Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Alkaloids as Additional Weapons in the Fight against Breast Cancer: A Review

Author(s): Chahat, Keshav Taruneshwar Jha, Rohit Bhatia and Pooja A. Chawla*

Volume 31, Issue 32, 2024

Published on: 18 September, 2023

Page: [5113 - 5148] Pages: 36

DOI: 10.2174/0929867331666230911162527

Price: $65

conference banner
Abstract

Breast carcinoma is among the most frequent cancerous tumour in females around the globe. The major modalities now employed in the therapeutic management of breast cancer include surgeries, chemotherapy, and specialized medicines. Despite their potential to help individuals' problems, they are also associated with many negative impacts. As a result, natural products are increasingly regarded to be a preferable alternative. Alkaloids are essential biochemical substances that can be used to develop new drugs. Numerous alkaloids that originate from natural plants have been shown in vitro and in vivo to have anti-proliferation and anti-metastasis actions on different kinds of carcinoma. According to the data collected in this study, the utilization of alkaloids as anti-tumor medicines appears to be extremely potent; nevertheless, extensive studies and clinical trials are required before utilizing individual alkaloids. In this overview, we provide a detailed and vital exploration of pre-existing alkaloids possessing anti-tumor activities due to bioactive compounds. This study also includes an overview of synthesized analogues and pharmacological characteristics that will be beneficial to scientists working on alkaloids for medicinal purposes. In a recent survey of the literature, alkaloids are an important component of plantderived antitumor medicines that hold great potential for the future development of cancer therapy and preventive therapies. We have also discussed structural analysis relationship (SAR) studies. Moreover, it covers clinical trial medications and FDA-approved medicines from the last five years that will be useful in further research.

[1]
Chahat, B.; Bhatia, R.; Kumar, B. p53 as a potential target for treatment of cancer: A perspective on recent advancements in small molecules with structural insights and SAR studies. Eur. J. Med. Chem., 2023, 247, 115020.
[http://dx.doi.org/10.1016/j.ejmech.2022.115020] [PMID: 36543034]
[2]
Taruneshwar Jha, K.; Shome, A. Chahat; Chawla, P.A. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg. Chem., 2023, 138, 106680.
[http://dx.doi.org/10.1016/j.bioorg.2023.106680] [PMID: 37336103]
[3]
Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; Calina, D.; Cho, W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int., 2022, 22(1), 206.
[http://dx.doi.org/10.1186/s12935-022-02624-9] [PMID: 35655306]
[4]
Vidyasekar, P.; Shyamsunder, P.; Arun, R.; Santhakumar, R.; Kapadia, N.K.; Kumar, R.; Verma, R.S. Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and MicroRNA gene networks. PLoS One, 2015, 10(8), e0135958.
[http://dx.doi.org/10.1371/journal.pone.0135958] [PMID: 26295583]
[5]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
El-Helby, A.G.A.; Sakr, H.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Belal, A.; Rashed, M.; El-Sharkawy, A.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg. Chem., 2020, 103, 104233.
[http://dx.doi.org/10.1016/j.bioorg.2020.104233] [PMID: 32882440]
[7]
WHO. Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey. , 2020. Available from: https://www.who.int/publications/i/item/9789240002319
[8]
Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. In: Seminars in Cancer Biology; Elsevier, 2021; 68, pp. 279-290.
[9]
Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527.
[http://dx.doi.org/10.1186/s12885-022-09578-1] [PMID: 34979993]
[10]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[11]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[12]
Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer, 2003, 3(4), 267-275.
[http://dx.doi.org/10.1038/nrc1043] [PMID: 12671665]
[13]
Hortobagyi, G.N.; de la Garza Salazar, J.; Pritchard, K.; Amadori, D.; Haidinger, R.; Hudis, C.A.; Khaled, H.; Liu, M.C.; Martin, M.; Namer, M.; O’Shaughnessy, J.A.; Shen, Z.Z.; Albain, K.S. The global breast cancer burden: Variations in epidemiology and survival. Clin. Breast Cancer, 2005, 6(5), 391-401.
[http://dx.doi.org/10.3816/CBC.2005.n.043] [PMID: 16381622]
[14]
Lei, S.; Zheng, R.; Zhang, S.; Chen, R.; Wang, S.; Sun, K.; Zeng, H.; Wei, W.; He, J. Breast cancer incidence and mortality in women in China: Temporal trends and projections to 2030. Cancer Biol. Med., 2021, 18(3), 900-909.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0523] [PMID: 34002584]
[15]
Smith, R.A.; von Eschenbach, A.C.; Wender, R.; Levin, B.; Byers, T.; Rothenberger, D.; Brooks, D.; Creasman, W.; Cohen, C.; Runowicz, C.; Saslow, D.; Cokkinides, V.; Eyre, H. American Cancer Society guidelines for the early detection of cancer: Update of early detection guidelines for prostate, colorectal, and endometrial cancers. Also: Update 2001--testing for early lung cancer detection. CA Cancer J. Clin., 2001, 51(1), 38-75.
[http://dx.doi.org/10.3322/canjclin.51.1.38] [PMID: 11577479]
[16]
Alzain, A.A.; Brisson, L.; Delaye, P.O.; Pénichon, M.; Chadet, S.; Besson, P.; Chevalier, S.; Allouchi, H.; Mohamed, M.A.; Roger, S.; Enguehard-Gueiffier, C. Bioinspired imidazo[1,2-a:4,5-c′]dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur. J. Med. Chem., 2021, 218, 113258.
[http://dx.doi.org/10.1016/j.ejmech.2021.113258] [PMID: 33813152]
[17]
Sun, M.; Zhang, Y.; Qin, J.; Ba, M.; Yao, Y.; Duan, Y.; Liu, H.; Yu, D. Synthesis and biological evaluation of new 2-methoxyestradiol derivatives: Potent inhibitors of angiogenesis and tubulin polymerization. Bioorg. Chem., 2021, 113, 104988.
[http://dx.doi.org/10.1016/j.bioorg.2021.104988] [PMID: 34034135]
[18]
Bonapace, L.; Coissieux, M.M.; Wyckoff, J.; Mertz, K.D.; Varga, Z.; Junt, T.; Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 2014, 515(7525), 130-133.
[http://dx.doi.org/10.1038/nature13862] [PMID: 25337873]
[19]
Niu, Y.; Bao, L.; Chen, Y.; Wang, C.; Luo, M.; Zhang, B.; Zhou, M.; Wang, J.E.; Fang, Y.V.; Kumar, A.; Xing, C.; Wang, Y.; Luo, W. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res., 2020, 80(5), 964-975.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1532] [PMID: 31900259]
[20]
Lucas, M.C.; Tan, S.L. Small-molecule inhibitors of spleen tyrosine kinase as therapeutic agents for immune disorders: Will promise meet expectations? Future Med. Chem., 2014, 6(16), 1811-1827.
[http://dx.doi.org/10.4155/fmc.14.126] [PMID: 25407369]
[21]
Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2009, 46(1), 11-19.
[http://dx.doi.org/10.1002/0471141755.ph0911s46]
[22]
Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 3268136.
[http://dx.doi.org/10.1155/2021/3268136]
[23]
Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). Plant Mol. Biol., 2000, 24, 1250-1319.
[24]
Williams, D.H.; Stone, M.J.; Hauck, P.R.; Rahman, S.K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod., 1989, 52(6), 1189-1208.
[http://dx.doi.org/10.1021/np50066a001] [PMID: 2693613]
[25]
Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc., 2022, 48, 1407-1415.
[http://dx.doi.org/10.1016/j.matpr.2021.09.189]
[26]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[27]
Berchtold, M.W.; Villalobo, A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(2), 398-435.
[http://dx.doi.org/10.1016/j.bbamcr.2013.10.021] [PMID: 24188867]
[28]
Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell, 2003, 3(1), 17-22.
[http://dx.doi.org/10.1016/S1535-6108(02)00241-6] [PMID: 12559172]
[29]
Kato, Y.; Maeda, T.; Suzuki, A.; Baba, Y. Cancer metabolism: New insights into classic characteristics. Jpn. Dent. Sci. Rev., 2018, 54(1), 8-21.
[http://dx.doi.org/10.1016/j.jdsr.2017.08.003] [PMID: 29628997]
[30]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2), 250.
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[31]
Mohapatra, P.; Singh, P.; Singh, D.; Sahoo, S.; Sahoo, S.K. Phytochemical based nanomedicine: A panacea for cancer treatment, present status and future prospective. In: Open- Nano; Elsevier, 2022; 7, p. 100055.
[32]
Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Vikkurthi, R.; Devi, T.B.; Gupta, S.C.; Kunnumakkara, A.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin. Cancer Biol., 2022, 80, 306-339.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.014] [PMID: 32610149]
[33]
Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids, 2012, 2012, 967347.
[34]
Kim, D.B.; Lee, D.K.; Cheon, C.; Ribeiro, R.I.M.A.; Kim, B. Natural products for liver cancer treatment: From traditional medicine to modern drug discovery. Nutrients, 2022, 14(20), 4252.
[http://dx.doi.org/10.3390/nu14204252] [PMID: 36296934]
[35]
Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules, 2022, 27(12), 3863.
[http://dx.doi.org/10.3390/molecules27123863] [PMID: 35744986]
[36]
Pandrangi, S.L.; Chalumuri, S.S.; Garimella, S. Emerging therapeutic efficacy of alkaloids as anticancer agents. Ann. Rom. Soc. Cell Biol., 2022, 26(01), 64-74.
[37]
Bhattacharya, R.; Naitam, P. Green anticancer drugs-An review. Res. J. Pharmacogn. Phytochem., 2019, 11(4), 231-243.
[http://dx.doi.org/10.5958/0975-4385.2019.00040.2]
[38]
Levy, A. In CRC Handbook of Flowering; CRC Press, 2019, pp. 5-8.
[http://dx.doi.org/10.1201/9781351072564-3]
[39]
Waller, G. Alkaloid biology and metabolism in plants; Springer, 2012.
[40]
Evans, W.C. Trease and Evans’ pharmacognosy; Elsevier, 2009.
[41]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M. Recent advances in natural products analysis; Elsevier, 2020, pp. 505-567.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[42]
Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry, 2001, 56(3), 237-243.
[http://dx.doi.org/10.1016/S0031-9422(00)00456-8] [PMID: 11243450]
[43]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[44]
Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res., 2019, 10(2), 494-504.
[45]
Chen, J.J.; Chang, Y.L.; Teng, C.M.; Chen, I.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med., 2000, 66(3), 251-256.
[http://dx.doi.org/10.1055/s-2000-8562] [PMID: 10821052]
[46]
Gurung, P.; De, P. Spectrum of biological properties of Cinchona alkaloids: A brief review. J. Pharmacogn. Phytochem., 2017, 6(4), 162-166.
[47]
Oyama, T.; Isono, T.; Suzuki, Y.; Hayakawa, Y. Anti-nociceptive effects of aconiti tuber and its alkaloids. Am. J. Chin. Med., 1994, 22(2), 175-182.
[http://dx.doi.org/10.1142/S0192415X94000218] [PMID: 7992817]
[48]
Santos, F.A.; Rao, V.S.N. A study of the anti-pyretic effect of quinine, an alkaloid effective against cerebral malaria, on fever induced by bacterial endotoxin and yeast in rats. J. Pharm. Pharmacol., 2011, 50(2), 225-229.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06180.x] [PMID: 9530992]
[49]
Fu, M.; Zou, B.; An, K.; Yu, Y.; Tang, D.; Wu, J.; Xu, Y.; Ti, H. Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’). Food Funct., 2019, 10(2), 903-911.
[http://dx.doi.org/10.1039/C8FO01753K] [PMID: 30694283]
[50]
Chemler, S. Phenanthroindolizidines and phenanthroquinolizidines: Promising alkaloids for anti-cancer therapy. Curr. Bioact. Compd., 2009, 5(1), 2-19.
[http://dx.doi.org/10.2174/157340709787580928] [PMID: 20160962]
[51]
Wangchuk, P.; Sastraruji, T.; Taweechotipatr, M.; Keller, P.A.; Pyne, S.G. Anti-inflammatory, anti-bacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloids–Scoulerine and Cheilanthifoline. Nat. Prod. Commun., 2016, 11(12), 1934578X1601101207.
[http://dx.doi.org/10.1177/1934578X1601101207]
[52]
Sinha, S.; Sharma, A.; Reddy, P.H.; Rathi, B.; Prasad, N.V.S.R.K.; Vashishtha, A. Evaluation of phytochemical and pharmacological aspects of Holarrhena antidysenterica (Wall.): A comprehensive review. J. Pharm. Res., 2013, 6(4), 488-492.
[http://dx.doi.org/10.1016/j.jopr.2013.04.004]
[53]
Arora, S.; Narayan, P.; Osgood, C.L.; Wedam, S.; Prowell, T.M.; Gao, J.J.; Shah, M.; Krol, D.; Wahby, S.; Royce, M.; Ghosh, S.; Philip, R.; Ison, G.; Berman, T.; Brus, C.; Bloomquist, E.W.; Fiero, M.H.; Tang, S.; Pazdur, R.; Ibrahim, A.; Amiri-Kordestani, L.; Beaver, J.A.US FDA drug approvals for breast cancer: A decade in review. Clin. Cancer Res., 2022, 28(6), 1072-1086.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2600] [PMID: 34711632]
[54]
Rafferty, C.M. Everolimus: A new treatment for hormone receptor–positive advanced breast cancer. TON, 2013, 6(4)
[55]
Chang, D.Y.; Ma, W.L.; Lu, Y.S. Role of Alpelisib in the treatment of PIK3CA-mutated breast cancer: Patient selection and clinical perspectives. Ther. Clin. Risk Manag., 2021, 17, 193-207.
[http://dx.doi.org/10.2147/TCRM.S251668] [PMID: 33707948]
[56]
Narayan, P.; Prowell, T.M.; Gao, J.J.; Fernandes, L.L.; Li, E.; Jiang, X.; Qiu, J.; Fan, J.; Song, P.; Yu, J.; Zhang, X.; King-Kallimanis, B.L.; Chen, W.; Ricks, T.K.; Gong, Y.; Wang, X.; Windsor, K.; Rhieu, S.Y.; Geiser, G.; Banerjee, A.; Chen, X.; Reyes Turcu, F.; Chatterjee, D.K.; Pathak, A.; Seidman, J.; Ghosh, S.; Philip, R.; Goldberg, K.B.; Kluetz, P.G.; Tang, S.; Amiri-Kordestani, L.; Theoret, M.R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin. Cancer Res., 2021, 27(7), 1842-1849.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3652] [PMID: 33168657]
[57]
André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940.
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[58]
Johnson, K.C.C.; Quiroga, D.; Sudheendra, P.; Wesolowski, R. Treatment of small (T1mic, T1a, and T1b) node-negative HER2+ breast cancer – a review of current evidence for and against the use of anti-HER2 treatment regimens. Expert Rev. Anticancer Ther., 2022, 22(5), 505-522.
[http://dx.doi.org/10.1080/14737140.2022.2063844] [PMID: 35389302]
[59]
Narayan, P.; Osgood, C.L.; Singh, H.; Chiu, H.J.; Ricks, T.K.; Chiu Yuen Chow, E.; Qiu, J.; Song, P.; Yu, J.; Namuswe, F.; Guiterrez-Lugo, M.; Hou, S.; Pierce, W.F.; Goldberg, K.B.; Tang, S.; Amiri-Kordestani, L.; Theoret, M.R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Fam-trastuzumab deruxtecan-nxki for the treatment of unresectable or metastatic HER2-Positive breast cancer. Clin. Cancer Res., 2021, 27(16), 4478-4485.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4557] [PMID: 33753456]
[60]
Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; Masuda, N.; Palacova, M.; Trudeau, M.E.; Mattson, J.; Yap, Y.S.; Hou, M.F.; De Laurentiis, M.; Yeh, Y.M.; Chang, H.T.; Yau, T.; Wildiers, H.; Haley, B.; Fagnani, D.; Lu, Y.S.; Crown, J.; Lin, J.; Takahashi, M.; Takano, T.; Yamaguchi, M.; Fujii, T.; Yao, B.; Bebchuk, J.; Keyvanjah, K.; Bryce, R.; Brufsky, A. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with≥ 2 HER2-directed regimens: Phase III NALA trial. J. Clin. Oncol., 2020, 38(27), 3138-3149.
[http://dx.doi.org/10.1200/JCO.20.00147] [PMID: 32678716]
[61]
Shah, M.; Wedam, S.; Cheng, J.; Fiero, M.H.; Xia, H.; Li, F.; Fan, J.; Zhang, X.; Yu, J.; Song, P.; Chen, W.; Ricks, T.K.; Chen, X.H.; Goldberg, K.B.; Gong, Y.; Pierce, W.F.; Tang, S.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Tucatinib for the treatment of patients with advanced or metastatic HER2-positive breast cancer. Clin. Cancer Res., 2021, 27(5), 1220-1226.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2701] [PMID: 33055172]
[62]
Crespo, J.; Sun, H.; Wu, J.; Ding, Q.Q.; Tang, G.; Robinson, M.K.; Chen, H.; Sahin, A.A.; Lim, B. Rate of reclassification of HER2-equivocal breast cancer cases to HER2-negative per the 2018 ASCO/CAP guidelines and response of HER2-equivocal cases to anti-HER2 therapy. PLoS One, 2020, 15(11), e0241775.
[http://dx.doi.org/10.1371/journal.pone.0241775] [PMID: 33180796]
[63]
Markham, A. Margetuximab: First approval. Drugs, 2021, 81(5), 599-604.
[http://dx.doi.org/10.1007/s40265-021-01485-2] [PMID: 33761116]
[64]
Rugo, H.S. Im, S.A.; Cardoso, F.; Cortés, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Wright, G.S.; Saura, C.; Escrivá-de-Romaní, S.; De Laurentiis, M.; Levy, C.; Brown-Glaberman, U.; Ferrero, J.M.; de Boer, M.; Kim, S.B.; Petráková, K.; Yardley, D.A.; Freedman, O.; Jakobsen, E.H.; Kaufman, B.; Yerushalmi, R.; Fasching, P.A.; Nordstrom, J.L.; Bonvini, E.; Koenig, S.; Edlich, S.; Hong, S.; Rock, E.P.; Gradishar, W.J. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol., 2021, 7(4), 573-584.
[http://dx.doi.org/10.1001/jamaoncol.2020.7932] [PMID: 33480963]
[65]
Narayan, P.; Wahby, S.; Gao, J.J.; Amiri-Kordestani, L.; Ibrahim, A.; Bloomquist, E.; Tang, S.; Xu, Y.; Liu, J.; Fu, W.; Song, P.; King-Kallimanis, B.L.; Hou, S.; Gong, Y.; Kalavar, S.; Ghosh, S.; Philip, R.; Goldberg, K.B.; Theoret, M.R.; Blumenthal, G.M.; Kluetz, P.G.; Sridhara, R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin. Cancer Res., 2020, 26(10), 2284-2289.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3545] [PMID: 32001481]
[66]
McCann, K.E.; Hurvitz, S.A.; McAndrew, N. Advances in targeted therapies for triple-negative breast cancer. Drugs, 2019, 79(11), 1217-1230.
[http://dx.doi.org/10.1007/s40265-019-01155-4] [PMID: 31254268]
[67]
Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; Iwata, H.; Masuda, N.; Otero, M.T.; Gokmen, E.; Loi, S.; Guo, Z.; Zhao, J.; Aktan, G.; Karantza, V.; Schmid, P.; Luis, F.; Gonzalo, G.A.; Diego, K.; Ruben, K.; Matias, M.; Mirta, V.; Sally, B-H.; Stephen, B.; Philip, C.; Sherene, L.; Dhanusha, S.; Andrea, G.; Donatienne, T.; Carlos, B.; Leandro, B.; Fabiano, C.; Ruffo, F.J.; Roberto, H.; Domicio Carvalho, L.; Fernando Cezar Toniazzi, L.; Roberto Odebrecht, R.; Antonio Orlando, S.N.; Felipe, S.; David, C.; Danielle, C.; Cristiano, F.; Xinni, S.; Joanne, Y.; Alejandro, A.; Carlos, G.; Claudio, S.; Cesar, S.; Eduardo, Y.; Alvaro, G.D.; Jesus, S.; Petra, H.; Zdenek, K.; Bohuslav, M.; Katarina, P.; Jana, P.; Vesna, G.; Erik, J.; Jeanette, J.; Soren, L.; Tamas, L.; Herve, B.; Isabelle, D.; Anthony, G.; Anne-Claire, H-B.; Luis, T.; Jens-Uwe, B.; Peter, F.; Dirk, F.; Nadia, H.; Jens, H.; Anna, K.F.S.; Christian, K.; Sibylle, L.; Diana, L.; Tjoung-Won, P-S.; Raquel Von, S.; Pauline, W.; Louis, C.; Ava, K.; Kai Cheong Roger, N.; Peter, A.; Tibor, C.; Zsuzsanna, K.; Laszlo, L.; Karoly, M.; Gabor, R.; John, C.; Catherine, K.; Seamus, O.R.; Saverio, C.; Antonietta, D.A.; Enrico, R.; Tomoyuki, A.; Takaaki, F.; Kenichi, I.; Takashi, I.; Yoshinori, I.; Tsutomu, I.; Hiroji, I.; Yoshimasa, K.; Koji, M.; Yasuo, M.; Hirofumi, M.; Seigo, N.; Naoki, N.; Shoichiro, O.; Akihiko, O.; Yasuaki, S.; Eiji, S.; Masato, T.; Yuko, T.; Kenji, T.; Koichiro, T.; Junichiro, W.; Naohito, Y.; Yutaka, Y.; Teruo, Y.; Anita, B.; Mastura, M.Y.; Angel, G.V.; Alejandro, J.R.; Jorge, M.R.; Flavia, M-V.; Jessica, R.C.; Karin, B.; Vivianne, T-H.; David, P.; Ewa, C.; Ewa, N-Z.; Zbigniew, N.; Barbara, R.; Joanna, S.; Cezary, S.; Rafal, T.; Bogdan, Z.; Alexander, A.; Natalia, F.; Oleg, L.; Andrey, M.; Vladimir, M.; Guzel, M.; Jin Hee, A.; Seock-Ah, I.; Keun Seok, L.; Kwong Hwa, P.; Yeon Hee, P.; Begona, B.H.; Javier, C.; Josefina, C.J.; Luis, C.M.; Jose, G.S.; Maria, G.; Esther, H.; Esther, Z.A.; Chien-Ting, L.; Mei-Ching, L.; Chiun-Sheng, H.; Chao-Jung, T.; Ling-Ming, T.; Cagatay, A.; Gul, B.; Irfan, C.; Erhan, G.; Seyda, G.; Nil, M.M.; Mustafa, O.; Ozgur, O.; Sinan, Y.; Steve, C.; Janine, G.; Iain, M.P.; Peter, S.; Nicholas, T.; Mark, T.; Christopher, T.; Duncan, W.; Hryhoriy, A.; Oleksandr, B.; Igor, B.; Oleksii, K.; Olena, K.; Hanna, K.; Anna, K.; Iurii, L.; Alla, N.; Natalya, O.; Olga, P.; Andrii, R.; Sergii, S.; Yaroslav, S.; Dmytro, T.; Grygorii, U.; Ihor, V.; Sibel, B.; Madhu, C.; Michael, C.; Patrick, C.; Scott, C.; Jennifer, D.; Keerthi, G.; Jeffrey, H.; Kent, H.; William, I.; Randa, L.; Janice, L.; Raul, M.; Susan, M.; Rita, N.; Ira, O.; Coral, O.; Timothy, P.; Amit, P.; Brian, P.; Hope, R.; Irina, R.; Michael, S.; Robert, S.; Michael, S.; Laura, S.; Bradley, S.; Michaela, T.; Frances, V-A. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet, 2020, 396(10265), 1817-1828.
[http://dx.doi.org/10.1016/S0140-6736(20)32531-9] [PMID: 33278935]
[68]
Wahby, S.; Fashoyin-Aje, L.; Osgood, C.L.; Cheng, J.; Fiero, M.H.; Zhang, L.; Tang, S.; Hamed, S.S.; Song, P.; Charlab, R.; Dorff, S.E.; Ricks, T.K.; Barnett-Ringgold, K.; Dinin, J.; Goldberg, K.B.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin. Cancer Res., 2021, 27(7), 1850-1854.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3119] [PMID: 33168656]
[69]
Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[70]
Yardley, D.A.; McCleod, M.; Schreiber, F.; Murphy, P.; Patton, J.; Thompson, D.S.; Shastry, M.; Rubin, M.; Melnik, M.; Burris, H.A.; Hainsworth, J.D. A phase II trial of vinflunine as monotherapy or in combination with trastuzumab as first-line treatment of metastatic breast cancer. Cancer Invest., 2010, 28(9), 925-931.
[http://dx.doi.org/10.3109/07357907.2010.496755] [PMID: 20690806]
[71]
Rampogu, S.; Balasubramaniyam, T.; Lee, J.H. Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed. Pharmacother., 2022, 155, 113760.
[http://dx.doi.org/10.1016/j.biopha.2022.113760] [PMID: 36271547]
[72]
An, B.; Zhang, S.; Hu, J.; Pan, T.; Huang, L.; Tang, J.C.; Li, X.; Chan, A.S.C. The design, synthesis and evaluation of selenium-containing 4-anilinoquinazoline hybrids as anticancer agents and a study of their mechanism. Org. Biomol. Chem., 2018, 16(25), 4701-4714.
[http://dx.doi.org/10.1039/C8OB00875B] [PMID: 29900452]
[73]
Arya, K.R.; Rajendra Prasad, K.J. Rational eco-compatible synthesis and biological screening of new highly functionalized pyrido[2,3- a]carbazole derivatives: A novel class of antioxidant and anticancer agents. Synth. Commun., 2018, 48(12), 1465-1481.
[http://dx.doi.org/10.1080/00397911.2018.1455211]
[74]
Parrino, B.; Ullo, S.; Attanzio, A.; Cascioferro, S.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Cirrincione, G.; Tesoriere, L.; Diana, P. Synthesis of 5H-pyrido[3,2-b]pyrrolizin-5-one tripentone analogs with antitumor activity. Eur. J. Med. Chem., 2018, 158, 236-246.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.017] [PMID: 30218909]
[75]
Chate, A.V.; Kamdi, S.P.; Bhagat, A.N.; Jadhav, C.K.; Nipte, A.; Sarkate, A.P.; Tiwari, S.V.; Gill, C.H. Design, synthesis and SAR study of novel spiro [pyrimido[5,4-b]quinoline-10,5′-pyrrolo[2,3-d]pyrimidine] derivatives as promising anticancer agents. J. Heterocycl. Chem., 2018, 55(10), 2297-2302.
[http://dx.doi.org/10.1002/jhet.3286]
[76]
Chen, S.; Yong, T.; Xiao, C.; Su, J.; Zhang, Y.; Jiao, C.; Xie, Y. Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J. Funct. Foods, 2018, 43, 196-205.
[http://dx.doi.org/10.1016/j.jff.2018.02.007]
[77]
Fang, J.; Huang, T.; Xia, M.; Deng, L.; Hao, X.; Wang, Y.; Mu, S. Design and synthesis of novel monoterpenoid indole alkaloid-like analogues and their antitumour activities in vitro. Org. Biomol. Chem., 2018, 16(16), 3026-3037.
[http://dx.doi.org/10.1039/C8OB00677F] [PMID: 29634066]
[78]
Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzaghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 194, 21-35.
[http://dx.doi.org/10.1016/j.saa.2017.12.063] [PMID: 29310028]
[79]
Jha, K.K.; Dutta, S.; Sar, S.; Sen, S.; Munshi, P. Harnessing sun for catalyst and sensitizer free regio- and stereo-selective [2+2] cycloaddition. Tetrahedron, 2018, 74(51), 7326-7334.
[http://dx.doi.org/10.1016/j.tet.2018.10.065]
[80]
Guo, L.; Chen, W.; Cao, R.; Fan, W.; Ma, Q.; Zhang, J.; Dai, B. Synthesis and structure-activity relationships of asymmetric dimeric β-carboline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2018, 147, 253-265.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.003] [PMID: 29448140]
[81]
Kumari, P.; Narayana, C.; Dubey, S.; Gupta, A.; Sagar, R. Stereoselective synthesis of natural product inspired carbohydrate fused pyrano[3,2- c]quinolones as antiproliferative agents. Org. Biomol. Chem., 2018, 16(12), 2049-2059.
[http://dx.doi.org/10.1039/C7OB03186F] [PMID: 29411817]
[82]
Chen, K.; Zhang, Y.L.; Fan, J.; Ma, X.; Qin, Y.J.; Zhu, H.L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.044] [PMID: 30041136]
[83]
Lan, J.; Huang, L.; Lou, H.; Chen, C.; Liu, T.; Hu, S.; Yao, Y.; Song, J.; Luo, J.; Liu, Y.; Xia, B.; Xia, L.; Zeng, X.; Ben-David, Y.; Pan, W. Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur. J. Med. Chem., 2018, 143, 1968-1980.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.007] [PMID: 29133049]
[84]
Li, W.S.; Yang, Y.; Liu, J.J.; Shen, L.; Shi, Z.; Wu, J. Scaffold diversity-oriented synthesis of limonoid dimers: Discovery of an axially chiral agent with in vivo anti-breast cancer activity. Org. Chem. Front., 2018, 5(7), 1079-1091.
[http://dx.doi.org/10.1039/C8QO00154E]
[85]
Budovská, M.; Baláž, M.; Mezencev, R.; Tischlerová, V.; Zigová, M.; Mojžiš, J. Design, synthesis and anticancer activity of trifluoromethylphenylamino substituted spiroindoles. J. Fluor. Chem., 2018, 216, 24-32.
[http://dx.doi.org/10.1016/j.jfluchem.2018.09.011]
[86]
Li, Y.; Yan, W.; Yang, J.; Yang, Z.; Hu, M.; Bai, P.; Tang, M.; Chen, L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. Eur. J. Med. Chem., 2018, 152, 516-526.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.003] [PMID: 29754076]
[87]
Murali, K.; Sparkes, H.A.; Rajendra Prasad, K.J. Regio- and stereoselective synthesis of dispirooxindole-pyrrolocarbazole hybrids via 1,3-dipolar cycloaddition reactions: Cytotoxic activity and SAR studies. Eur. J. Med. Chem., 2018, 143, 292-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.039] [PMID: 29197734]
[88]
Satheeshkumar, R.; Muthusankar, A.; Edatt, L.; Sameer Kumar, V.B.; Sparkes, H.A.; Rajendra Prasad, K.J. Synthesis of heteroannulated cyclopent[ b]indoles: Exploration of in vitro cytotoxicity and molecular docking studies. Synth. Commun., 2018, 48(4), 447-461.
[http://dx.doi.org/10.1080/00397911.2017.1407792]
[89]
Sathish, M.; Kavitha, B.; Nayak, V.L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi, A.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 144, 557-571.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.055] [PMID: 29289881]
[90]
Thirunavukkarasu, T.; Sparkes, H.A.; Natarajan, K. Quinoline based Pd(II) complexes: Synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity. Inorg. Chim. Acta, 2018, 482, 229-239.
[http://dx.doi.org/10.1016/j.ica.2018.06.003]
[91]
Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; Hogendorf, A.; Sobiak, S. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem., 2018, 144, 797-816.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.050] [PMID: 29291446]
[92]
Hekal, M.H.; Abu El-Azm, F.S.M.; Sallam, H.A. Synthesis, spectral characterization, and in vitro biological evaluation of some novel isoquinolinone-based heterocycles as potential antitumor agents. J. Heterocycl. Chem., 2019, 56(3), 795-803.
[http://dx.doi.org/10.1002/jhet.3448]
[93]
Bondock, S.; Alqahtani, S.; Fouda, A.M. Convenient synthesis and antitumor evaluation of some new 9-ethyl-3-(hetaryl)carbazoles. Synth. Commun., 2019, 49(17), 2188-2202.
[http://dx.doi.org/10.1080/00397911.2019.1616759]
[94]
Pan, X.; Liang, L.; Si, R.; Wang, J.; Zhang, Q.; Zhou, H.; Zhang, L.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 10: Multi-target inhibitors of VEGFR-2, Tie-2 and EphB4 incorporated with 1,2,3-triazol. Eur. J. Med. Chem., 2019, 163, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.042] [PMID: 30503935]
[95]
Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697.
[http://dx.doi.org/10.1016/j.ejmech.2019.111697] [PMID: 31536891]
[96]
Pang, Y.; Lin, H.; Ou, C.; Cao, Y.; An, B.; Yan, J.; Li, X. Design, synthesis, and biological evaluation of novel benzodiazepine derivatives as anticancer agents through inhibition of tubulin polymerization in vitro and in vivo. Eur. J. Med. Chem., 2019, 182, 111670.
[http://dx.doi.org/10.1016/j.ejmech.2019.111670] [PMID: 31499359]
[97]
Patel, O.P.S.; Arun, A.; Singh, P.K.; Saini, D.; Karade, S.S.; Chourasia, M.K.; Konwar, R.; Yadav, P.P. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur. J. Med. Chem., 2019, 167, 226-244.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.003] [PMID: 30772606]
[98]
Ceramella, J.; Caruso, A.; Occhiuzzi, M.A.; Iacopetta, D.; Barbarossa, A.; Rizzuti, B.; Dallemagne, P.; Rault, S.; El-Kashef, H.; Saturnino, C.; Grande, F.; Sinicropi, M.S. Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. Eur. J. Med. Chem., 2019, 181, 111583.
[http://dx.doi.org/10.1016/j.ejmech.2019.111583] [PMID: 31400710]
[99]
Varró, G.; Pálchuber, P.; Pogrányi, B.; Simon, A.; Hegedűs, L.; Kádas, I. (±)-trans-Dihydronarciclasine and (±)-trans-dihydrolycoricidine analogues modified in their ring A: Evaluation of their anticancer activity and a SAR study. Eur. J. Med. Chem., 2019, 173, 76-89.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.010] [PMID: 30986573]
[100]
Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; Łączkowski, K.Z. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem., 2019, 175, 162-171.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.006] [PMID: 31082763]
[101]
Li, L.; Quan, D.; Chen, J.; Ding, J.; Zhao, J.; Lv, L.; Chen, J. Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Eur. J. Med. Chem., 2019, 184, 111732.
[http://dx.doi.org/10.1016/j.ejmech.2019.111732] [PMID: 31610372]
[102]
Venkatesh, R.; Kasaboina, S.; Jain, N.; Janardhan, S.; Holagunda, U.D.; Nagarapu, L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J. Mol. Struct., 2019, 1181, 403-411.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.098]
[103]
Venkat Swamy, P.; Kiran Kumar, V.; Radhakrishnam Raju, R.; Venkata Reddy, R.; Chatterjee, A.; Kiran, G.; Sridhar, G. Amide derivatives of 4-azaindole: Design, synthesis, and EGFR targeting anticancer agents. Synth. Commun., 2020, 50(1), 71-84.
[http://dx.doi.org/10.1080/00397911.2019.1683206]
[104]
Yavuz, S.Ç.; Akkoç, S.; Sarıpınar, E. The cytotoxic activities of imidazole derivatives prepared from various guanylhydrazone and phenylglyoxal monohydrate. Synth. Commun., 2019, 49(22), 3198-3209.
[http://dx.doi.org/10.1080/00397911.2019.1661481]
[105]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[106]
Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun., 2019, 49(13), 1729-1740.
[http://dx.doi.org/10.1080/00397911.2019.1608450]
[107]
Nishtala, V.B.; Gandamalla, D.; Yellu, N.R.; Basavoju, S. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl2+ urea via the pseudo four-component reaction: Anticancer, antioxidant, and molecular docking studies. Synth. Commun., 2019, 49(20), 2671-2682.
[http://dx.doi.org/10.1080/00397911.2019.1639193]
[108]
Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghasemi, A.; Ghodsi, R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 98, 103711.
[http://dx.doi.org/10.1016/j.bioorg.2020.103711] [PMID: 32179282]
[109]
Donthiboina, K.; Anchi, P.; Gurram, S.; Sai, M. G.; Lakshmi Uppu, J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Synthesis and biological evaluation of substituted N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg. Chem., 2020, 103, 104191.
[http://dx.doi.org/10.1016/j.bioorg.2020.104191] [PMID: 32891862]
[110]
George, R.F.; Kandeel, M.; El-Ansary, D.Y.; El Kerdawy, A.M. Some 1,3,5-trisubstituted pyrazoline derivatives targeting breast cancer: Design, synthesis, cytotoxic activity, EGFR inhibition and molecular docking. Bioorg. Chem., 2020, 99, 103780.
[http://dx.doi.org/10.1016/j.bioorg.2020.103780] [PMID: 32224337]
[111]
Gür, M.; Yerlikaya, S.; Şener, N.; Özkınalı, S.; Baloglu, M.C.; Gökçe, H.; Altunoglu, Y.C.; Demir, S.; Şener, İ. Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. J. Mol. Struct., 2020, 1219, 128570.
[http://dx.doi.org/10.1016/j.molstruc.2020.128570]
[112]
Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem., 2020, 94, 103382.
[http://dx.doi.org/10.1016/j.bioorg.2019.103382] [PMID: 31662214]
[113]
Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202, 127310.
[http://dx.doi.org/10.1016/j.molstruc.2019.127310]
[114]
Kouba, S.; Braire, J.; Félix, R.; Chantôme, A.; Jaffrès, P.A.; Lebreton, J.; Dubreuil, D.; Pipelier, M.; Zhang, X.; Trebak, M.; Vandier, C.; Mathé-Allainmat, M.; Potier-Cartereau, M. Lipidic synthetic alkaloids as SK3 channel modulators. Synthesis and biological evaluation of 2-substituted tetrahydropyridine derivatives with potential anti-metastatic activity. Eur. J. Med. Chem., 2020, 186, 111854.
[http://dx.doi.org/10.1016/j.ejmech.2019.111854] [PMID: 31753515]
[115]
Zhou, S.; Huang, G. Design, synthesis and biological evaluation of novel 7H-benzo [c] [1, 3] dioxolo [4, 5-f] chromen-7-one derivatives with potential anti-tumor activity. Bioorg. Chem., 2020, 105, 104381.
[http://dx.doi.org/10.1016/j.bioorg.2020.104381] [PMID: 33113412]
[116]
Xue, H.; Svatek, H.; Bertonha, A.F.; Reisenauer, K.; Robinson, J.; Kim, M.; Ingros, A.; Ho, M.; Taube, J.; Romo, D. Synthesis of agelastatin A and derivatives premised on a hidden symmetry element leading to analogs displaying anticancer activity. Tetrahedron, 2021, 94, 132340.
[http://dx.doi.org/10.1016/j.tet.2021.132340] [PMID: 35663119]
[117]
Eissa, I.H.; Dahab, M.A.; Ibrahim, M.K.; Alsaif, N.A.; Alanazi, A.Z.; Eissa, S.I.; Mehany, A.B.M.; Beauchemin, A.M. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg. Chem., 2021, 112, 104965.
[http://dx.doi.org/10.1016/j.bioorg.2021.104965] [PMID: 34020238]
[118]
Elimam, D.M.; Elgazar, A.A.; Bonardi, A.; Abdelfadil, M.; Nocentini, A.; El-Domany, R.A.; Abdel-Aziz, H.A.; Badria, F.A.; Supuran, C.T.; Eldehna, W.M. Natural inspired piperine-based sulfonamides and carboxylic acids as carbonic anhydrase inhibitors: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2021, 225, 113800.
[http://dx.doi.org/10.1016/j.ejmech.2021.113800] [PMID: 34482273]
[119]
Chen, Y.Y.; Bai, Y.P.; Li, B.; Zhao, X.B.; Yang, C.J.; Liu, Y.Q.; Gao, J.M.; Guo, J.; Li, C.; Peng, J.W.; Zhao, Z.M.; Zhang, Z.J.; Xu, C.R. Design and synthesis of novel 20(S)-α-aminophosphonate derivatives of camptothecin as potent antitumor agents. Bioorg. Chem., 2021, 114, 105065.
[http://dx.doi.org/10.1016/j.bioorg.2021.105065] [PMID: 34174631]
[120]
Hassan, S.M.; Morsy, J.M.; Hassanin, H.M.; Othman, E.S. Synthesis and cytotoxic evaluation of novel brominated N-alkyl pyrano[3,2-c]quinolinones. J. Heterocycl. Chem., 2021, 58(1), 305-314.
[http://dx.doi.org/10.1002/jhet.4169]
[121]
Kulkarni, M.R.; Lad, N.P.; Khedkar, V.M.; Gaikwad, N.D. Synthesis, in vitro cytotoxicity, and molecular docking study of novel 3, 4-dihydroisoquinolin-1(2H)-one based piperlongumine analogues. J. Heterocycl. Chem., 2021, 58(6), 1359-1370.
[http://dx.doi.org/10.1002/jhet.4264]
[122]
Luan, S.; Gao, Y.; Liang, X.; Zhang, L.; Yin, L.; He, C.; Liu, S.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. Synthesis and structure-activity relationship of lipo-diterpenoid alkaloids with potential target of topoisomerase IIα for breast cancer treatment. Bioorg. Chem., 2021, 109, 104699.
[http://dx.doi.org/10.1016/j.bioorg.2021.104699] [PMID: 33611138]
[123]
Sun, J.; Wang, J.; Wang, X.; Hu, X.; Cao, H.; Bai, J.; Li, D.; Hua, H. Design and synthesis of β-carboline derivatives with nitrogen mustard moieties against breast cancer. Bioorg. Med. Chem., 2021, 45, 116341.
[http://dx.doi.org/10.1016/j.bmc.2021.116341] [PMID: 34365102]
[124]
Al-Nemari, R.; Bacha, A.B.; Al-Senaidy, A.; Almutairi, M.H.; Arafah, M.; Al-Saran, H.; Abutaha, N.; Semlali, A. Cytotoxic effects of Annona squamosa leaves against breast cancer cells via apoptotic signaling proteins. J. King Saud Univ. Sci., 2022, 34(4), 102013.
[http://dx.doi.org/10.1016/j.jksus.2022.102013]
[125]
Yang, P.; Cheng, Y.; Huang, X.; Huang, B.; Yi, L.; He, H.; Xie, Y. Identification of a new benzophenanthridine alkaloid from Eomecon chionantha induced necroptosis in breast cancer cells. Nat. Prod. Res., 2023, 37(6), 912-918.
[http://dx.doi.org/10.1080/14786419.2022.2096606] [PMID: 35801972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy