann, A.; Claussen, J.; Urich, A.; Egger, C.; Vetter, M.; Fischer, S.; Pfeifer, L.; Hagel, A.; Kielisch, C.; Görtz, R.S.; Wildner, D.; Engel, M.; Röther, J.; Uter, W.; Siebler, J.; Atreya, R.; Rascher, W.; Strobel, D.; Neurath, M.F.; Waldner, M.J. Multispectral optoacoustic tomography for assessment of crohn’s disease activity. N. Engl. J. Med., 2017, 376(13), 1292-1294.
[http://dx.doi.org/10.1056/NEJMc1612455] [PMID: 28355498]
[45]
Calabrese, E.; Kucharzik, T.; Maaser, C.; Maconi, G.; Strobel, D.; Wilson, S.R.; Zorzi, F.; Novak, K.L.; Bruining, D.H.; Iacucci, M.; Watanabe, M.; Lolli, E.; Chiaramonte, C.; Hanauer, S.B.; Panaccione, R.; Pallone, F.; Ghosh, S.; Monteleone, G. Real-time interobserver agreement in bowel ultrasonography for diagnostic assessment in patients with crohn’s disease: An international multicenter study. Inflamm. Bowel Dis., 2018, 24(9), 2001-2006.
[http://dx.doi.org/10.1093/ibd/izy091] [PMID: 29718450]
[46]
Nidhi, R.M.; Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J., 2016, 24(4), 458-472.
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[47]
Deshmukh, R.; Harwansh, R.K.; Paul, S.D.; Shukla, R. Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. J. Drug Deliv. Sci. Technol., 2020, 55, 101495.
[http://dx.doi.org/10.1016/j.jddst.2019.101495]
[48]
Ju, L.Z.; Ke, F.; Yadav, P.K. Herbal medicine in the treatment of ulcerative colitis. Saudi J. Gastroenterol., 2012, 18(1), 3-10.
[http://dx.doi.org/10.4103/1319-3767.91726] [PMID: 22249085]
[49]
Suroowan, S.; Mahomoodally, F. Herbal products for common auto-inflammatory disorders - novel approaches. Comb. Chem. High Throughput Screen., 2018, 21(3), 161-174.
[http://dx.doi.org/10.2174/1386207321666180213093449] [PMID: 29436996]
[50]
Wu, X.; Yang, Y.; Dou, Y.; Ye, J.; Bian, D.; Wei, Z.; Tong, B.; Kong, L.; Xia, Y.; Dai, Y. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int. Immunopharmacol., 2014, 23(2), 505-515.
[http://dx.doi.org/10.1016/j.intimp.2014.09.026] [PMID: 25284342]
[51]
Ai, X.Y.; Qin, Y.; Liu, H.J.; Cui, Z.H.; Li, M.; Yang, J.H.; Zhong, W.L.; Liu, Y.R.; Chen, S.; Sun, T.; Zhou, H.G.; Yang, C. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget, 2017, 8(59), 100216-100226.
[http://dx.doi.org/10.18632/oncotarget.22145] [PMID: 29245972]
[52]
Hoensch, H.P.; Weigmann, B. Regulation of the intestinal immune system by flavonoids and its utility in chronic inflammatory bowel disease. World J. Gastroenterol., 2018, 24(8), 877-881.
[http://dx.doi.org/10.3748/wjg.v24.i8.877] [PMID: 29491681]
[53]
Márquez-Flores, Y.K.; Villegas, I.; Cárdeno, A.; Rosillo, M.Á.; Alarcón-de-la-Lastra, C. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J. Nutr. Biochem., 2016, 30, 143-152.
[http://dx.doi.org/10.1016/j.jnutbio.2015.12.002] [PMID: 27012631]
[54]
Liu, Q.; Zuo, R.; Wang, K.; Nong, F.; Fu, Y.; Huang, S.; Pan, Z.; Zhang, Y.; Luo, X.; Deng, X.; Zhang, X.; Zhou, L.; Chen, Y. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway. Acta Pharmacol. Sin., 2020, 41(6), 771-781.
[http://dx.doi.org/10.1038/s41401-019-0335-4] [PMID: 31937929]
[55]
Li, Y.; Wang, X.; Su, Y.; Wang, Q.; Huang, S.; Pan, Z.; Chen, Y.; Liang, J.; Zhang, M.; Xie, X.; Wu, Z.; Chen, J.; Zhou, L.; Luo, X. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol. Sin., 2022, 43(6), 1495-1507.
[http://dx.doi.org/10.1038/s41401-021-00781-7] [PMID: 34671110]
[56]
Luo, X.; Yu, Z.; Deng, C.; Zhang, J.; Ren, G.; Sun, A.; Mani, S.; Wang, Z.; Dou, W. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci. Rep., 2017, 7(1), 16374.
[http://dx.doi.org/10.1038/s41598-017-12562-6] [PMID: 29180692]
[57]
Zhou, J.; Wang, T.; Dou, Y.; Huang, Y.; Qu, C.; Gao, J.; Huang, Z.; Xie, Y.; Huang, P.; Lin, Z.; Su, Z. Brusatol ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammasome. Int. Immunopharmacol., 2018, 64, 264-274.
[http://dx.doi.org/10.1016/j.intimp.2018.09.008] [PMID: 30218953]
[58]
Mai, C.T.; Wu, M.M.; Wang, C.L.; Su, Z.R.; Cheng, Y.Y.; Zhang, X.J. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol. Immunol., 2019, 105, 76-85.
[http://dx.doi.org/10.1016/j.molimm.2018.10.015] [PMID: 30496979]
[59]
Zhang, X.J.; Yuan, Z.W.; Qu, C.; Yu, X.T.; Huang, T.; Chen, P.V.; Su, Z.R.; Dou, Y.X.; Wu, J.Z.; Zeng, H.F.; Xie, Y.; Chen, J.N. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota. Pharmacol. Res., 2018, 137, 34-46.
[http://dx.doi.org/10.1016/j.phrs.2018.09.010] [PMID: 30243842]
[60]
Chaparala, A.; Poudyal, D.; Tashkandi, H.; Witalison, E.E.; Chumanevich, A.A.; Hofseth, J.L.; Nguyen, I.; Hardy, O.; Pittman, D.L.; Wyatt, M.D.; Windust, A.; Murphy, E.A.; Nagarkatti, M.; Nagarkatti, P.; Hofseth, L.J. Panaxynol, a bioactive component of American ginseng, targets macrophages and suppresses colitis in mice. Oncotarget, 2020, 11(22), 2026-2036.
[http://dx.doi.org/10.18632/oncotarget.27592] [PMID: 32547701]
[61]
Lee, C.; Lee, J.W.; Seo, J.Y.; Hwang, S.W. Im, J.P.; Kim, J.S. Lupeol inhibits LPS-induced NF-kappa B signaling in intestinal epithelial cells and macrophages, and attenuates acute and chronic murine colitis. Life Sci., 2016, 146, 100-108.
[http://dx.doi.org/10.1016/j.lfs.2016.01.001] [PMID: 26767626]
[62]
Socca, E.A.; Dunder, R.; de Almeida, A.C.; Manzo, L.; de-Faria, F.; Maia, G.L.; Barboza-Filho, J.M.; Regina, S-B.; Luiz-Ferreira, A. P-255 therapy with lupeol, a natural pentacyclic triterpenoid, attenuates intestinal inflammation in rat. Inflamm. Bowel Dis., 2017, 23, S83-S84.
[63]
Marín, M.; Giner, R.; Ríos, J.L.; Carmen Recio, M. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J. Ethnopharmacol., 2013, 150(3), 925-934.
[http://dx.doi.org/10.1016/j.jep.2013.09.030] [PMID: 24140585]
[64]
Ran, X.; Li, Y.; Chen, G.; Fu, S.; He, D.; Huang, B.; Wei, L.; Lin, Y.; Guo, Y.; Hu, G. Farrerol ameliorates TNBS-induced colonic inflammation by inhibiting ERK1/2, JNK1/2, and NF-κB signaling pathway. Int. J. Mol. Sci., 2018, 19(7), 2037.
[http://dx.doi.org/10.3390/ijms19072037]
[65]
Jeong, J.J.; Jang, S.E.; Hyam, S.R.; Han, M.J.; Kim, D.H. Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-κB and MAPK pathways. Eur. J. Pharmacol., 2014, 740, 652-661.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.013] [PMID: 24972244]
[66]
Somani, S.; Zambad, S.; Modi, K. Mangiferin attenuates DSS colitis in mice: Molecular docking and in vivo approach. Chem. Biol. Interact., 2016, 253, 18-26.
[http://dx.doi.org/10.1016/j.cbi.2016.04.033] [PMID: 27125760]
[67]
Tahmasebi, P.; Froushani, S.M.; Ahangaran, N. Thymol has beneficial effects on the experimental model of ulcerative colitis. Avicenna J. Phytomed., 2019, 9(6), 538-550.
[PMID: 31763213]
[68]
Chamanara, M.; Abdollahi, A.; Rezayat, S.M.; Ghazi-Khansari, M.; Dehpour, A.; Nassireslami, E.; Rashidian, A. Thymol reduces acetic acid-induced inflammatory response through inhibition of NF-kB signaling pathway in rat colon tissue. Inflammopharmacology, 2019, 27(6), 1275-1283.
[http://dx.doi.org/10.1007/s10787-019-00583-8] [PMID: 30903350]
[69]
Liu, X.; Wu, Y.L.; Liu, K.L.; Cui, X.L.; Du, X.X.; Zhang, W.Q. Effects of resveratrol on ulcerative colitis in mice and its mechanism. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2019, 35(5), 447-453.
[PMID: 31894679]
[70]
Wang, J.; Zhang, Z.; Fang, A.; Wu, K.; Chen, X.; Wang, G.; Mao, F. Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1. Biol. Pharm. Bull., 2020, 43(3), 450-457.
[http://dx.doi.org/10.1248/bpb.b19-00786] [PMID: 32115503]
[71]
Midura-Kiela, M.T.; Radhakrishnan, V.M.; Larmonier, C.B.; Laubitz, D.; Ghishan, F.K.; Kiela, P.R. Curcumin inhibits interferon-γ signaling in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(1), G85-G96.
[http://dx.doi.org/10.1152/ajpgi.00275.2011] [PMID: 22038826]
[72]
Bhat, A.A.; Thapa, R.; Goyal, A.; Subramaniyan, V.; Kumar, D.; Gupta, S.; Singh, S.K.; Dua, K.; Gupta, G. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases. Future Med. Chem., 2023, 15(7), 583-586.
[http://dx.doi.org/10.4155/fmc-2023-0048] [PMID: 37140132]
[73]
McFadden, R.M.T.; Larmonier, C.B.; Shehab, K.W.; Midura-Kiela, M.; Ramalingam, R.; Harrison, C.A.; Besselsen, D.G.; Chase, J.H.; Caporaso, J.G.; Jobin, C.; Ghishan, F.K.; Kiela, P.R. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm. Bowel Dis., 2015, 21(11), 2483-2494.
[http://dx.doi.org/10.1097/MIB.0000000000000522] [PMID: 26218141]
[74]
Wei, C.; Wang, J.Y.; Xiong, F.; Wu, B.H.; Luo, M.H.; Yu, Z.C.; Liu, T.T.; Li, D.F.; Tang, Q.; Li, Y.X.; Zhang, D.G.; Xu, Z.L.; Jin, H.T.; Wang, L.S.; Yao, J. Curcumin ameliorates DSS induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol. Med. Rep., 2021, 23(1), 23.
[PMID: 33179078]
[75]
Bastaki, S.M.; Adeghate, E.; Amir, N.; Ojha, S.; Oz, M. Menthol inhibits oxidative stress and inflammation in acetic acid-induced colitis in rat colonic mucosa. Am. J. Transl. Res., 2018, 10(12), 4210-4222.
[PMID: 30662664]
[76]
Lu, Q.; Wu, X.; Han, W.; Zhang, W.; Wang, Y.; Kong, D.; Fan, Z. Effect of Glycyrrhiza uralensis against ulcerative colitis through regulating the signaling pathway of FXR/P-gp. Am. J. Transl. Res., 2021, 13(8), 9296-9305.
[PMID: 34540046]
[77]
Sheng, Q.; Li, F.; Chen, G.; Li, J.; Li, J.; Wang, Y.; Lu, Y.; Li, Q.; Li, M.; Chai, K. Ursolic acid regulates intestinal microbiota and inflammatory cell infiltration to prevent ulcerative colitis. J. Immunol. Res., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/6679316] [PMID: 34007853]
[78]
Ran, Z.H.; Chen, C.; Xiao, S.D. Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed. Pharmacother., 2008, 62(3), 189-196.
[http://dx.doi.org/10.1016/j.biopha.2008.02.002] [PMID: 18325726]
[79]
Abboud, P.A.; Hake, P.W.; Burroughs, T.J.; Odoms, K.; O’Connor, M.; Mangeshkar, P.; Wong, H.R.; Zingarelli, B. Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur. J. Pharmacol., 2008, 579(1-3), 411-417.
[http://dx.doi.org/10.1016/j.ejphar.2007.10.053] [PMID: 18022615]
[80]
Polat, F.R.; Karaboğa, İ. Immunohistochemical examination of anti-inflammatory and anti-apoptotic effects of hesperetin on trinitrobenzene sulfonic acid induced colitis in rats. Biotech. Histochem., 2019, 94(3), 151-158.
[http://dx.doi.org/10.1080/10520295.2018.1530454] [PMID: 30383440]
[81]
Chen, A.; Fang, D.; Ren, Y.; Wang, Z. Matrine protects colon mucosal epithelial cells against inflammation and apoptosis via the Janus kinase 2/signal transducer and activator of transcription 3 pathway. Bioengineered, 2022, 13(3), 6490-6499.
[http://dx.doi.org/10.1080/21655979.2022.2031676] [PMID: 35220895]
[82]
Goyal, A.; Agrawal, N. Quercetin: A potential candidate for the treatment of arthritis. Curr. Mol. Med., 2022, 22(4), 325-335.
[http://dx.doi.org/10.2174/1566524021666210315125330] [PMID: 33719956]
[83]
Xu, L.; Zhang, J.; Wang, Y.; Zhang, Z.; Wang, F.; Tang, X. Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Biosci. Rep., 2021, 41(2), BSR20203565.
[http://dx.doi.org/10.1042/BSR20203565] [PMID: 33409535]
[84]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[85]
Deshmukh, R.; Jain, A.K.; Singh, R.; Paul, S.D.; Harwansh, R.K. Andrographis paniculata and andrographolide - a snapshot on recent advances in nano drug delivery systems against cancer. Curr. Drug Deliv., 2023, 20, 1-14.
[PMID: 36740794]
[86]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154.
[http://dx.doi.org/10.2174/2215083808666220428092638]
[87]
Chaturvedi, S.; Mishra, R. Insight into delivery approaches for biopharmaceutics classification system class II and IV drugs. Drug Deliv. Lett., 2020, 10(4), 255-277.
[http://dx.doi.org/10.2174/2210303110999200712185109]
[88]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[89]
Deshmukh, R.J.C.D.D. Bridging the gap of drug delivery in colon cancer: The role of chitosan and pectin based nanocarriers system. Curr. Drug Deliv., 2020, 17(10), 911-924.
[90]
Deshmukh, R.; Harwansh, R.K.; Rahman, M.A. Sodium alginate-guar gum and carbopol based methotrexate loaded mucoadhesive microparticles for colon delivery: An in vitroevaluation. Braz. J. Pharm. Sci., 2021, 57, e19147.
[http://dx.doi.org/10.1590/s2175-97902020000419147]
[91]
Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomedicine, 2021, 16, 1313-1330.
[http://dx.doi.org/10.2147/IJN.S289443] [PMID: 33628022]
[92]
Li, Q.; Zhai, W.; Jiang, Q.; Huang, R.; Liu, L.; Dai, J.; Gong, W.; Du, S.; Wu, Q. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int. J. Pharm., 2015, 490(1-2), 22-31.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.008] [PMID: 25957703]
[93]
Das, S.; Ng, K.Y. Colon-specific delivery of resveratrol: Optimization of multi-particulate calcium-pectinate carrier. Int. J. Pharm., 2010, 385(1-2), 20-28.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.016] [PMID: 19833179]
[94]
Wang, Q.S.; Wang, G.F.; Zhou, J.; Gao, L.N.; Cui, Y.L. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int. J. Pharm., 2016, 515(1-2), 176-185.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.002] [PMID: 27713029]
[95]
Rabišková, M.; Bautzová, T.; Gajdziok, J.; Dvořáčková, K.; Lamprecht, A.; Pellequer, Y.; Spilková, J. Coated chitosan pellets containing rutin intended for the treatment of inflammatory bowel disease: in vitrocharacteristics and in vivo evaluation. Int. J. Pharm., 2012, 422(1-2), 151-159.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.045] [PMID: 22079717]
[96]
Sareen, R.; Nath, K.; Jain, N.; Dhar, K.L. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: Fabrication, optimization, and in vitroand pharmacodynamic evaluation. BioMed Res. Int., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/340701] [PMID: 25093165]
[97]
Varshosaz, J.; Minaiyan, M.; Khaleghi, N. Eudragit nanoparticles loaded with silybin: a detailed study of preparation, freeze-drying condition and in vitro/in vivo evaluation. J. Microencapsul., 2015, 32(3), 211-223.
[http://dx.doi.org/10.3109/02652048.2014.995728] [PMID: 25561026]
[98]
Gugulothu, D.; Kulkarni, A.; Patravale, V.; Dandekar, P. pH-sensitive nanoparticles of curcumin-celecoxib combination: Evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci., 2014, 103(2), 687-696.
[http://dx.doi.org/10.1002/jps.23828] [PMID: 24375287]
[99]
Zhang, M.; Merlin, D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm. Bowel Dis., 2018, 24(7), 1401-1415.
[http://dx.doi.org/10.1093/ibd/izy123] [PMID: 29788186]
[100]
Zhao, L.; Du, X.; Tian, J.; Kang, X.; Li, Y.; Dai, W.; Li, D.; Zhang, S.; Li, C. Berberine-loaded carboxylmethyl chitosan nanoparticles ameliorate DSS-induced colitis and remodel gut microbiota in mice. Front. Pharmacol., 2021, 12, 644387.
[http://dx.doi.org/10.3389/fphar.2021.644387] [PMID: 33959013]
[101]
Li, Z.; Gu, L. Fabrication of self-assembled (-)-epigallocatechin gallate (EGCG) ovalbumin-dextran conjugate nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells. J. Agric. Food Chem., 2014, 62(6), 1301-1309.
[http://dx.doi.org/10.1021/jf404621f] [PMID: 24446922]
[102]
Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669-680.
[http://dx.doi.org/10.2147/IJN.S154824] [PMID: 29440893]
[103]
Peng, J.; Cai, Z.; Wang, Q.; Zhou, J.; Xu, J.; Pan, D.; Chen, T.; Zhang, G.; Tao, L.; Chen, Y.; Shen, X. Carboxymethyl chitosan modified oxymatrine liposomes for the alleviation of emphysema in mice via pulmonary administration. Molecules, 2022, 27(11), 3610.
[http://dx.doi.org/10.3390/molecules27113610] [PMID: 35684546]
[104]
Alvarado, H.L.; Abrego, G.; Souto, E.B.; Garduño-Ramirez, M.L.; Clares, B.; García, M.L.; Calpena, A.C. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: in vitro, ex vivo and in vivo characterization. Colloids Surf. B Biointerfaces, 2015, 130, 40-47.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.062] [PMID: 25899842]
[105]
Kakran, M.; Sahoo, N.; Li, L.; Judeh, Z. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technol., 2011, 223.
[106]
Naserifar, M.; Hosseinzadeh, H.; Abnous, K.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci., 2020, 262, 118555.
[http://dx.doi.org/10.1016/j.lfs.2020.118555] [PMID: 33035579]
[107]
Pujara, N.; Wong, K.Y.; Qu, Z.; Wang, R.; Moniruzzaman, M.; Rewatkar, P.; Kumeria, T.; Ross, B.P.; McGuckin, M.; Popat, A. Oral delivery of β-lactoglobulin-nanosphere-encapsulated resveratrol alleviates inflammation in winnie mice with spontaneous ulcerative colitis. Mol. Pharm., 2021, 18(2), 627-640.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00048] [PMID: 32437160]
[108]
Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A.; Gálvez, J.; Lozano-Pérez, A.A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm., 2021, 606, 120935.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120935] [PMID: 34310954]
[109]
Jeong, Y.I.; Yv̄, R.P.; Ohno, T.; Yoshikawa, Y.; Shibata, N.; Kato, S.; Takeuchi, K.; Takada, K. Application of Eudragit P-4135F for the delivery of ellagic acid to the rat lower small intestine. J. Pharm. Pharmacol., 2010, 53(8), 1079-1085.
[http://dx.doi.org/10.1211/0022357011776469] [PMID: 11518017]
[110]
Liu, C.S.; Chen, L.; Hu, Y.N.; Dai, J.L.; Ma, B.; Tang, Q.F.; Tan, X.M. Self-microemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid. Int. J. Nanomedicine, 2020, 15, 2059-2070.
[http://dx.doi.org/10.2147/IJN.S240449] [PMID: 32273702]
[111]
Onoue, S.; Ochi, M.; Yamada, S. Development of (−)-epigallocatechin-3-gallate (EGCG)-loaded enteric microparticles with intestinal mucoadhesive property. Int. J. Pharm., 2011, 410(1-2), 111-113.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.020] [PMID: 21419204]
[112]
Filippova, E.V.; Zemaitaitis, B.; Aung, T.; Wolfe, A.J.; Anderson, W.F. Structural basis for DNA recognition by the two-component response regulator RcsB. MBio, 2018, 9(1), e01993-e17.
[http://dx.doi.org/10.1128/mBio.01993-17] [PMID: 29487239]
[113]
Deng, J.; Wu, Z.; Zhao, Z.; Wu, C.; Yuan, M.; Su, Z.; Wang, Y.; Wang, Z. Berberine-loaded nanostructured lipid carriers enhance the treatment of ulcerative colitis. Int. J. Nanomedicine, 2020, 15, 3937-3951.
[http://dx.doi.org/10.2147/IJN.S247406] [PMID: 32581538]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy