Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Tubulin-gene Mutation in Drug Resistance in Helminth Parasite: Docking and Molecular Dynamics Simulation Study

Author(s): Ananta Swargiary*, Harmonjit Boro and Dulur Brahma

Volume 17, Issue 4, 2023

Published on: 28 December, 2023

Page: [249 - 259] Pages: 11

DOI: 10.2174/0122127968276934231219052232

Price: $65

Abstract

Background: Drug resistance is an important phenomenon in helminth parasites. Microtubules are among the key chemotherapeutic targets, mutations of which lead to drug resistance.

Objectives: The present study investigated the role of F167Y, E198A, and F200Y mutations in β- tubulin protein and their effect on albendazole binding.

Methods: Brugia malayi β-tubulin protein models were generated using the SwissModel platform by submitting amino acid sequences. Mutations were carried out at amino acid sequences by changing F167Y, E198A, and F200Y. All the model proteins (one wild and three mutated) were docked with the anthelmintic drug albendazole using AutoDock vina-1.1.5. Docking complexes were further investigated for their binding stability by a Molecular Dynamic Simulation study using Gromacs-2023.2. The binding free energies of protein-ligand complexes were analyzed using the MM/PBSA package.

Results: The docking study observed decreased ligand binding affinity in F167Y and E198A mutant proteins compared to wild proteins. MD simulation revealed the overall structural stability of the protein complexes during the simulation period. The simulation also observed more stable binding of albendazole in the active pocket of mutant proteins compared to wild-type proteins. Like ligand RMSD, wild-type protein also showed higher amino acid residual flexibility. The flexibility indicates the less compactness of wild β-tubulin protein complexes compared to mutant proteinligand complexes. Van der Waals and electrostatic interactions were found to be the major energy in protein-ligand complexes. However, due to higher solvation energy, wild-type protein showed more flexibility compared to others.

Conclusion: The study, therefore, concludes that mutations at positions 167 and 198 of the β- tubulin protein contribute to resistance to albendazole through weakened binding affinity. However, the binding of albendazole binding to the proteins leads to structures becoming more stable and compact.

Graphical Abstract

[1]
Hoerauf, A.; Pfarr, K.; Mand, S.; Debrah, A.Y.; Specht, S. Filariasis in Africa—treatment challenges and prospects. Clin. Microbiol. Infect., 2011, 17(7), 977-985.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03586.x] [PMID: 21722251]
[2]
Ajendra, J.; Hoerauf, A.; Hübner, M.P. Biology of the Human Filariases; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.102926]
[3]
Bockarie, M.J.; Deb, R.M. Elimination of lymphatic filariasis: Do we have the drugs to complete the job? Curr. Opin. Infect. Dis., 2010, 23(6), 617-620.
[http://dx.doi.org/10.1097/QCO.0b013e32833fdee5] [PMID: 20847694]
[4]
Tripathi, B.; Roy, N.; Dhingra, N. Introduction of triple-drug therapy for accelerating lymphatic filariasis elimination in India: Lessons learned. Am. J. Trop. Med. Hyg., 2022, 106(5_Suppl (Suppl.), 29-38.
[http://dx.doi.org/10.4269/ajtmh.21-0964] [PMID: 35292580]
[5]
Fissiha, W.; Kinde, M.Z. Anthelmintic resistance and its mechanism: A review. Infect. Drug Resist., 2021, 14, 5403-5410.
[http://dx.doi.org/10.2147/IDR.S332378] [PMID: 34938088]
[6]
McGarry, H.F.; Plant, L.D.; Taylor, M.J. Diethylcarbamazine activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway. Filaria J., 2005, 4(1), 4.
[http://dx.doi.org/10.1186/1475-2883-4-4] [PMID: 15932636]
[7]
Robinson, M.W.; McFerran, N.; Trudgett, A.; Hoey, L.; Fairweather, I. A possible model of benzimidazole binding to β-tubulin disclosed by invoking an inter-domain movement. J. Mol. Graph. Model., 2004, 23(3), 275-284.
[http://dx.doi.org/10.1016/j.jmgm.2004.08.001] [PMID: 15530823]
[8]
Sharma, O.P.; Pan, A.; Hoti, S.L.; Jadhav, A.; Kannan, M.; Mathur, P.P. Modeling, docking, simulation, and inhibitory activity of the benzimidazole analogue against β-tubulin protein from Brugia malayi for treating lymphatic filariasis. Med. Chem. Res., 2012, 21(9), 2415-2427.
[http://dx.doi.org/10.1007/s00044-011-9763-5]
[9]
Lodish, H.; Berk, A.; Kaiser, C.A.; Krieger, M.; Bretscher, A.; Ploegh, H.; Amon, A.; Martin, K.C. Molecular Cell Biology, 8th ed; W. H. Freeman and Company: New York, 2016, pp. 822-830.
[10]
Anderson, R.J.; Bendell, D.J.; Hooper, M.; Cairns, D.; Mackay, S.P.; Hiremath, S.P.; Jivanagi, A.S.; Badami, S.; Biradar, J.S.; Townson, S. Potential transition state phosphoramidate inhibitors of β-tubulin as antifilarial agents. J. Pharm. Pharmacol., 2010, 53(1), 89-94.
[http://dx.doi.org/10.1211/0022357011775055] [PMID: 11206197]
[11]
Roos, M.H. The molecular nature of benzimidazole resistance in helminths. Parasitol. Today, 1990, 6(4), 125-127.
[http://dx.doi.org/10.1016/0169-4758(90)90229-W] [PMID: 15463314]
[12]
Furtado, L.F.V.; de Paiva Bello, A.C.P.; Rabelo, É.M.L. Benzimidazole resistance in helminths: From problem to diagnosis. Acta Trop., 2016, 162, 95-102.
[http://dx.doi.org/10.1016/j.actatropica.2016.06.021] [PMID: 27338184]
[13]
James, C.E.; Hudson, A.L.; Davey, M.W. Drug resistance mechanisms in helminths: Is it survival of the fittest? Trends Parasitol., 2009, 25(7), 328-335.
[http://dx.doi.org/10.1016/j.pt.2009.04.004] [PMID: 19541539]
[14]
Mohammedsalih, K.M.; Krücken, J.; Khalafalla, A.; Bashar, A.; Juma, F.R.; Abakar, A.; Abdalmalaik, A.A.H.; Coles, G.; von Samson-Himmelstjerna, G. New codon 198 β-tubulin polymorphisms in highly benzimidazole resistant Haemonchus contortus from goats in three different states in Sudan. Parasit. Vectors, 2020, 13(1), 114.
[http://dx.doi.org/10.1186/s13071-020-3978-6] [PMID: 32122383]
[15]
Grau-Pujol, B.; Gandasegui, J.; Escola, V.; Marti-Soler, H.; Cambra-Pellejà, M.; Demontis, M.; Brienen, E.A.T.; Jamine, J.C.; Muchisse, O.; Cossa, A.; Sacoor, C.; Cano, J.; Van Lieshout, L.; Martinez-Valladares, M.; Muñoz, J. Single-nucleotide polymorphisms in the beta-tubulin gene and its relationship with treatment response to albendazole in human soil-transmitted helminths in Southern Mozambique. Am. J. Trop. Med. Hyg., 2022, 107(3), 649-657.
[http://dx.doi.org/10.4269/ajtmh.21-0948] [PMID: 35895348]
[16]
Vyas, V.K.; Ukawala, R.D.; Chintha, C.; Ghate, M. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17.
[http://dx.doi.org/10.4103/0250-474X.102537] [PMID: 23204616]
[17]
Velan, A.; Hoda, M. In-silico comparison of inhibition of wild and drug-resistant Haemonchus contortus β-tubulin isotype-1 by glycyrrhetinic acid, thymol and albendazole interactions. J. Parasit. Dis., 2021, 45(1), 24-34.
[http://dx.doi.org/10.1007/s12639-020-01274-w] [PMID: 33746383]
[18]
Jones, B.P.; van Vliet, A.H.M.; LaCourse, E.J.; Betson, M. Identification of key interactions of benzimidazole resistance-associated amino acid mutations in Ascaris β-tubulins by molecular docking simulations. Sci. Rep., 2022, 12(1), 13725.
[http://dx.doi.org/10.1038/s41598-022-16765-4] [PMID: 35961997]
[19]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[20]
Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356(6364), 83-85.
[http://dx.doi.org/10.1038/356083a0] [PMID: 1538787]
[21]
Silakari, O.; Singh, P.K. Homology modeling: Developing 3D structures of target proteins missing in databases. In: Concepts and Experimental Protocols of Modelling and Informatics in Drug Design; Silakari, O.M.; Pankaj, K., Eds.; Academic Press, 2021; pp. 107-130.
[http://dx.doi.org/10.1016/B978-0-12-820546-4.00005-2]
[22]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334]
[23]
Schrödinger, L.; DeLano, W. PyMOL. 2020. Available from: http://www.pymol.org/pymol
[24]
Melo, F.; Devos, D.; Depiereux, E.; Feytmans, E. ANOLEA: A www server to assess protein structures. Proc. Int. Conf. Intell. Syst. Mol. Biol., 1997, 5(5), 187-190.
[PMID: 9322034]
[25]
Biovia, D.; Berman, H.; Westbrook, J.; Feng, Z.; Gilliland, G. Dassault Systèmes BIOVIA, Discovery studio visualizer; San Diego: Dassault Systèmes, 2016.
[26]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[27]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2(1-2), 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[28]
Lindahl, A.H. Van der Spoel Zenodo, 2020.
[http://dx.doi.org/10.5281/zenodo.4054996]
[29]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[30]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[31]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[32]
Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol., 1997, 277, 396-404.
[http://dx.doi.org/10.1016/S0076-6879(97)77022-8] [PMID: 9379925]
[33]
Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; Jain, S.; Lewis, S.M.; Arendall, W.B., III; Snoeyink, J.; Adams, P.D.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci., 2018, 27(1), 293-315.
[http://dx.doi.org/10.1002/pro.3330] [PMID: 29067766]
[34]
Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J., 2016, 283(1), 102-111.
[http://dx.doi.org/10.1111/febs.13555] [PMID: 26462166]
[35]
Lubega, G.W.; Prichard, R.K. Interaction of benzimidazole anthelmintics with Haemonchus contortus tubulin: Binding affinity and anthelmintic efficacy. Exp. Parasitol., 1991, 73(2), 203-213.
[http://dx.doi.org/10.1016/0014-4894(91)90023-P] [PMID: 1889474]
[36]
Chambers, E.; Ryan, L.A.; Hoey, E.M.; Trudgett, A.; McFerran, N.V.; Fairweather, I.; Timson, D. J. Liver fluke β-tubulin isotype 2 binds albendazole and is thus a probable target of this drug. Parasitol. Res., 2010, 107(5), 1257-1264.
[http://dx.doi.org/10.1007/s00436-010-1997-5] [PMID: 20676683]
[37]
Aguayo-Ortiz, R.; Méndez-Lucio, O.; Romo-Mancillas, A.; Castillo, R.; Yépez-Mulia, L.; Medina-Franco, J.L.; Hernández-Campos, A. Molecular basis for benzimidazole resistance from a novel β-tubulin binding site model. J. Mol. Graph. Model., 2013, 45, 26-37.
[http://dx.doi.org/10.1016/j.jmgm.2013.07.008] [PMID: 23995453]
[38]
Hansson, T.; Oostenbrink, C.; van Gunsteren, W. Molecular dynamics simulations. Curr. Opin. Struct. Biol., 2002, 12(2), 190-196.
[http://dx.doi.org/10.1016/S0959-440X(02)00308-1] [PMID: 11959496]
[39]
Chu, Z.; Chen, J.; Nyporko, A.; Han, H.; Yu, Q.; Powles, S. Novel α-Tubulin mutations conferring resistance to dinitroaniline herbicides in lolium rigidum. Front. Plant Sci., 2018, 9, 97.
[http://dx.doi.org/10.3389/fpls.2018.00097] [PMID: 29472938]
[40]
Majumdar, S.; Maiti, S.; Ghosh Dastidar, S. Dynamic and static water molecules complement the TN16 conformational heterogeneity inside the tubulin cavity. Biochemistry, 2016, 55(2), 335-347.
[http://dx.doi.org/10.1021/acs.biochem.5b00853] [PMID: 26666704]
[41]
Guzmán-Ocampo, D.C.; Aguayo-Ortiz, R.; Cano-González, L.; Castillo, R.; Hernández-Campos, A.; Dominguez, L. Effects of the protonation state of titratable residues and the presence of water molecules on nocodazole binding to β-tubulin. ChemMedChem, 2018, 13(1), 20-24.
[http://dx.doi.org/10.1002/cmdc.201700530] [PMID: 29059502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy