Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Dapagliflozin Alleviates Myocardial Ischaemia Reperfusion Injury by Activating Mitophagy via the AMPK-PINK1/Parkin Signalling Pathway

Author(s): Wei Zuo, Liang Wang, Ran Tian, Lun Wang, Yifan Liu, Hao Qian, Xinglin Yang and Zhenyu Liu*

Volume 22, Issue 3, 2024

Published on: 21 December, 2023

Page: [203 - 217] Pages: 15

DOI: 10.2174/0115701611269801231211104905

Price: $65

Abstract

Introduction: Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models.

Method: We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established.

Results: 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91 ± 1.76 vs. 40.47 ± 3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8 ± 2.7 vs. 28.5 ± 5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6 ± 9.5 vs. 93.5 ± 13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0 ± 8.3 vs. 67.9 ± 13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5’monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI.

Conclusion: Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.

Graphical Abstract

[1]
Wendelboe AM, Raskob GE. Global burden of thrombosis. Circ Res 2016; 118(9): 1340-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306841] [PMID: 27126645]
[2]
Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020; 396(10258): 1204-22.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[3]
Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: A report from the american heart association. Circulation 2017; 135(10): e146-603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[4]
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65(14): 1454-71.
[http://dx.doi.org/10.1016/j.jacc.2015.02.032] [PMID: 25857912]
[5]
Lahnwong S, Palee S, Apaijai N, et al. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc Diabetol 2020; 19(1): 91.
[http://dx.doi.org/10.1186/s12933-020-01066-9] [PMID: 32539724]
[6]
Gong L, Wang X, Pan J, et al. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats. Open Med 2020; 16(1): 047-57.
[http://dx.doi.org/10.1515/med-2021-0005] [PMID: 33385063]
[7]
Tsai KL, Hsieh PL, Chou WC, Cheng HC, Huang YT, Chan SH. Dapagliflozin attenuates hypoxia/reoxygenation-caused cardiac dysfunction and oxidative damage through modulation of AMPK. Cell Biosci 2021; 11(1): 44.
[http://dx.doi.org/10.1186/s13578-021-00547-y] [PMID: 33637129]
[8]
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: Implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol 2018; 315(5): H1341-52.
[http://dx.doi.org/10.1152/ajpheart.00028.2018] [PMID: 30095969]
[9]
Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 2013; 229(2): 232-41.
[http://dx.doi.org/10.1002/path.4113] [PMID: 23011912]
[10]
Aldakkak M, Stowe DF, Chen Q, Lesnefsky EJ, Camara AKS. Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release. Cardiovasc Res 2008; 77(2): 406-15.
[PMID: 17900548]
[11]
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469(7329): 221-5.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[12]
Bottje WG. Board invited review: Oxidative stress and efficiency: The tightrope act of mitochondria in health and disease1,2. J Anim Sci 2019; 97(8): 3169-79.
[http://dx.doi.org/10.1093/jas/skz219] [PMID: 31247079]
[13]
Baechler BL, Bloemberg D, Quadrilatero J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy 2019; 15(9): 1606-19.
[http://dx.doi.org/10.1080/15548627.2019.1591672] [PMID: 30859901]
[14]
Zhang J, Nadtochiy SM, Urciuoli WR, Brookes PS. The cardioprotective compound cloxyquin uncouples mitochondria and induces autophagy. Am J Physiol Heart Circ Physiol 2016; 310(1): H29-38.
[http://dx.doi.org/10.1152/ajpheart.00926.2014] [PMID: 26519034]
[15]
Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 2015; 35(5): 615-21.
[http://dx.doi.org/10.1007/s10571-015-0166-x] [PMID: 25722131]
[16]
Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 2015; 4: 6-13.
[http://dx.doi.org/10.1016/j.redox.2014.11.006] [PMID: 25479550]
[17]
Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 2011; 286(22): 19630-40.
[http://dx.doi.org/10.1074/jbc.M110.209338] [PMID: 21454557]
[18]
Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12(1): 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[19]
Zuo W, Tian R, Chen Q, et al. miR-330-5p inhibits NLRP3 inflammasome-mediated myocardial ischaemia–reperfusion injury by targeting TIM3. Cardiovasc Drugs Ther 2021; 35(4): 691-705.
[http://dx.doi.org/10.1007/s10557-020-07104-8] [PMID: 33137205]
[20]
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3): 722-6.
[http://dx.doi.org/10.1007/s00125-017-4509-7] [PMID: 29197997]
[21]
Jing R, Hu ZK, Lin F, et al. Mitophagy-mediated mtDNA release aggravates stretching-induced inflammation and lung epithelial cell injury via the TLR9/MyD88/NF-κB pathway. Front Cell Dev Biol 2020; 8: 819.
[http://dx.doi.org/10.3389/fcell.2020.00819] [PMID: 33015037]
[22]
Lin JY, Jing R, Lin F, Ge W, Dai H, Pan L. High tidal volume induces mitochondria damage and releases mitochondrial DNA to aggravate the ventilator-induced lung injury. Front Immunol 2018; 9: 1477.
[http://dx.doi.org/10.3389/fimmu.2018.01477] [PMID: 30018615]
[23]
Tanajak P, Sa-nguanmoo P, Sivasinprasasn S, et al. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol 2018; 236(2): 69-84.
[http://dx.doi.org/10.1530/JOE-17-0457] [PMID: 29142025]
[24]
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 2017; 104: 298-310.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.035] [PMID: 28132924]
[25]
Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest 2018; 128(9): 3716-26.
[http://dx.doi.org/10.1172/JCI120849] [PMID: 30124471]
[26]
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[27]
Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 2015; 22(13): 1111-29.
[http://dx.doi.org/10.1089/ars.2014.5994] [PMID: 25330206]
[28]
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J 2021; 40(3): e104705.
[http://dx.doi.org/10.15252/embj.2020104705] [PMID: 33438778]
[29]
Miyakawa I. Organization and dynamics of yeast mitochondrial nucleoids. Proc Jpn Acad, Ser B, Phys Biol Sci 2017; 93(5): 339-59.
[http://dx.doi.org/10.2183/pjab.93.021] [PMID: 28496055]
[30]
Cheng M, Liu L, Lao Y, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget 2106 7(27): 42274-87.
[http://dx.doi.org/10.18632/oncotarget.9786] [PMID: 27281615]
[31]
Zuo W, Yan F, Liu Z, Zhang B. miR-330 regulates Drp-1 mediated mitophagy by targeting PGAM5 in a rat model of permanent focal cerebral ischemia. Eur J Pharmacol 2020; 880(880): 173143.
[http://dx.doi.org/10.1016/j.ejphar.2020.173143] [PMID: 32360974]
[32]
Zuo W, Yang PF, Chen J, Zhang Z, Chen NH. Drp‐1, a potential therapeutic target for brain ischaemic stroke. Br J Pharmacol 2016; 173(10): 1665-77.
[http://dx.doi.org/10.1111/bph.13468] [PMID: 26915692]
[33]
Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH. Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: The role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology 2014; 86: 103-15.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.002] [PMID: 25018043]
[34]
Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer’s disease. Ageing Res Rev 2020; 64: 101191.
[http://dx.doi.org/10.1016/j.arr.2020.101191] [PMID: 33022416]
[35]
Clark EH, Vázquez de la Torre A, Hoshikawa T, Briston T. Targeting mitophagy in Parkinson’s disease. J Biol Chem 2021; 296: 100209.
[http://dx.doi.org/10.1074/jbc.REV120.014294] [PMID: 33372898]
[36]
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010; 191(5): 933-42.
[http://dx.doi.org/10.1083/jcb.201008084] [PMID: 21115803]
[37]
Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 2011; 117(5): 856-67.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x] [PMID: 21426348]
[38]
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8(1): e1000298.
[http://dx.doi.org/10.1371/journal.pbio.1000298] [PMID: 20126261]
[39]
Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 2015; 125(2): 521-38.
[http://dx.doi.org/10.1172/JCI74942] [PMID: 25562319]
[40]
Zimmermann M, Reichert AS. How to get rid of mitochondria: Crosstalk and regulation of multiple mitophagy pathways. Biol Chem 2017; 399(1): 29-45.
[http://dx.doi.org/10.1515/hsz-2017-0206] [PMID: 28976890]
[41]
Quinsay MN, Thomas RL, Lee Y, Gustafsson ÅB. Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 2010; 6(7): 855-62.
[http://dx.doi.org/10.4161/auto.6.7.13005] [PMID: 20668412]
[42]
Yuan Y, Zheng Y, Zhang X, et al. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 2017; 13(10): 1754-66.
[http://dx.doi.org/10.1080/15548627.2017.1357792] [PMID: 28820284]
[43]
Kim AS, Miller EJ, Wright TM, et al. A small molecule AMPK activator protects the heart against ischemia–reperfusion injury. J Mol Cell Cardiol 2011; 51(1): 24-32.
[http://dx.doi.org/10.1016/j.yjmcc.2011.03.003] [PMID: 21402077]
[44]
Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008; 57(3): 696-705.
[http://dx.doi.org/10.2337/db07-1098] [PMID: 18083782]
[45]
Laker RC, Drake JC, Wilson RJ, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 2017; 8(1): 548.
[http://dx.doi.org/10.1038/s41467-017-00520-9] [PMID: 28916822]
[46]
Shirakabe A, Zhai P, Ikeda Y, et al. Drp1‐dependent mitochondrial autophagy plays a protective role against pressure overload‐induced mitochondrial dysfunction and heart failure. Circulation 2016; 133(13): 1249-63.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020502] [PMID: 26915633]
[47]
Shires SE, Gustafsson ÅB. Regulating renewable energy: Connecting ampk alpha 2 to pink1/parkin‐mediated mitophagy in the heart. Circ Res 2018; 122(5): 649-51.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312655] [PMID: 29496793]
[48]
Yang M, Pi H, Li M, et al. From the cover: Autophagy induction contributes to cadmium toxicity in mesenchymal stem cells via ampk/foxo3a/becn1 signalling. Toxicol Sci 2016; 154(1): 101-14.
[http://dx.doi.org/10.1093/toxsci/kfw144] [PMID: 27492225]
[49]
Seabright AP, Fine NHF, Barlow JP, et al. AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1‐Parkin independent manner. FASEB J 2020; 34(5): 6284-301.
[http://dx.doi.org/10.1096/fj.201903051R] [PMID: 32201986]
[50]
Wang B, Nie J, Wu L, et al. AMPKα2 protects against the development of heart failure by enhancing mitophagy via pink1 phosphorylation. Circ Res 2018; 122(5): 712-29.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312317] [PMID: 29284690]
[51]
Villani LA, Smith BK, Marcinko K, et al. The diabetes medication canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol Metab 2016; 5(10): 1048-56.
[http://dx.doi.org/10.1016/j.molmet.2016.08.014] [PMID: 27689018]
[52]
Hawley SA, Ford RJ, Smith BK, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 2016; 65(9): 2784-94.
[http://dx.doi.org/10.2337/db16-0058] [PMID: 27381369]
[53]
Mancini SJ, Boyd D, Katwan OJ, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep 2018; 8(1): 5276.
[http://dx.doi.org/10.1038/s41598-018-23420-4] [PMID: 29588466]
[54]
Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther 2010; 1(2): 57-92.
[http://dx.doi.org/10.1007/s13300-010-0006-4] [PMID: 22127746]
[55]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[56]
Mahaffey KW, Neal B, Perkovic V, et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (canagliflozin cardiovascular assessment study). Circulation 2018; 137(4): 323-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032038] [PMID: 29133604]
[57]
Kosiborod M, Cavender MA, Fu AZ, et al. CVD-REAL Investigators and Study Group*. Lower risk of heart failure and death in patients initiated on sodium–glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium–glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[58]
Packer M. Interplay of adenosine monophosphate‐activated protein kinase/sirtuin‐1 activation and sodium influx inhibition mediates the renal benefits of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22(5): 734-42.
[http://dx.doi.org/10.1111/dom.13961] [PMID: 31916329]
[59]
Gager GM, von Lewinski D, Sourij H, et al. Effects of SGLT2 inhibitors on ion homeostasis and oxidative stress associated mechanisms in heart failure. Biomed Pharmacother 2021; 143: 112169.
[http://dx.doi.org/10.1016/j.biopha.2021.112169] [PMID: 34560555]
[60]
Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 Inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther 2017; 31(2): 119-32.
[http://dx.doi.org/10.1007/s10557-017-6725-2] [PMID: 28447181]
[61]
Sayour AA, Korkmaz-Icöz S, Loganathan S, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia–reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med 2019; 17(1): 127.
[http://dx.doi.org/10.1186/s12967-019-1881-8] [PMID: 30992077]
[62]
Venditti P, Masullo P, Di Meo S. Effects of myocardial ischemia and reperfusion on mitochondrial function and susceptibility to oxidative stress. Cell Mol Life Sci 2001; 58(10): 1528-37.
[http://dx.doi.org/10.1007/PL00000793] [PMID: 11693531]
[63]
Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 2018; 25(6): 1080-93.
[http://dx.doi.org/10.1038/s41418-018-0086-7] [PMID: 29540794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy