Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Biological Activities of Zinc Oxide Nanoparticles Green Synthesized Using the Aqueous Extract of Dracocephalum kotschyi Boiss

Author(s): Foroogh Mirzania*, Iraj Salimikia*, Javad Ghasemian Yadegari, Abdolrazagh Marzban, Amirmasoud Firouzi, Alireza Nazarzadeh and Javid Aalaei

Volume 21, Issue 4, 2024

Published on: 27 December, 2023

Article ID: e271223224899 Pages: 12

DOI: 10.2174/0115701638284118231220074251

Price: $65

conference banner
Abstract

Background: Dracocephalum kotschyi Boiss. is known as a native medicinal plant of Iran.

Objective: In this study, aqueous extract of D. kotschyi was used to synthesize ZnO-NPs. To produce ZnO-NPs, aerial parts of D. kotschyi were powdered and then macerated for obtaining aqueous extract, after that, aqueous extract was used to reduse zinc nitrate to ZnO-NPs.

Methods: To confirm nanoparticles synthesis, SEM, TEM, UV-Vis, FTIR, and XRD were used. The synthesized ZnO-NPs were studied for antimicrobial activities by microdilution method for calculating MIC and MBC. Analysis of ZnO-NPs confirmed successful synthesis by extract of D. kotschyi.

Results: The sizes of ZnO-NPs were estimated 50-200 nm in diameter. Antibacterial and antifungal experiments showed potent activities against Staphylococos aureus, Pseudomonas aeruginosa and Candida albicans. The results of the studies showed that the nanoparticles synthesized with the aqueous extract of D. kotschyi have a much greater antimicrobial effect than the aqueous extract of D. kotschyi and zinc nanoparticles, each alone (MIC values 3.7 to 7.5 mg/ml).

Conclusion: The noteworthy point is that the inhibitory rate of synthesized zinc oxide nanoparticles is higher compared to broad-spectrum antibiotics, such as chloramphenicol (MIC values 15 mg/ml). Determining the therapeutic and toxic dose of this product for humans requires further investigation and clinical trials.

Graphical Abstract

[1]
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. J Biomater Sci Polym Ed 2022; 33(11): 1435-68.
[http://dx.doi.org/10.1080/09205063.2022.2054399] [PMID: 35294334]
[2]
Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res 2021; 199(1): 344-70.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[3]
Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: A review. Environ Chem Lett 2021; 19(1): 355-74.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[4]
Naikoo GA, Mustaqeem M, Hassan IU, et al. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J Saudi Chem Soc 2021; 25(9): 101304.
[http://dx.doi.org/10.1016/j.jscs.2021.101304]
[5]
Paiva-Santos AC, Herdade AM, Guerra C, et al. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm 2021; 597: 120311.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120311] [PMID: 33539998]
[6]
Behzad F, Naghib SM. kouhbanani MAJ, Tabatabaei SN, Zare Y, Rhee KY. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J Ind Eng Chem 2021; 94: 92-104.
[http://dx.doi.org/10.1016/j.jiec.2020.12.005]
[7]
Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad M. Cost-effective and eco-friendly synthesis of titanium dioxide (TiO 2) nanoparticles using fruit’s peel agro-waste extracts: Characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 2019; 12(3): 244-54.
[http://dx.doi.org/10.1080/17518253.2019.1629641]
[8]
Pillai AM, Sivasankarapillai VS, Rahdar A, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 2020; 1211: 128107.
[http://dx.doi.org/10.1016/j.molstruc.2020.128107]
[9]
Abbasi BA, Iqbal J, Nasir JA, et al. Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications. Microsc Res Tech 2020; 83(11): 1308-20.
[http://dx.doi.org/10.1002/jemt.23522] [PMID: 32666568]
[10]
Godoy-Gallardo M, Eckhard U, Delgado LM, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact Mater 2021; 6(12): 4470-90.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.033] [PMID: 34027235]
[11]
Keypour S, Mirzania F, Farimani MM. Antioxidant activity, total flavonoid and phenolic contents of three different extracts of Hyrcanian reishi. Curr Bioact Compd 2019; 15(1): 109-13.
[http://dx.doi.org/10.2174/1573407213666171107151007]
[12]
Md Ishak N A I, Kamarudin SK, Timmiati SN. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Mater Res Express 2019; 6(11): 112004.
[http://dx.doi.org/10.1088/2053-1591/ab4458]
[13]
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021; 19(1): 23-36.
[http://dx.doi.org/10.1038/s41579-020-0420-1] [PMID: 32814862]
[14]
Ebrahimi S, Farimani MM, Mirzania F, Hamburger M. New sesterterpenoids from Salvia mirzayanii - stereochemical characterization by computational electronic circular dichroism. Planta Med 2013; 79(13): PG2.
[http://dx.doi.org/10.1055/s-0033-1352072]
[15]
Uddin TM, Chakraborty AJ, Khusro A, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021; 14(12): 1750-66.
[http://dx.doi.org/10.1016/j.jiph.2021.10.020] [PMID: 34756812]
[16]
Singh A, Gautam PK, Verma A, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep 2020; 25: e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[17]
Mirzania F, Sonboli A. Chemical diversity of essential oil composition from five populations of Dracocephalum kotschyi Boiss. HBB 2021; 5(1): 39-50.
[18]
Moradi H, Ghavam M, Tavili A. Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotechnol Rep 2020; 25: e00408.
[http://dx.doi.org/10.1016/j.btre.2019.e00408] [PMID: 32140440]
[19]
Sonboli A, Mirzania F, Gholipour A. Essential oil composition of Dracocephalum kotschyi Boiss. from Iran. Nat Prod Res 2019; 33(14): 2095-8.
[http://dx.doi.org/10.1080/14786419.2018.1482550] [PMID: 29873264]
[20]
Mirzania F, Farimani MM. Biochemical evaluation of antioxidant activity, phenol and flavonoid contents of Dracocephalum kotschyi boiss extracts obtained with different solvents. Health Biotechnol Biopharma J 2018; 1: 32-44.
[21]
Ghannad R, Haghjou MM, Raza A, Hasanuzzaman M. Induction of hydrolytic enzyme activities in dormant seeds of Dracocephalum kotschyi Boiss. Causes improvement of germination and seedling vigor indices. Acta Physiol Plant 2022; 44(4): 48.
[http://dx.doi.org/10.1007/s11738-022-03381-y]
[22]
Pokhrel R, Shakya R, Baral P, Chapagain P. Molecular modeling and simulation of the peptidoglycan layer of gram-positive bacteria Staphylococcus aureus. J Chem Inf Model 2022; 62(20): 4955-62.
[http://dx.doi.org/10.1021/acs.jcim.2c00437] [PMID: 35981320]
[23]
Murugan K, Roni M, Panneerselvam C, et al. Sargassum wightii -synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol Mol Plant Pathol 2018; 101: 202-13.
[http://dx.doi.org/10.1016/j.pmpp.2017.02.004]
[24]
Xiong G, Pal U, Serrano JG, Ucer KB, Williams RT. Photoluminesence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Phys Stat Sol C 2006; 3(10): 3577-81.
[25]
Christofferson AJ, Elbourne A, Cheeseman S, et al. Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. J Colloid Interface Sci 2020; 580: 850-62.
[http://dx.doi.org/10.1016/j.jcis.2020.07.090] [PMID: 32736272]
[26]
Dorosti N, Jamshidi F. Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: Synthesis, characterization, and evaluation of anticancer and antibacterial activity. J Appl Biomed 2016; 14(3): 235-45.
[http://dx.doi.org/10.1016/j.jab.2016.03.001]
[27]
Chahardoli A, Karimi N, Fattahi A, Salimikia I. Biological applications of phytosynthesized gold nanoparticles using leaf extract of Dracocephalum kotschyi. J Biomed Mater Res A 2019; 107(3): 621-30.
[http://dx.doi.org/10.1002/jbm.a.36578] [PMID: 30411481]
[28]
Kazemi MS, Rasaeinezhad S, Es’haghi Z. Evaluation of flutamide loading capacity of biosynthesis of plant-mediated glutathione-modified gold nanoparticles by Dracocephalum kotschyi Boiss extract. Chem Pap 2020; 74(7): 2041-8.
[http://dx.doi.org/10.1007/s11696-019-01048-6]
[29]
Goli Z, Izanloo C. Green synthesis of silver nanostructures using aqueous extract of Dracocephalum kotschyi and evaluation of antioxidant properties of herbal extracts and antibacterial feature of green- synthesized nanostructures. Curr Chem Biol 2019; 13(3): 223-31.
[http://dx.doi.org/10.2174/2212796813666190307162405]
[30]
Dobrucka R, Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 2016; 23(4): 517-23.
[http://dx.doi.org/10.1016/j.sjbs.2015.05.016] [PMID: 27298586]
[31]
Rajabi HR, Naghiha R, Kheirizadeh M, Sadatfaraji H, Mirzaei A, Alvand ZM. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: Synthesis, characterization, and biological properties. Mater Sci Eng C 2017; 78: 1109-18.
[http://dx.doi.org/10.1016/j.msec.2017.03.090] [PMID: 28575946]
[32]
Vijayakumar S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog 2018; 116: 44-8.
[http://dx.doi.org/10.1016/j.micpath.2018.01.003] [PMID: 29330059]
[33]
Sonboli A, Mirzania F, Aliahmadi A, Amiri MS. Composition and antibacterial activity of the essential oil of Phlomidoschema parviflorum from Iran. Chem Nat Compd 2015; 51(2): 366-8.
[http://dx.doi.org/10.1007/s10600-015-1286-8]
[34]
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: Past, present and future. Curr Opin Microbiol 2019; 51: 72-80.
[http://dx.doi.org/10.1016/j.mib.2019.10.008] [PMID: 31733401]
[35]
Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol Sci 2016; 37(8): 689-701.
[http://dx.doi.org/10.1016/j.tips.2016.05.001] [PMID: 27267698]
[36]
Pedro SN, Gomes ATPC, Oskoei P, et al. Boosting antibiotics performance by new formulations with deep eutectic solvents. Int J Pharm 2022; 616: 121566.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121566] [PMID: 35151818]
[37]
Mostafa Saleh N, Elsawy MM, Abd El-Wahab H, Salem SS, Abd El-Sattar NED. New coating formulation based on synthesized benzodiazepine derivatives as double function additives for industrial application. Pigm Resin Technol 2022; 51(6): 581-99.
[http://dx.doi.org/10.1108/PRT-06-2021-0061]
[38]
Alfei S, Caviglia D, Piatti G, Zuccari G, Schito AM. Synthesis, characterization and broad-spectrum bactericidal effects of ammonium methyl and ammonium ethyl styrene-based nanoparticles. Nanomaterials 2022; 12(16): 2743.
[http://dx.doi.org/10.3390/nano12162743] [PMID: 36014607]
[39]
Aleksandrowicz A, Carolak E, Dutkiewicz A, Błachut A, Waszczuk W, Grzymajlo K. Better together- Salmonella biofilm-associated antibiotic resistance. Gut Microbes 2023; 15(1): 2229937.
[http://dx.doi.org/10.1080/19490976.2023.2229937] [PMID: 37401756]
[40]
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346: 300-16.
[http://dx.doi.org/10.1016/j.jconrel.2022.04.035] [PMID: 35483636]
[41]
Elkady MA, Yehia AM, Elsakka EGE, et al. miRNAs driving diagnosis, progression, and drug resistance in multiple myeloma. Pathol Res Pract 2023; 248: 154704.
[http://dx.doi.org/10.1016/j.prp.2023.154704] [PMID: 37499518]
[42]
Dedrick RM, Smith BE, Cristinziano M, et al. Phage therapy of Mycobacterium infections: Compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin Infect Dis 2023; 76(1): 103-12.
[http://dx.doi.org/10.1093/cid/ciac453] [PMID: 35676823]
[43]
Sanyaolu A, Okorie C, Marinkovic A, et al. Candida auris: An overview of the emerging drug-resistant fungal infection. Infect Chemother 2022; 54(2): 236-46.
[http://dx.doi.org/10.3947/ic.2022.0008] [PMID: 35794716]
[44]
Vengurlekar D, Walker C, Mahajan R, et al. Linezolid resistance in patients with drug-resistant TB. Int J Tuberc Lung Dis 2023; 27(7): 567-9.
[http://dx.doi.org/10.5588/ijtld.22.0632] [PMID: 37353865]
[45]
Hua Y, Dai X, Xu Y, et al. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur J Med Chem 2022; 234: 114239.
[http://dx.doi.org/10.1016/j.ejmech.2022.114239] [PMID: 35290843]
[46]
Zhang J, Jia Q, Yue Z, et al. An electroluminodynamic flexible device for highly efficient eradication of drug‐resistant bacteria. Adv Mater 2022; 34(17): 2200334.
[http://dx.doi.org/10.1002/adma.202200334] [PMID: 35194842]
[47]
Imperial MZ, Nedelman JR, Conradie F, Savic RM. Proposed linezolid dosing strategies to minimize adverse events for treatment of extensively drug-resistant tuberculosis. Clin Infect Dis 2022; 74(10): 1736-47.
[http://dx.doi.org/10.1093/cid/ciab699] [PMID: 34604901]
[48]
Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: Etiology, risk factors, and drug resistance patterns. Pneumonia 2022; 14(1): 4.
[http://dx.doi.org/10.1186/s41479-022-00096-z] [PMID: 35509063]
[49]
Yani DI, Juniarti N, Lukman M. Factors related to complying with anti-TB medications among drug-resistant tuberculosis patients in Indonesia. Patient Prefer Adherence 2022; 16: 3319-27.
[http://dx.doi.org/10.2147/PPA.S388989] [PMID: 36568917]
[50]
Zhu Y, Hao W, Wang X, et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections. Med Res Rev 2022; 42(4): 1377-422.
[http://dx.doi.org/10.1002/med.21879] [PMID: 34984699]
[51]
Zhao X, Tang H, Jiang X. Deploying gold nanomaterials in combating multi-drug-resistant bacteria. ACS Nano 2022; 16(7): 10066-87.
[http://dx.doi.org/10.1021/acsnano.2c02269] [PMID: 35776694]
[52]
Rabiee N, Ahmadi S, Akhavan O, Luque R. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials 2022; 15(5): 1799.
[http://dx.doi.org/10.3390/ma15051799] [PMID: 35269031]
[53]
Bala Subramaniyan S, Karnan Singaravelu D, Ameen F, Islam MA, Veerappan A. Phytolectin-cationic lipid complex revive ciprofloxacin efficacy against multi-drug resistant uropathogenic Escherichia coli. Colloids Surf A Physicochem Eng Asp 2022; 647: 128970.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128970]
[54]
Abishad P, Vergis J, Unni V, et al. Green synthesized silver nanoparticles using Lactobacillus acidophilus as an antioxidant, antimicrobial, and antibiofilm agent against multi-drug resistant enteroaggregative Escherichia coli. Probiotics Antimicrob Proteins 2022; 14(5): 904-14.
[http://dx.doi.org/10.1007/s12602-022-09961-1] [PMID: 35715714]
[55]
Zhou EZ, Ren GY, Sun YL, et al. Antibacterial activities of a novel Cu-bearing high-entropy alloy against multi-drug-resistant Acinetobacter baumannii and Staphylococcus aureus. Rare Met 2022; 41(2): 570-9.
[http://dx.doi.org/10.1007/s12598-021-01837-7]
[56]
Meade E, Slattery MA, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics 2020; 9(1): 32.
[http://dx.doi.org/10.3390/antibiotics9010032] [PMID: 31963311]
[57]
Huq MA. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int J Mol Sci 2020; 21(4): 1510.
[http://dx.doi.org/10.3390/ijms21041510] [PMID: 32098417]
[58]
Sonbol H, Ameen F, AlYahya S, Almansob A, Alwakeel S. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells. Sci Rep 2021; 11(1): 5444.
[http://dx.doi.org/10.1038/s41598-021-84794-6] [PMID: 33686169]
[59]
Lan Z, Ahmad N, Baghaei P, et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet Respir Med 2020; 8(4): 383-94.
[http://dx.doi.org/10.1016/S2213-2600(20)30047-3] [PMID: 32192585]
[60]
Langendonk RF, Neill DR, Fothergill JL. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: implications for current resistance-breaking therapies. Front Cell Infect Microbiol 2021; 11: 665759.
[http://dx.doi.org/10.3389/fcimb.2021.665759] [PMID: 33937104]
[61]
Preena PG, Swaminathan TR, Kumar VJR, Singh ISB. Antimicrobial resistance in aquaculture: A crisis for concern. Biologia 2020; 75(9): 1497-517.
[http://dx.doi.org/10.2478/s11756-020-00456-4]
[62]
Salem SS. Bio-fabrication of selenium nanoparticles using Baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Appl Biochem Biotechnol 2022; 194(5): 1898-910.
[http://dx.doi.org/10.1007/s12010-022-03809-8] [PMID: 34994951]
[63]
Pandey S, Sharma K, Gundabala V. Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. Food Biosci 2022; 48: 101730.
[http://dx.doi.org/10.1016/j.fbio.2022.101730]
[64]
Darvish M, Ajji A. Effect of polyethylene film thickness on the antimicrobial activity of embedded zinc oxide nanoparticles. ACS Omega 2021; 6(40): 26201-9.
[http://dx.doi.org/10.1021/acsomega.1c03223] [PMID: 34660979]
[65]
Zhou XQ, Hayat Z, Zhang DD, et al. Zinc Oxide nanoparticles: Synthesis, characterization, modification, and applications in food and agriculture. Processes 2023; 11(4): 1193.
[http://dx.doi.org/10.3390/pr11041193]
[66]
Ahmed S, Sameen DE, Lu R, et al. Research progress on antimicrobial materials for food packaging. Crit Rev Food Sci Nutr 2022; 62(11): 3088-102.
[http://dx.doi.org/10.1080/10408398.2020.1863327] [PMID: 33354994]
[67]
Manzoor A, Khan S, Dar AH, et al. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023; 43(4): e13046.
[http://dx.doi.org/10.1111/jfs.13046]
[68]
El Asuoty MS, El Tedawy FA, Abou-Arab NM. Effect of antibacterial activity of zinc oxide nanoparticles against E. coli and staph. aureus on quality and shelf life of minced meat. J Adv Vet Res 2023; 13(6): 1074-8.
[69]
Bose I, Roy S, Pandey VK, Singh R. A comprehensive review on significance and advancements of antimicrobial agents in biodegradable food packaging. Antibiotics 2023; 12(6): 968.
[http://dx.doi.org/10.3390/antibiotics12060968] [PMID: 37370286]
[70]
Claudel M, Schwarte JV, Fromm KM. New antimicrobial strategies based on metal complexes. Chemistry 2020; 2(4): 849-99.
[http://dx.doi.org/10.3390/chemistry2040056]
[71]
Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect 2020; 26(5): 596-603.
[http://dx.doi.org/10.1016/j.cmi.2019.09.015] [PMID: 31574341]
[72]
Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019; 576(7787): 459-64.
[http://dx.doi.org/10.1038/s41586-019-1791-1] [PMID: 31747680]
[73]
Bader MS, Loeb M, Leto D, Brooks AA. Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgrad Med 2020; 132(3): 234-50.
[http://dx.doi.org/10.1080/00325481.2019.1680052] [PMID: 31608743]
[74]
Álvarez-Martínez FJ, Barrajón-Catalán E, Herranz-López M, Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021; 90: 153626.
[http://dx.doi.org/10.1016/j.phymed.2021.153626] [PMID: 34301463]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy