Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A Novel Phytocolorant, Neoxanthin, as a Potent Chemopreventive: Current Progress and Future Prospects

Author(s): Sudhamayee Parida, Mrutyunjay Jena*, Akshaya Kumar Behera, Amiya Kumar Mandal, Rabindra Nayak and Srimanta Patra

Volume 31, Issue 32, 2024

Published on: 01 January, 2024

Page: [5149 - 5164] Pages: 16

DOI: 10.2174/0109298673273106231208102105

Price: $65

Abstract

Cancer is a general term for a group of similar diseases. It is a combined process that results from an accumulation of abnormalities at different biological levels, which involves changes at both genetic and biochemical levels in the cells. Several modifiable risk factors for each type of cancer include heredity, age, and institutional screening guidelines, including colonoscopy, mammograms, prostate-specific antigen testing, etc., which an individual cannot modify. Although a wide range of resources is available for cancer drugs and developmental studies, the cases are supposed to increase by about 70% in the next two decades due to environmental factors commonly driven by the way of living. The drugs used in cancer prevention are not entirely safe, have potential side effects and are generally unsuitable owing to substantial monetary costs. Interventions during the initiation and progression of cancer can prevent, diminish, or stop the transformation of healthy cells on the way to malignancy. Diet modifications are one of the most promising lifestyle changes that can decrease the threat of cancer development by nearly 40%. Neoxanthin is a xanthophyll pigment found in many microalgae and macroalgae, having significant anti-cancer, antioxidant and chemo-preventive activity. In this review, we have focused on the anti-cancer activity of neoxanthin on different cell lines and its cancer-preventive activity concerning obesity and oxidative stress. In addition to this, the preclinical studies and future perspectives are also discussed in this review.

[1]
Zhong, S.; Fields, C.R.; Su, N.; Pan, Y-X.; Robertson, K.D. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 2007, 26(18), 2621-2634.
[http://dx.doi.org/10.1038/sj.onc.1210041] [PMID: 17043644]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Rowles, J.L., III; Erdman, J.W.Jr. Carotenoids and their role in cancer prevention. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(11), 158613.
[http://dx.doi.org/10.1016/j.bbalip.2020.158613] [PMID: 31935448]
[4]
Bray, F.; McCarron, P.; Parkin, D.M. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res., 2004, 6(6), 229-239.
[http://dx.doi.org/10.1186/bcr932] [PMID: 15535852]
[5]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[6]
Sen, S.; Chakraborty, R. Oxidative stress: diagnostics, prevention, and therapy. ACS Publications, 2011, 1-37.
[http://dx.doi.org/10.1021/bk-2011-1083.ch001]
[7]
Ferdous, U.T.; Yusof, Z.N.B. Medicinal prospects of antioxidants from algal sources in cancer therapy. Front. Pharmacol., 2021, 12, 593116.
[http://dx.doi.org/10.3389/fphar.2021.593116] [PMID: 33746748]
[8]
Raza, M.H.; Siraj, S.; Arshad, A.; Waheed, U.; Aldakheel, F.; Alduraywish, S.; Arshad, M. ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol., 2017, 143(9), 1789-1809.
[http://dx.doi.org/10.1007/s00432-017-2464-9] [PMID: 28647857]
[9]
Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol., 2017, 11, 240-253.
[http://dx.doi.org/10.1016/j.redox.2016.12.011] [PMID: 28012439]
[10]
Mut-Salud, N.; Álvarez, P.J.; Garrido, J.M.; Carrasco, E.; Aránega, A.; Rodríguez-Serrano, F. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results. Oxid Med Cell Longev, 2016, 2016, 6719534.
[http://dx.doi.org/10.1155/2016/6719534]
[11]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[12]
Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med., 2005, 26(6), 459-516.
[http://dx.doi.org/10.1016/j.mam.2005.10.001] [PMID: 16309738]
[13]
Niyogi, K.K.; Björkman, O.; Grossman, A.R. The roles of specific xanthophylls in photoprotection. Proc. Natl. Acad. Sci. USA, 1997, 94(25), 14162-14167.
[http://dx.doi.org/10.1073/pnas.94.25.14162] [PMID: 9391170]
[14]
Fiedor, L.; Zbyradowski, M.; Pilch, M. Tetrapyrrole pigments of photosynthetic antennae and reaction centers of higher plants: Structures, biophysics, functions, biochemistry, mechanisms of regulation, applications. Adv. Bot. Res., 2019, 90, 1-33.
[http://dx.doi.org/10.1016/bs.abr.2019.04.001]
[15]
Grujić, V.J.; Todorović, B.; Kranvogl, R.; Ciringer, T.; Ambrožič-Dolinšek, J. Diversity and content of carotenoids and other pigments in the transition from the green to the red stage of Haematococcus pluvialis microalgae identified by HPLC-DAD and LC-QTOF-MS. Plants, 2022, 11(8), 1026.
[http://dx.doi.org/10.3390/plants11081026] [PMID: 35448754]
[16]
Khachik, F.; Beecher, G.R.; Whittaker, N.F. Separation, identification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. J. Agric. Food Chem., 1986, 34(4), 603-616.
[http://dx.doi.org/10.1021/jf00070a006]
[17]
Domonkos, I.; Kis, M.; Gombos, Z.; Ughy, B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res., 2013, 52(4), 539-561.
[http://dx.doi.org/10.1016/j.plipres.2013.07.001] [PMID: 23896007]
[18]
Wang, K.; Tu, W.; Liu, C.; Rao, Y.; Gao, Z.; Yang, C. 9-cis-Neoxanthin in light harvesting complexes of photosystem II regulates the binding of violaxanthin and xanthophyll cycle. Plant Physiol., 2017, 174(1), 86-96.
[http://dx.doi.org/10.1104/pp.17.00029] [PMID: 28320865]
[19]
Molnár, J.; Gyémánt, N.; Mucsi, I.; Molnár, A.; Szabó, M.; Körtvélyesi, T.; Varga, A.; Molnár, P.; Tóth, G. Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids. In vivo, 2004, 18(2), 237-244.
[PMID: 15113052]
[20]
Saini, R.K.; Moon, S.H.; Gansukh, E.; Keum, Y.S. An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chem., 2018, 266, 56-65.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.104] [PMID: 30381226]
[21]
Jungalwala, F.B.; Cama, H.R. Carotenoids in Delonix regia (Gul Mohr) flower. Biochem. J., 1962, 85(1), 1-8.
[http://dx.doi.org/10.1042/bj0850001] [PMID: 14029913]
[22]
Goodwin, T. The biochemistry of the carotenoids: volume I plants; Springer Science & Business Media, 2012.
[23]
Takaichi, S.; Mirauro, M. Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant Cell Physiol., 1998, 39(9), 968-977.
[http://dx.doi.org/10.1093/oxfordjournals.pcp.a029461]
[24]
Märki-Fischer, E.; Eugster, C.H. Neoflor und 6-epineoflor aus blüten von trollius europaeus; Hochfeld- 1 H-NMR-spektren von neoxanthin und (9′ Z )-neoxanthin. Helv. Chim. Acta, 1990, 73(6), 1637-1643.
[http://dx.doi.org/10.1002/hlca.19900730608]
[25]
Terasaki, M.; Mutoh, M.; Fujii, G.; Takahashi, M.; Ishigamori, R.; Masuda, S. Potential ability of xanthophylls to prevent obesity-associated cancer. World J. Pharmacol., 2014, 3(4), 140-152.
[http://dx.doi.org/10.5497/wjp.v3.i4.140]
[26]
Biehler, E.; Alkerwi, A.; Hoffmann, L.; Krause, E.; Guillaume, M.; Lair, M.L.; Bohn, T. Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: Assessment in Luxembourg. J. Food Compos. Anal., 2012, 25(1), 56-65.
[http://dx.doi.org/10.1016/j.jfca.2011.07.005]
[27]
Asai, A.; Yonekura, L.; Nagao, A. Low bioavailability of dietary epoxyxanthophylls in humans. Br. J. Nutr., 2008, 100(2), 273-277.
[http://dx.doi.org/10.1017/S0007114507895468] [PMID: 18186952]
[28]
Barua, A.B.; Olson, J.A. Xanthophyll epoxides, unlike β-carotene monoepoxides, are not detectibly absorbed by humans. J. Nutr., 2001, 131(12), 3212-3215.
[http://dx.doi.org/10.1093/jn/131.12.3212] [PMID: 11739868]
[29]
Goss, R.; Böhme, K.; Wilhelm, C. The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta, 1998, 205(4), 613-621.
[http://dx.doi.org/10.1007/s004250050364]
[30]
Grant, O.M.; Tronina, Ł.; García-Plazaola, J.I.; Esteban, R.; Pereira, J.S.; Chaves, M.M. Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. Funct. Plant Biol., 2015, 42(2), 219-228.
[http://dx.doi.org/10.1071/FP14081] [PMID: 32480667]
[31]
Goss, R.; Latowski, D. Lipid dependence of xanthophyll cycling in higher plants and algae. Front. Plant Sci., 2020, 11, 455.
[http://dx.doi.org/10.3389/fpls.2020.00455] [PMID: 32425962]
[32]
Roy, S.; Llewellyn, C.A.; Egeland, E.S.; Johnsen, G. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography; Cambridge University Press, 2011.
[http://dx.doi.org/10.1017/CBO9780511732263]
[33]
Inbaraj, B.S.; Chien, J.T.; Chen, B.H. Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa. J. Chromatogr. A, 2006, 1102(1-2), 193-199.
[http://dx.doi.org/10.1016/j.chroma.2005.10.055] [PMID: 16298378]
[34]
Chue, K.T.; Ten, L.N.; Oh, Y.K.; Woo, S.G.; Lee, M.; Yoo, S.A. Carotinoid compositions of five microalga species. Chem. Nat. Compd., 2012, 48(1), 141-142.
[http://dx.doi.org/10.1007/s10600-012-0183-7]
[35]
Guedes, A.; Amaro, H.M.; Pereira, R.D.; Seabra, R.; Tamagnini, P.; Moradas-Ferreira, P.; Malcata, F.X. Attempts to identify natural antioxidants bearing DNA protection features, produced by scenedesmus Obliquus. 6th European Conference on Marine Natural Products, 2009, p. 118.
[36]
Sansone, C.; Galasso, C.; Orefice, I.; Nuzzo, G.; Luongo, E.; Cutignano, A.; Romano, G.; Brunet, C.; Fontana, A.; Esposito, F.; Ianora, A. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci. Rep., 2017, 7(1), 41215.
[http://dx.doi.org/10.1038/srep41215] [PMID: 28117410]
[37]
Sathasivam, R.; Ki, J.S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar. Drugs, 2018, 16(1), 26.
[http://dx.doi.org/10.3390/md16010026] [PMID: 29329235]
[38]
Grung, M.; Liaaen-Jensen, S. Algal carotenoids 52; secondary carotenoids of algae 3; carotenoids in a natural bloom of Euglena sanguinea. Biochem. Syst. Ecol., 1993, 21(8), 757-763.
[http://dx.doi.org/10.1016/0305-1978(93)90088-9]
[39]
Bjørnland, T. Chlorophylls and carotenoids of the marine alga Eutreptiella gymnastica. Phytochemistry, 1982, 21(7), 1715-1719.
[http://dx.doi.org/10.1016/S0031-9422(82)85046-2]
[40]
Dautermann, O.; Lyska, D.; Andersen-Ranberg, J.; Becker, M.; Fröhlich-Nowoisky, J.; Gartmann, H.; Krämer, L.C.; Mayr, K.; Pieper, D.; Rij, L.M.; Wipf, H.M.L.; Niyogi, K.K.; Lohr, M. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci. Adv., 2020, 6(10), eaaw9183.
[http://dx.doi.org/10.1126/sciadv.aaw9183] [PMID: 32181334]
[41]
Hussein, H.A.; Maulidiani, M.; Abdullah, M.A. Microalgal metabolites as anti-cancer/anti-oxidant agents reduce cytotoxicity of elevated silver nanoparticle levels against non-cancerous vero cells. Heliyon, 2020, 6(10), e05263.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05263] [PMID: 33102866]
[42]
Haugan, J.A.; Liaaen-Jensen, S. Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem. Syst. Ecol., 1994, 22(1), 31-41.
[http://dx.doi.org/10.1016/0305-1978(94)90112-0]
[43]
Uragami, C.; Galzerano, D.; Gall, A.; Shigematsu, Y.; Meisterhans, M.; Oka, N.; Iha, M.; Fujii, R.; Robert, B.; Hashimoto, H. Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy. Photosynth. Res., 2014, 121(1), 69-77.
[http://dx.doi.org/10.1007/s11120-014-0011-y] [PMID: 24861896]
[44]
Benson, E.; Cobb, A.H. The separation, identification and quantitative determination of photopigments from the siphonaceous marine alga Codium fragile. New Phytol., 1981, 88(4), 627-632.
[http://dx.doi.org/10.1111/j.1469-8137.1981.tb01738.x]
[45]
Qin, X.; Wang, W.; Chang, L.; Chen, J.; Wang, P.; Zhang, J.; He, Y.; Kuang, T.; Shen, J.R. Isolation and characterization of a PSI–LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans. Photosynth. Res., 2015, 123(1), 61-76.
[http://dx.doi.org/10.1007/s11120-014-0039-z] [PMID: 25214185]
[46]
Giossi, C.; Cartaxana, P.; Cruz, S. Photoprotective role of neoxanthin in plants and algae. Molecules, 2020, 25(20), 4617.
[http://dx.doi.org/10.3390/molecules25204617] [PMID: 33050573]
[47]
Parry, A.D.; Horgan, R. Carotenoids and abscisic acid (ABA) biosynthesis in higher plants. Physiol. Plant., 1991, 82(2), 320-326.
[http://dx.doi.org/10.1111/j.1399-3054.1991.tb00100.x]
[48]
Yoshii, Y.; Takaichi, S.; Maoka, T.; Inouye, I. Photosynthetic pigment composition in the primitive green alga Mesostigma viride (Prasinophyceae): phylogenetic and evolutionary implications 1. J. Phycol., 2003, 39(3), 570-576.
[http://dx.doi.org/10.1046/j.1529-8817.2003.02098.x]
[49]
Hall, J.; Delwiche, C. In the shadow of giants. Syst. Assoc. Spec. Vol., 2007, 20072976, 155-169.
[http://dx.doi.org/10.1201/9780849379901.ch8]
[50]
Christa, G.; Cruz, S.; Jahns, P.; de Vries, J.; Cartaxana, P.; Esteves, A.C.; Serôdio, J.; Gould, S.B. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). New Phytol., 2017, 214(3), 1132-1144.
[http://dx.doi.org/10.1111/nph.14435] [PMID: 28152190]
[51]
Singh, R.N.; Sharma, S. Development of suitable photobioreactor for algae production – A review. Renew. Sustain. Energy Rev., 2012, 16(4), 2347-2353.
[http://dx.doi.org/10.1016/j.rser.2012.01.026]
[52]
Bajguz, A.; Piotrowska-Niczyporuk, A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem., 2013, 71, 290-297.
[http://dx.doi.org/10.1016/j.plaphy.2013.08.003] [PMID: 23994360]
[53]
Schoepp, N.G.; Stewart, R.L.; Sun, V.; Quigley, A.J.; Mendola, D.; Mayfield, S.P.; Burkart, M.D. System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour. Technol., 2014, 166, 273-281.
[http://dx.doi.org/10.1016/j.biortech.2014.05.046] [PMID: 24926599]
[54]
Sathasivam, R.; Radhakrishnan, R.; Kim, J.K.; Park, S.U. An update on biosynthesis and regulation of carotenoids in plants. S. Afr. J. Bot., 2021, 140, 290-302.
[http://dx.doi.org/10.1016/j.sajb.2020.05.015]
[55]
Sun, T.; Li, L. Toward the ‘golden’ era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci., 2020, 290, 110331.
[http://dx.doi.org/10.1016/j.plantsci.2019.110331] [PMID: 31779888]
[56]
Miras-Moreno, B.; Pedreño, M.Á.; Romero, L.A. Bioactivity and bioavailability of phytoene and strategies to improve its production. Phytochem. Rev., 2019, 18(2), 359-376.
[http://dx.doi.org/10.1007/s11101-018-9597-6]
[57]
Gómez-García, M.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci., 2013, 14(9), 19025-19053.
[http://dx.doi.org/10.3390/ijms140919025] [PMID: 24065101]
[58]
Dautermann, O.; Lohr, M. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Plant J., 2017, 92(5), 879-891.
[http://dx.doi.org/10.1111/tpj.13725] [PMID: 28949044]
[59]
Hejazi, M.A.; de Lamarliere, C.; Rocha, J.M.S.; Vermuë, M.; Tramper, J.; Wijffels, R.H. Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnol. Bioeng., 2002, 79(1), 29-36.
[http://dx.doi.org/10.1002/bit.10270] [PMID: 17590929]
[60]
Mojaat, M.; Foucault, A.; Pruvost, J.; Legrand, J. Optimal selection of organic solvents for biocompatible extraction of β-carotene from Dunaliella salina. J. Biotechnol., 2008, 133(4), 433-441.
[http://dx.doi.org/10.1016/j.jbiotec.2007.11.003] [PMID: 18155312]
[61]
Anaëlle, T.; Serrano Leon, E.; Laurent, V.; Elena, I.; Mendiola, J.A.; Stéphane, C.; Nelly, K.; Stéphane, L.B.; Luc, M.; Valérie, S.P. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta, 2013, 104, 44-52.
[http://dx.doi.org/10.1016/j.talanta.2012.10.088] [PMID: 23597887]
[62]
Semelsberger, T.A.; Borup, R.L.; Greene, H.L. Dimethyl ether (DME) as an alternative fuel. J. Power Sources, 2006, 156(2), 497-511.
[http://dx.doi.org/10.1016/j.jpowsour.2005.05.082]
[63]
Eghbali Babadi, F.; Boonnoun, P.; Nootong, K.; Powtongsook, S.; Goto, M.; Shotipruk, A. Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food Bioprod. Process., 2020, 123, 296-303.
[http://dx.doi.org/10.1016/j.fbp.2020.07.008]
[64]
Kotake-Nara, E.; Sugawara, T.; Nagao, A. Antiproliferative effect of neoxanthin and fucoxanthin on cultured cells. Fish. Sci., 2005, 71(2), 459-461.
[http://dx.doi.org/10.1111/j.1444-2906.2005.00986.x]
[65]
Terasaki, M.; Asai, A.; Zhang, H.; Nagao, A. A highly polar xanthophyll of 9′-cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction. Mol. Cell. Biochem., 2007, 300(1-2), 227-237.
[http://dx.doi.org/10.1007/s11010-006-9387-0] [PMID: 17186379]
[66]
Ugocsai, K.; Varga, A.; Molnár, P.; Antus, S.; Molnár, J. Effects of selected flavonoids and carotenoids on drug accumulation and apoptosis induction in multidrug-resistant colon cancer cells expressing MDR1/LRP. In vivo, 2005, 19(2), 433-438.
[PMID: 15796208]
[67]
Kotake-Nara, E.; Asai, A.; Nagao, A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett., 2005, 220(1), 75-84.
[http://dx.doi.org/10.1016/j.canlet.2004.07.048] [PMID: 15737690]
[68]
Eugster, C.H. Chemical derivatization: microscale tests for the presence of common functional groups in carotenoid. In: Carotenoids, Vol. 1A, Isolation and Analysis; 1995; pp. 71-80.
[69]
Asai, A.; Terasaki, M.; Nagao, A. An epoxide-furanoid rearrangement of spinach neoxanthin occurs in the gastrointestinal tract of mice and in vitro: formation and cytostatic activity of neochrome stereoisomers. J. Nutr., 2004, 134(9), 2237-2243.
[http://dx.doi.org/10.1093/jn/134.9.2237] [PMID: 15333710]
[70]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[71]
Sharif, F.; Rasul, A.; Ashraf, A.; Hussain, G.; Younis, T.; Sarfraz, I.; Chaudhry, M.A.; Bukhari, S.A.; Ji, X.Y.; Selamoglu, Z.; Ali, M. Phosphoglycerate mutase 1 in cancer: A promising target for diagnosis and therapy. IUBMB Life, 2019, 71(10), 1418-1427.
[http://dx.doi.org/10.1002/iub.2100] [PMID: 31169978]
[72]
Shankar Babu, M.; Mahanta, S.; Lakhter, A.J.; Hato, T.; Paul, S.; Naidu, S.R. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One, 2018, 13(2), e0191419.
[http://dx.doi.org/10.1371/journal.pone.0191419] [PMID: 29394289]
[73]
Dayton, T.L.; Jacks, T.; Vander Heiden, M.G. PKM 2, cancer metabolism, and the road ahead. EMBO Rep., 2016, 17(12), 1721-1730.
[http://dx.doi.org/10.15252/embr.201643300] [PMID: 27856534]
[74]
Zahra, K.; Dey, T.; Ashish; Mishra, S.P.; Pandey, U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front. Oncol., 2020, 10, 159.
[http://dx.doi.org/10.3389/fonc.2020.00159] [PMID: 32195169]
[75]
Mediratta, K.; El-Sahli, S.; D’Costa, V.; Wang, L. Current progresses and challenges of immunotherapy in triple-negative breast cancer. Cancers, 2020, 12(12), 3529.
[http://dx.doi.org/10.3390/cancers12123529] [PMID: 33256070]
[76]
Rasul, A.; Riaz, A.; Wei, W.; Sarfraz, I.; Hassan, M.; Li, J.; Asif, F.; Adem, Ş.; Bukhari, S.A.; Asrar, M.; Li, X. Mangifera indica extracts as novel PKM2 inhibitors for treatment of triple negative breast cancer. BioMed Res. Int., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/5514669] [PMID: 34136566]
[77]
Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev., 2006, 19(3), 449-490.
[http://dx.doi.org/10.1128/CMR.00054-05] [PMID: 16847081]
[78]
Sachs, G.; Weeks, D.L.; Melchers, K.; Scott, D.R. The gastric biology of Helicobacter pylori. Annu. Rev. Physiol., 2003, 65(1), 349-369.
[http://dx.doi.org/10.1146/annurev.physiol.65.092101.142156] [PMID: 12471160]
[79]
Hatakeyama, M. Structure and function of <i>Helicobacter pylori</i> CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(4), 196-219.
[http://dx.doi.org/10.2183/pjab.93.013] [PMID: 28413197]
[80]
Senda, Y. CagA. In: Helicobacter pylori; Springer, 2016; pp. 33-47.
[http://dx.doi.org/10.1007/978-4-431-55705-0_3]
[81]
Racha, S.; Wongrattanakamon, P.; Raiwa, A.; Jiranusornkul, S. Discovery of novel potent small natural molecules able to enhance attenuation of the pathobiology of gastric cancer-associated Helicobacter pylori by molecular modeling. Int. J. Pept. Res. Ther., 2019, 25(3), 881-896.
[http://dx.doi.org/10.1007/s10989-018-9737-2]
[82]
Okada, T.; Nakai, M.; Maeda, H.; Hosokawa, M.; Sashima, T.; Miyashita, K. Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J. Oleo Sci., 2008, 57(6), 345-351.
[http://dx.doi.org/10.5650/jos.57.345] [PMID: 18469497]
[83]
Rothwell, N.J.; Stock, M.J. A role for brown adipose tissue in diet-induced thermogenesis. Obes. Res., 1997, 5(6), 650-656.
[http://dx.doi.org/10.1002/j.1550-8528.1997.tb00591.x] [PMID: 9449154]
[84]
Smith, R.E.; Horwitz, B.A. Brown fat and thermogenesis. Physiol. Rev., 1969, 49(2), 330-425.
[http://dx.doi.org/10.1152/physrev.1969.49.2.330] [PMID: 4888392]
[85]
Miyashita, K.; Maeda, H.; Tsukui, T.; Okada, T.; Hosokawa, M. Anti-obesity of allene carotenoids, fucoxanthin and neoxanthin from seaweeds and vegetables. In II International Symposium on Human Health Effects of Fruits and Vegetables: FAVHEALTH 2007 841, 2007, pp. 167-172.
[86]
Saed, G.M.; Diamond, M.P.; Fletcher, N.M. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol. Oncol., 2017, 145(3), 595-602.
[http://dx.doi.org/10.1016/j.ygyno.2017.02.033] [PMID: 28237618]
[87]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[88]
Kashyap, D.; Tuli, H.S.; Sak, K.; Garg, V.K.; Goel, N.; Punia, S.; Chaudhary, A. Role of reactive oxygen species in cancer progression. Curr. Pharmacol. Rep., 2019, 5(2), 79-86.
[http://dx.doi.org/10.1007/s40495-019-00171-y]
[89]
Griffith, O.W.; Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem., 1979, 254(16), 7558-7560.
[http://dx.doi.org/10.1016/S0021-9258(18)35980-5] [PMID: 38242]
[90]
Ilghami, R.; Barzegari, A.; Mashayekhi, M.R.; Letourneur, D.; Crepin, M.; Pavon-Djavid, G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr. Rev., 2020, 78(1), 65-76.
[http://dx.doi.org/10.1093/nutrit/nuz027] [PMID: 31407778]
[91]
Şahin, S.; Aybastıer, Ö.; Dawbaa, S.; Karkar, B.; Çakmak, T. Study of the ability of lutein and neoxanthin as standards and in the extract of Chlamydomonas reinhardtii to prevent oxidatively induced DNA base damage using ultrasensitive GC–MS/MS analysis. Chromatographia, 2020, 83(8), 919-926.
[http://dx.doi.org/10.1007/s10337-020-03918-8]
[92]
Chang, J.M.; Lin, J.K. Isolation of neoxanthin from spinach and its prevention on lipid peroxidation. J. Chin. Med., 1993, 4(3), 235-245.
[93]
Abel, E.L.; Angel, J.M.; Kiguchi, K.; DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat. Protoc., 2009, 4(9), 1350-1362.
[http://dx.doi.org/10.1038/nprot.2009.120] [PMID: 19713956]
[94]
Hwa Yun, B.; Guo, J.; Bellamri, M.; Turesky, R.J. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom. Rev., 2020, 39(1-2), 55-82.
[http://dx.doi.org/10.1002/mas.21570] [PMID: 29889312]
[95]
Garg, R.; Ramchandani, A.G.; Maru, G.B. Curcumin decreases 12- O -tetradecanoylphorbol-13-acetate-induced protein kinase C translocation to modulate downstream targets in mouse skin. Carcinogenesis, 2008, 29(6), 1249-1257.
[http://dx.doi.org/10.1093/carcin/bgn114] [PMID: 18477648]
[96]
Bomser, J.; Singletary, K.; Meline, B. Inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin ornithine decarboxylase and protein kinase C by polyphenolics from grapes. Chem. Biol. Interact., 2000, 127(1), 45-59.
[http://dx.doi.org/10.1016/S0009-2797(00)00170-8] [PMID: 10903418]
[97]
Hobbs, C.A.; Paul, B.A.; Gilmour, S.K. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res., 2002, 62(1), 67-74.
[PMID: 11782361]
[98]
Syed, N Pomegranate extracts and cancer prevention: Molecular and cellular activities. Anticancer Agents Med Chem, 2013, 13(8), 1149-1161.
[99]
Hajleh, M.A.; Al-Dujaili, A. Anti-cancer activity of pomegranate and its biophenols; general review. EC Nutrition, 2016, 6, 28-52.
[100]
Kelloff, G.J.; Boone, C.W.; Steele, V.E.; Fay, J.R.; Lubet, R.A.; Crowell, J.A.; Sigman, C.C. Mechanistic considerations in chemopreventive drug development. J. Cell. Biochem., 1994, 56(S20), 1-24.
[http://dx.doi.org/10.1002/jcb.240560903] [PMID: 7616736]
[101]
Chang, J.M.; Chen, W.C.; Hong, D.; Lin, J.K. The inhibition of DMBA-induced carcinogenesis by neoxanthin in hamster buccal pouch. Nutr. Cancer, 1995, 24(3), 325-333.
[http://dx.doi.org/10.1080/01635589509514421] [PMID: 8610051]
[102]
Hong, R.C. The cancer-promoting effects of 12-O-tetradecanoyI-phorbol-13-acetate and collagenase in hamster buccal pouch carcinogenesis. Chinese Dental J., 1997, 16(3), 148-155.
[103]
Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature, 2001, 411(6835), 342-348.
[http://dx.doi.org/10.1038/35077213] [PMID: 11357141]
[104]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[105]
Dembitsky, V.M.; Maoka, T. Allenic and cumulenic lipids. Prog. Lipid Res., 2007, 46(6), 328-375.
[http://dx.doi.org/10.1016/j.plipres.2007.07.001] [PMID: 17765976]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy