Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Methodical and Immunological Insights of Prime COVID-19 Vaccines

Author(s): Wilson Pearl Evangeline, Sakthivelnathan Divyasri, Chandrasekaran Akshaya, Sekar Sruthi, Barathi Selvaraj, Rangasamy Kirubakaran and Kandasamy Nagarajan ArulJothi*

Volume 5, Issue 3, 2024

Published on: 18 December, 2023

Article ID: e181223224600 Pages: 10

DOI: 10.2174/0126667975275824231213112949

Price: $65

Abstract

Vaccines' discovery, manufacturing, and distribution have been on a historic uptick in response to this worldwide COVID-19 pandemic. A handful of vaccines have been approved on an emergency basis after passing minimal clinical trials. There are voids in the existing body of research and the published body of work on phase II and III clinical trial outcomes, efficacy, and recently developed side effects of the approved COVID-19 vaccines. Furthermore, the immunological and methodological insights of successful vaccinations are still unpopular and are not publicly reported. We have attempted to review some major classes of COVID-19 vaccines, namely inactivated viral particle vaccine (BBV152 - Covaxin), mRNA vaccines (BNT162b2 - Pfizer and mRNA-1273- Moderna), viral vector vaccines (Gam-COVID-Vac-Sputnik and ChAdOx1-S-Astrazeneca) and protein subunit vaccine (NVX-CoV2373-Novavax) and discuss their methodological and immunological formulations. This review intends to address the existing literature's gaps and limitations and the vaccine’s safety, efficiency, and effectiveness profiles. This report, by accumulating and comparing the existing publicly available literature and datasheets of the vaccines, concludes that the efficacy of the vaccinations has been found to be 81% for BBV152 (Covaxin), 94.5% for BNT162b2 (Pfizer), 94.5% for mRNA-1273 (Moderna), 91.6% for Gam-COVID-Vac (Sputnik V), 62–90% for ChAdOx1- S (AstraZeneca), and 96.4% for NVX-CoV2373 (Novavax), demonstrating their efficacy in lowering the severity and frequency of SARS-CoV-2 infection. We conclude that while the commercially approved vaccines have a few limitations regarding clinical trials and side effects, they provide immunity with efficacy ranging from 81% to 96.4% against COVID-19.

Graphical Abstract

[1]
Orenstein WA, Ahmed R. Simply put: Vaccination saves lives. Proc Natl Acad Sci USA 2017; 114(16): 4031-3.
[http://dx.doi.org/10.1073/pnas.1704507114] [PMID: 28396427]
[2]
Mascellino Maria Teresa. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infect Drug Resist 2021; 14: 3459-76.
[http://dx.doi.org/10.2147/IDR.S315727]
[3]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[4]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[5]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[6]
Ruch TR, Machamer CE. The coronavirus E protein: Assembly and beyond. Viruses 2012; 4(3): 363-82.
[http://dx.doi.org/10.3390/v4030363] [PMID: 22590676]
[7]
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20(1): 6.
[http://dx.doi.org/10.1186/s12985-023-01968-6] [PMID: 36627683]
[8]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[9]
Sanders Barbara. Inactivated Viral Vaccines. Vaccine Analysis: Strategies, Principles, and Control 2014.
[http://dx.doi.org/10.1007/978-3-662-45024-6_2]
[10]
Vanaparthy R, Mohan G, Vasireddy D, Atluri P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Infez Med 2021; 29(3): 328-38.
[http://dx.doi.org/10.53854/liim-2903-3] [PMID: 35146337]
[11]
Machado BAS, Hodel KVS, Fonseca LMS, et al. The importance of vaccination in the context of the COVID-19 Pandemic: A brief update regarding the use of vaccines. Vaccines 2022; 10(4): 591.
[http://dx.doi.org/10.3390/vaccines10040591] [PMID: 35455340]
[12]
Behera P, Singh AK, Subba SH, et al. Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India. Hum Vaccin Immunother 2022; 18(1): 2034456.
[http://dx.doi.org/10.1080/21645515.2022.2034456] [PMID: 35321625]
[13]
Vikkurthi R, Ansari A, Pai AR, et al. Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern. Nat Microbiol 2022; 7(7): 974-85.
[http://dx.doi.org/10.1038/s41564-022-01161-5] [PMID: 35681012]
[14]
Kumar A, Sharma A, Tirpude NV, Padwad Y, Hallan V, Kumar S. Plant-derived immuno-adjuvants in vaccines formulation: A promising avenue for improving vaccines efficacy against SARS-CoV-2 virus. Pharmacol Rep 2022; 74(6): 1238-54.
[http://dx.doi.org/10.1007/s43440-022-00418-4] [PMID: 36125739]
[15]
Ahmed Tousief Irshad. Inactivated vaccine Covaxin/BBV152: A systematic review. Front Immunol 2022; 13: 863162.
[http://dx.doi.org/10.3389/fimmu.2022.863162]
[16]
Infimate DL, Yumnam D, Galagali SS, Kabi A, Kaeley N. Psoriasis flare-up after Covaxin BBV152 whole virion inactivated vaccine. Cureus 2022; 14(2): e22311.
[http://dx.doi.org/10.7759/cureus.22311] [PMID: 35371668]
[17]
Xia S, Zhang YT, Wang YX. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: A randomised, double-blind, controlled, phase 1/2 trial. Lancet Infect Dis 2022; 22(2): 196-208.
[http://dx.doi.org/10.1016/S1473-3099(21)00462-X]
[18]
Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33(1): 1-22.
[http://dx.doi.org/10.1007/s13337-022-00755-1] [PMID: 35127995]
[19]
Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmacol Sci 2021; 25(3): 1663-9.
[http://dx.doi.org/10.26355/eurrev_202102_24877] [PMID: 33629336]
[20]
Zasada AA, Darlińska A, Wiatrzyk A, et al. COVID-19 Vaccines over three years after the outbreak of the COVID-19 epidemic. Viruses 2023; 15(9): 1786.
[http://dx.doi.org/10.3390/v15091786] [PMID: 37766194]
[21]
Mok CKP, Cohen CA, Cheng SMS, et al. Comparison of the immunogenicity of BNT162b2 and CoronaVac COVID ‐19 vaccines in Hong Kong. Respirology 2022; 27(4): 301-10.
[http://dx.doi.org/10.1111/resp.14191] [PMID: 34820940]
[22]
Can G, Acar HC, Aydin SN, et al. Waning effectiveness of CoronaVac in real life: A retrospective cohort study in health care workers. Vaccine 2022; 40(18): 2574-9.
[http://dx.doi.org/10.1016/j.vaccine.2022.03.032] [PMID: 35317942]
[23]
Halperin SA, Lingyun Y, Cameron DM. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: An international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet 2022; 399(10321): 237-48.
[http://dx.doi.org/10.1016/S0140-6736(21)02753-7]
[24]
Forchette L, Sebastian W, Liu T. A comprehensive review of COVID-19 virology, vaccines, variants, and therapeutics. Curr Med Sci 2021; 41(6): 1037-51.
[http://dx.doi.org/10.1007/s11596-021-2395-1] [PMID: 34241776]
[25]
Li JX, Wu SP, Guo XL, et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: A randomised, open-label, single-centre trial. Lancet Respir Med 2022; 10(8): 739-48.
[http://dx.doi.org/10.1016/S2213-2600(22)00087-X] [PMID: 35605625]
[26]
Mahase Elisabeth. COVID-19: What next for the Valneva vaccine? BMJ 2021; 375: n2839.
[http://dx.doi.org/10.1136/bmj.n2839]
[27]
Zhang H, Xu N, Xu Y, et al. Safety and immunogenicity of Ad5-nCoV immunization after three-dose priming with inactivated SARS-CoV-2 vaccine in Chinese adults. Nat Commun 2023; 14(1): 4757.
[http://dx.doi.org/10.1038/s41467-023-40489-2] [PMID: 37553338]
[28]
Lazarus Rajeka. Immunogenicity and safety of an inactivated whole-virus COVID-19 vaccine (VLA2001) compared with the adenoviral vector vaccine ChAdOx1-S in adults in the UK (COV-COMPARE): Interim analysis of a randomised, controlled, phase 3, immunobridging trial. Lancet Infect Dis 2022; 22(12): 1716-27.
[http://dx.doi.org/10.1016/S1473-3099(22)00502-3]
[29]
Kandimalla R, Chakraborty P, Vallamkondu J, et al. Counting on COVID-19 vaccine: Insights into the current strategies, progress and future challenges. Biomedicines 2021; 9(11): 1740.
[http://dx.doi.org/10.3390/biomedicines9111740] [PMID: 34829969]
[30]
Mahase Elisabeth. COVID-19: Valneva's vaccine produces stronger immune response than AstraZeneca's, company reports. BMJ 2021; 375: n2551.
[http://dx.doi.org/10.1136/bmj.n2551]
[31]
Jain Samagra. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 179: 114000.
[http://dx.doi.org/10.1016/j.addr.2021.114000]
[32]
Chaudhary N, Weissman D, Whitehead KA, et al. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20(11): 817-38.
[http://dx.doi.org/10.1038/s41573-021-00283-5]
[33]
Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7(1): 94.
[http://dx.doi.org/10.1038/s41392-022-00950-y] [PMID: 35322018]
[34]
Gote V, Bolla PK, Kommineni N, et al. A comprehensive review of mRNA vaccines. Int J Mol Sci 2023; 24(3): 2700.
[http://dx.doi.org/10.3390/ijms24032700] [PMID: 36769023]
[35]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[36]
Jung HN, Lee SY, Lee S, Youn H, Im HJ. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics 2022; 12(17): 7509-31.
[http://dx.doi.org/10.7150/thno.77259] [PMID: 36438494]
[37]
Riveron Granados. Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2. Biomed Pharmacother 2021; 142: 111953.
[http://dx.doi.org/10.1016/j.biopha.2021.111953]
[38]
Boldyrev IA, Shendrikov VP, Vostrova AG, et al. A route to synthesize ionizable lipid ALC-0315, a key component of the mRNA vaccine lipid matrix. Russ J Bioorg Chem 2023; 49(2): 412-5.
[http://dx.doi.org/10.1134/S1068162023020061]
[39]
Albertsen Hald. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188: 114416.
[http://dx.doi.org/10.1016/j.addr.2022.114416]
[40]
Frenck RW Jr, Klein NP, Kitchin N, et al. Safety, immunogenicity, and efficacy of the BNT162b2 COVID-19 vaccine in adolescents. N Engl J Med 2021; 385(3): 239-50.
[http://dx.doi.org/10.1056/NEJMoa2107456] [PMID: 34043894]
[41]
Flores Martínez. SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol 2021; 12: 701501.
[http://dx.doi.org/10.3389/fimmu.2021.701501]
[42]
Dreyer N, Reynolds MW, Albert L, et al. How frequent are acute reactions to COVID-19 vaccination and who is at risk? Vaccine 2022; 40(12): 1904-12.
[http://dx.doi.org/10.1016/j.vaccine.2021.12.072] [PMID: 35177299]
[43]
Nance KD, Meier JL. Modifications in an emergency: The role of N1-Methylpseudouridine in COVID-19 vaccines. ACS Cent Sci 2021; 7(5): 748-56.
[http://dx.doi.org/10.1021/acscentsci.1c00197] [PMID: 34075344]
[44]
Batty Cole J. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Adv Drug Deliv Rev 2021; 169: 168-89.
[http://dx.doi.org/10.1016/j.addr.2020.12.006]
[45]
Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. Curr Opin Solid State Mater Sci 2021; 25(6): 100964.
[http://dx.doi.org/10.1016/j.cossms.2021.100964] [PMID: 34729031]
[46]
Kim KQ, Burgute BD, Tzeng SC, et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep 2022; 40(9): 111300-0.
[http://dx.doi.org/10.1016/j.celrep.2022.111300] [PMID: 35988540]
[47]
Yamamoto K. Adverse effects of COVID-19 vaccines and measures to prevent them. Virol J 2022; 19(1): 100.
[http://dx.doi.org/10.1186/s12985-022-01831-0] [PMID: 35659687]
[48]
Anderson EJ, Rouphael NG, Widge AT, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med 2020; 383(25): 2427-38.
[http://dx.doi.org/10.1056/NEJMoa2028436] [PMID: 32991794]
[49]
Sette A, Crotty S. Immunological memory to SARS‐CoV ‐2 infection and COVID ‐19 vaccines. Immunol Rev 2022; 310(1): 27-46.
[http://dx.doi.org/10.1111/imr.13089] [PMID: 35733376]
[50]
Masuda T, Murakami K, Sugiura K, Sakui S, Philip Schuring R, Mori M. A phase 1/2 randomised placebo-controlled study of the COVID-19 vaccine mRNA-1273 in healthy Japanese adults: An interim report. Vaccine 2022; 40(13): 2044-52.
[http://dx.doi.org/10.1016/j.vaccine.2022.02.030] [PMID: 35177302]
[51]
Schoenmaker Linde. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm 2021; 601(15): 120586.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120586]
[52]
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines 2020; 8(4): 680.
[http://dx.doi.org/10.3390/vaccines8040680] [PMID: 33202961]
[53]
Geisbert TW, Bailey M, Hensley L, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol 2011; 85(9): 4222-33.
[http://dx.doi.org/10.1128/JVI.02407-10] [PMID: 21325402]
[54]
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020; 396(10255): 887-97.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[55]
Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 2007; 18(6): 546-56.
[http://dx.doi.org/10.1016/j.copbio.2007.10.010] [PMID: 18063357]
[56]
Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. N Engl J Med 2021; 384(20): 1885-98.
[http://dx.doi.org/10.1056/NEJMoa2102214] [PMID: 33725432]
[57]
Krutzke Lea. Process- and product-related impurities in the ChAdOx1 nCov-19 vaccine. \ eLife 2022; 11: e78513.
[http://dx.doi.org/10.7554/eLife.78513]
[58]
Kaur U, Bala S, Ojha B, Jaiswal S, Kansal S, Chakrabarti SS. Occurrence of COVID‐19 in priority groups receiving ChAdOx1 nCoV‐19 coronavirus vaccine (recombinant): A preliminary analysis from north India. J Med Virol 2022; 94(1): 407-12.
[http://dx.doi.org/10.1002/jmv.27320] [PMID: 34491572]
[59]
Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[60]
Aldali J, Meo SA, Al-Khlaiwi T. Adverse effects of Pfizer (BioNTech), Oxford-AstraZeneca (ChAdOx1 CoV-19), and Moderna COVID-19 vaccines among the adult population in Saudi Arabia: A cross-sectional study. Vaccines 2023; 11(2): 231.
[http://dx.doi.org/10.3390/vaccines11020231] [PMID: 36851109]
[61]
Lundstrom K. Viral vectors for COVID-19 vaccine development. Viruses 2021; 13(2): 317.
[http://dx.doi.org/10.3390/v13020317] [PMID: 33669550]
[62]
Deng S, Liang H, Chen P, et al. Viral vector vaccine development and application during the COVID-19 pandemic. Microorganisms 2022; 10(7): 1450.
[http://dx.doi.org/10.3390/microorganisms10071450] [PMID: 35889169]
[63]
Shkoda AS, Gushchin VA, Ogarkova DA, et al. Sputnik V effectiveness against hospitalization with COVID-19 during omicron dominance. Vaccines 2022; 10(6): 938.
[http://dx.doi.org/10.3390/vaccines10060938] [PMID: 35746546]
[64]
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: Recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29(6): 618-31.
[http://dx.doi.org/10.1016/j.biotechadv.2011.04.004] [PMID: 21550393]
[65]
Khalaj-Hedayati A. Protective immunity against SARS subunit vaccine candidates based on spike protein: Lessons for coronavirus vaccine development. J Immunol Res 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/7201752] [PMID: 32695833]
[66]
Straus S, James H, Ellen G. Overview of viruses and virus infection. Viruses and Human Disease 2008; pp. 1-33.
[http://dx.doi.org/10.1016/B978-0-12-373741-0.50004-0]
[67]
Fernandes B, Castro R, Bhoelan F, et al. Insect cells for high-yield production of SARS-CoV-2 spike protein: Building a virosome-based COVID-19 vaccine candidate. Pharmaceutics 2022; 14(4): 854.
[http://dx.doi.org/10.3390/pharmaceutics14040854] [PMID: 35456687]
[68]
ChAdOx1 S (recombinant) vaccine: Thrombosis and thrombocytopenia. Drug Ther Bull 2021; 59(7): 101.
[http://dx.doi.org/10.1136/dtb.2021.000022] [PMID: 33931566]
[69]
Heath PT, Galiza EP, Baxter DN. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. NEJM 2021; 385(13)
[http://dx.doi.org/10.1056/NEJMoa2107659]
[70]
Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 2021; 384(20): 1899-909.
[http://dx.doi.org/10.1056/NEJMoa2103055] [PMID: 33951374]
[71]
Kaur RJ, Dutta S, Bhardwaj P, et al. Adverse events reported from COVID-19 vaccine trials: A systematic review. Indian J Clin Biochem 2021; 36(4): 427-39.
[http://dx.doi.org/10.1007/s12291-021-00968-z] [PMID: 33814753]
[72]
Sanders RW, Moore JP. Virus vaccines: Proteins prefer prolines. Cell Host Microbe 2021; 29(3): 327-33.
[http://dx.doi.org/10.1016/j.chom.2021.02.002] [PMID: 33705704]
[73]
Almehdi AM, Khoder G, Alchakee AS. SARS-CoV-2 spike protein: Pathogenesis, vaccines, and potential therapies. Infection 2021; 49(5): 855-76.
[http://dx.doi.org/10.1007/s15010-021-01677-8]
[74]
Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med 2022; 386(6): 531-43.
[http://dx.doi.org/10.1056/NEJMoa2116185] [PMID: 34910859]
[75]
Sunagar R, Singh A, Kumar S. SARS-CoV-2: Immunity, challenges with current vaccines, and a novel perspective on mucosal vaccines. Vaccines 2023; 11(4): 849.
[http://dx.doi.org/10.3390/vaccines11040849] [PMID: 37112761]
[76]
Dadras O, Mehraeen E, Karimi A, et al. Safety and adverse events related to inactivated COVID-19 vaccines and Novavax;a systematic review. Arch Acad Emerg Med 2022; 10(1): e54.
[http://dx.doi.org/10.22037/aaem.v10i1.1585] [PMID: 36033990]
[77]
Tian JH, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 2021; 12(1): 372.
[http://dx.doi.org/10.1038/s41467-020-20653-8] [PMID: 33446655]
[78]
Hurme Antti. Long-Lasting T cell responses in BNT162b2 COVID-19 mRNA vaccinees and COVID-19 convalescent patients. Front Immunol 2022; 13: 869990.
[http://dx.doi.org/10.3389/fimmu.2022.869990]
[79]
Firouzabadi Negar. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int Immunopharmacol 2023; 117: 109968.
[http://dx.doi.org/10.1016/j.intimp.2023.109968]
[80]
Ssemaganda A, Nguyen HM, Nuhu F, et al. Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat Commun 2022; 13(1): 3357.
[http://dx.doi.org/10.1038/s41467-022-30913-4] [PMID: 35688805]
[81]
Parums Dinah V. Editorial: First approval of the protein-based adjuvanted Nuvaxovid (NVX-CoV2373) Novavax vaccine for SARS-CoV-2 could increase vaccine uptake and provide immune protection from viral variants. Med Sci Monit 2022; 28: e936523.
[http://dx.doi.org/10.12659/MSM.936523]
[82]
Smith K, Hegazy K, Cai MR, McKnight I, Rousculp MD, Alves K. Safety of the NVX-CoV2373 COVID-19 vaccine in randomized placebo-controlled clinical trials. Vaccine 2023; 41(26): 3930-6.
[http://dx.doi.org/10.1016/j.vaccine.2023.05.016] [PMID: 37211453]
[83]
Biggs Adam T. Vaccination and natural immunity: Advantages and risks as a matter of public health policy. Lancet Reg Health Am 2022; 8: 100242.
[http://dx.doi.org/10.1016/j.lana.2022.100242]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy