Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

An IoMT-based Federated Learning Survey in Smart Transportation

Author(s): Geetha Vani Karnam and Praveen Kumar Reddy Maddikunta*

Volume 17, Issue 4, 2024

Published on: 15 December, 2023

Article ID: e151223224568 Pages: 20

DOI: 10.2174/0126662558286756231206062720

Price: $65

Abstract

Internet of Medical Things (IoMT) is a technology that encompasses medical devices, wearable sensors, and applications connected to the Internet. In road accidents, it plays a crucial role in enhancing emergency response and reducing the impact of accidents on victims. Smart Transportation uses this technology to improve the efficiency and safety of transportation systems. The current Artificial Intelligence applications lack transparency and interpretability which is of utmost importance in critical transportation scenarios, such as autonomous vehicles, air traffic control systems, and traffic management systems. Explainable Artificial Intelligence (XAI) provides a clear, transparent explanation and actions. Traditional Machine Learning techniques have enabled Intelligent Transportation systems by performing centralized vehicular data training at the server where data sharing is needed, thus introducing privacy issues. To reduce transmission overhead and achieve privacy, a collaborative and distributed machine learning approach called Federated Learning (FL) is used. Here only model updates are transmitted instead of the entire dataset. This paper provides a comprehensive survey on the prediction of traffic using Machine Learning, Deep Learning, and FL. Among these, FL can predict traffic accurately without compromising privacy. We first present the overview of XAI and FL in the introduction. Then, we discuss the basic concepts of FL and its related work, the FL-IoMT framework, and motivations for using FL in transportation. Subsequently, we discuss the applications of using FL in transportation and open-source projects. Finally, we highlight several research challenges and their possible directions in FL.

Graphical Abstract

[1]
W. Saeed, and C. Omlin, "Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities", Knowl. Base. Syst., vol. 263, p. 110273, 2023.
[http://dx.doi.org/10.1016/j.knosys.2023.110273]
[2]
A.E. Omolara, A. Alabdulatif, O.I. Abiodun, M. Alawida, A. Alabdulatif, W.H. Alshoura, and H. Arshad, "The internet of things security: A survey encompassing unexplored areas and new insights", Comput. Secur., vol. 112, p. 102494, 2022.
[http://dx.doi.org/10.1016/j.cose.2021.102494]
[3]
Y. Qu, S.R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, "A block chained federated learning framework for cognitive computing in industry 4.0 networks", IEEE Trans. Industr. Inform., vol. 17, no. 4, pp. 2964-2973, 2021.
[http://dx.doi.org/10.1109/TII.2020.3007817]
[4]
Konecnˇ y J., H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, "Federated learning: Strategies for improving communication efficiency", arXiv preprint arXiv: 1610.05492, 2016.
[5]
Y. Lv, Y. Duan, W. Kang, Z. Li, and F.Y. Wang, "Traffic flow prediction with big data: A deep learning approach", IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 1-9, 2014.
[http://dx.doi.org/10.1109/TITS.2014.2345663]
[6]
Z. Du, C. Wu, T. Yoshinaga, K.A. Yau, Y. Ji, and J. Li, "Federated learning for vehicular internet of things: Recent advances and open issues", IEEE Comput. Graph. Appl., vol. 1, pp. 45-61, 2020.
[PMID: 32386144]
[7]
Q. Yang, Y. Liu, T. Chen, and Y. Tong, "Federated machine learning: Concept and applications", ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1-19, 2019.
[TIST]. [http://dx.doi.org/10.1145/3298981]
[8]
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, "A survey on federated learning systems: Vision, hype and reality for data privacy and protection", IEEE Trans. Knowl. Data Eng., 2021.
[9]
J. Park, S. Samarakoon, A. Elgabli, J. Kim, M. Bennis, S.L. Kim, and M. Debbah, "Communication-efficient and distributed learning over wireless networks: Principles and applications", Proc. IEEE, vol. 109, no. 5, pp. 796-819, 2021.
[http://dx.doi.org/10.1109/JPROC.2021.3055679]
[10]
M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, "Federated learning: A survey on enabling technologies, protocols, and applications", IEEE Access, vol. 8, pp. 140 699-140 725, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3013541]
[11]
S.K. Lo, Q. Lu, C. Wang, H.Y. Paik, and L. Zhu, "A systematic literature review on federated machine learning: From a software engineering perspective", ACM Comput. Surv., vol. 54, no. 5, pp. 1-39, 2022.
[CSUR]. [http://dx.doi.org/10.1145/3450288]
[12]
F. Farnia, A. Reisizadeh, R. Pedarsani, and A. Jadbabaie, "An optimal transport approach to personalized federated learning", IEEE J. Sel. Areas Inf. Theory, vol. 3, no. 2, pp. 162-171, 2022.
[http://dx.doi.org/10.1109/JSAIT.2022.3182355]
[13]
C. Briggs, Z. Fan, and P. Andras, "A review of privacy preserving federated learning for private iot analytics", arXiv preprint arXiv: 2004.11794, 2020.
[14]
S. Madan, and P. Goswami, "A novel technique for privacy preservation using k-anonymization and nature inspired optimization algorithms", In Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), 2019.
[http://dx.doi.org/10.2139/ssrn.3357276]
[15]
J. Le Ny, A. Touati, and G.J. Pappas, "Real-time privacy-preserving model-based estimation of traffic flows", In 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2014, pp. 92-102
[16]
S. Ramani, and R.H. Jhaveri, "Ml-based delay attack detection and isolation for fault-tolerant software-defined industrial networks", Sensors, vol. 22, no. 18, p. 6958, 2022.
[http://dx.doi.org/10.3390/s22186958] [PMID: 36146312]
[17]
R.H. Jhaveri, A. Revathi, K. Ramana, R. Raut, and R.K. Dhanaraj, A review on machine learning strategies for real-world engineering applications., vol. 2022. Mobile Information Systems, 2022.
[18]
R. Sagar, R. Jhaveri, and C. Borrego, "Applications in security and evasions in machine learning: A survey", Electronics, vol. 9, no. 1, p. 97, 2020.
[http://dx.doi.org/10.3390/electronics9010097]
[19]
S.D. Patil, R. Raut, R.H. Jhaveri, T.A. Ahanger, P.V. Dhade, A.B. Kathole, and K.N. Vhatkar, Robust authentication system with privacy preservation of biometrics., vol. 2022. Security and Communication Networks, 2022.
[20]
Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, "Federated learning with non-iid data", arXiv preprint arXiv:1806.00582, 2018.
[21]
R.C. Geyer, T. Klein, and M. Nabi, "Differentially private federated learning: A client level perspective",
[22]
V. Smith, C-K. Chiang, M. Sanjabi, and A.S. Talwalkar, "Federated multi-task learning", In: Advances in neural information processing systems, vol. 30. 2017.
[23]
N. Victor, S. Bhattacharya, P.K.R. Maddikunta, F.M. Alotaibi, T.R. Gadekallu, and R.H. Jhaveri, "Fl-pso: A federated learning approach with particle swarm optimization for brain stroke prediction", In 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)., 2023, pp. 33-38
[http://dx.doi.org/10.1109/CCGridW59191.2023.00020]
[24]
A. Namburu, D. Sumathi, R. Raut, R.H. Jhaveri, R.K. Dhanaraj, N. Subbulakshmi, and B. Balusamy, "Fpga-based deep learning models for analyzing corona using chest x-ray images", Mob. Inf. Syst., vol. 2022, pp. 1-14, 2022.
[http://dx.doi.org/10.1155/2022/2110785]
[25]
F. Granqvist, M. Seigel, R. Van Dalen, A. Cahill, S. Shum, and M. Paulik, "Improving on-device speaker verification using federated learning with privacy", arXiv preprint arXiv:2008.02651.
[http://dx.doi.org/10.21437/Interspeech.2020-2944]
[26]
A. Moradipari, N. Tucker, T. Zhang, G. Cezar, and M. Alizadeh, "Mobility-aware smart charging of electric bus fleets", In: 2020 IEEE Power & Energy Society General Meeting, (PESGM). ., 2020, pp. 1-5.
[27]
A. Alabdulatif, I. Khalil, and V. Mai, "Protection of electronic health records (ehrs) in cloud", In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)., 2013, pp. 4191-4194
[http://dx.doi.org/10.1109/EMBC.2013.6610469]
[28]
A. Lakhan, M.A. Mohammed, J. Nedoma, R. Martinek, P. Tiwari, A. Vidyarthi, A. Alkhayyat, and W. Wang, "Federated-learning based privacy preservation and fraud-enabled blockchain iomt system for healthcare", IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 664-672, 2023.
[http://dx.doi.org/10.1109/JBHI.2022.3165945] [PMID: 35394919]
[29]
M.N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F.M. Bui, and S.M. Ibrahim, "Federated machine learning for detection of skin diseases and enhancement of internet of medical things (iomt) security", IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 835-841, 2023.
[http://dx.doi.org/10.1109/JBHI.2022.3149288] [PMID: 35133971]
[30]
O. Samuel, A.B. Omojo, A.M. Onuja, Y. Sunday, P. Tiwari, D. Gupta, G. Hafeez, A.S. Yahaya, O.J. Fatoba, and S. Shamshirband, "Iomt: A covid19 healthcare system driven by federated learning and blockchain", IEEE J. Biomed. Health Inform., vol. 27, no. 2, pp. 823-834, 2023.
[http://dx.doi.org/10.1109/JBHI.2022.3143576] [PMID: 35041615]
[31]
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data", In: Artificial intelligence and statistics.. PMLR, 2017, pp. 1273-1282.
[32]
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, "Practical secure aggregation for privacy-preserving machine learning", In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1175-1191
[http://dx.doi.org/10.1145/3133956.3133982]
[33]
S. Yang, B. Ren, X. Zhou, and L. Liu, "Parallel distributed logistic regression for vertical federated learning without a third-party coordinator", arXiv preprint arXiv:1911.09824, 2019.
[34]
J. So, B. Güler, and A.S. Avestimehr, "Turboaggregate: Breaking the quadratic aggregation barrier in secure federated learning", IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 479-489, 2021.
[http://dx.doi.org/10.1109/JSAIT.2021.3054610]
[35]
A. Jahangiri, and H.A. Rakha, "Applying machine learning techniques to transportation mode recognition using mobile phone sensor data", IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2406-2417, 2015.
[http://dx.doi.org/10.1109/TITS.2015.2405759]
[36]
B.B. Gupta, A. Gaurav, E.C. Marín, and W. Alhalabi, "Novel graph-based machine learning technique to secure smart vehicles in intelligent transportation systems", IEEE Trans. Intell. Transp. Syst., 2022.
[37]
J. An, L. Fu, M. Hu, W. Chen, and J. Zhan, "A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information", Ieee Access, vol. 7, pp. 707-722, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2896913]
[38]
Z. Bartlett, L. Han, T.T. Nguyen, and P. Johnson, “Prediction of road traffic flow based on deep recurrent neural networks,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/ IOP/SCI)., IEEE, 2019, pp. 102-109.
[39]
A. Koesdwiady, R. Soua, and F. Karray, "Improving traffic flow prediction with weather information in connected cars: A deep learning approach", IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9508-9517, 2016.
[40]
H.-F. Yang, T. S. Dillon, and Y.-P. P. Chen, "Optimized structure of the traffic flow forecasting model with a deep learning approach", IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2371-2381, 2016.
[PMID: 27448371]
[41]
X. Yuan, J. Chen, J. Yang, N. Zhang, T. Yang, T. Han, and A. Taherkordi, "Fedstn: Graph representation driven federated learning for edge computing enabled urban traffic flow prediction", IEEE Trans. Intell. Transp. Syst., 2022.
[42]
C. Zhang, S. Zhang, J.J.Q. Yu, and S. Yu, "Fastgnn: A topological information protected federated learning approach for traffic speed forecasting", IEEE Trans. Industr. Inform., vol. 17, no. 12, pp. 8464-8474, 2021.
[http://dx.doi.org/10.1109/TII.2021.3055283]
[43]
S. Liu, J. Yu, X. Deng, and S. Wan, "Fedcpf: An efficient-communication federated learning approach for vehicular edge computing in 6g communication networks", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 1616-1629, 2022.
[http://dx.doi.org/10.1109/TITS.2021.3099368]
[44]
J. Zhao, X. Chang, Y. Feng, C.H. Liu, and N. Liu, "Participant selection for federated learning with heterogeneous data in intelligent transport system", IEEE Transactions on Intelligent Transportation Systems, 2020.
[45]
L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen, and C. S. Hong, "Federated learning for edge networks: Resource optimization and incentive mechanism", IEEE Commun. Mag., vol. 58, no. 10, pp. 88-93, 2020.
[46]
J. Van Lint, and C. Van Hinsbergen, "Short-term traffic and travel time prediction models", Artif. Intell. Appl. Crit. Transp. Iss., vol. 22, no. 1, pp. 22-41, 2012.
[47]
M. Cools, E. Moons, and G. Wets, "Investigating the variability in daily traffic counts through use of arimax and sarimax models: Assessing the effect of holidays on two site locations", Transp. Res. Rec., vol. 2136, no. 1, pp. 57-66, 2009.
[http://dx.doi.org/10.3141/2136-07]
[48]
B.M. Williams, and L.A. Hoel, "Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results", J. Transp. Eng., vol. 129, no. 6, pp. 664-672, 2003.
[49]
S. R. Chandra, and H. Al-Deek, "Predictions of freeway traffic speeds and volumes using vector autoregressive models", J. Intell. Transp. Syst., vol. 13, no. 2, pp. 53-72, 2009.
[50]
W. Min, and L. Wynter, "Real-time road traffic prediction with spatio-temporal correlations", Transp. Res., Part C Emerg. Technol., vol. 19, no. 4, pp. 606-616, 2011.
[http://dx.doi.org/10.1016/j.trc.2010.10.002]
[51]
J. Guo, and B.M. Williams, "Real-time short-term traffic speed level forecasting and uncertainty quantification using layered kalman filters", Transp. Res. Rec., vol. 2175, no. 1, pp. 28-37, 2010.
[http://dx.doi.org/10.3141/2175-04]
[52]
N. Barimani, A. Rahimi Kian, and B. Moshiri, "Real time adaptive non-linear estimator/predictor design for traffic systems with inadequate detectors", IET Intell. Transp. Syst., vol. 8, no. 3, pp. 308-321, 2014.
[http://dx.doi.org/10.1049/iet-its.2013.0053]
[53]
S. Jin, D. Wang, C. Xu, and D. Ma, "Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter", J. Zhejiang Univ. Sci. A, vol. 14, no. 4, pp. 231-243, 2013.
[http://dx.doi.org/10.1631/jzus.A1200218]
[54]
Z. Jiang, C. Zhang, and Y. Xia, "Travel time prediction model for urban road network based on multi-source data", Procedia Soc. Behav. Sci., vol. 138, pp. 811-818, 2014.
[http://dx.doi.org/10.1016/j.sbspro.2014.07.230]
[55]
Y. Sun, B. Leng, and W. Guan, "A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system", Neurocomputing, vol. 166, pp. 109-121, 2015.
[http://dx.doi.org/10.1016/j.neucom.2015.03.085]
[56]
L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, "T-gcn: A temporal graph convolutional network for traffic prediction", IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3848-3858, 2020.
[http://dx.doi.org/10.1109/TITS.2019.2935152]
[57]
Z. Cui, R. Ke, Z. Pu, X. Ma, and Y. Wang, "Learning traffic as a graph: A gated graph wavelet recurrent neural network for network-scale traffic prediction", Transp. Res., Part C Emerg. Technol., vol. 115, p. 102620, 2020.
[http://dx.doi.org/10.1016/j.trc.2020.102620]
[58]
Y. Qi, M.S. Hossain, J. Nie, and X. Li, "Privacy-preserving blockchain-based federated learning for traffic flow prediction", Future Gener. Comput. Syst., vol. 117, pp. 328-337, 2021.
[http://dx.doi.org/10.1016/j.future.2020.12.003]
[59]
J. Pei, K. Zhong, M.A. Jan, and J. Li, "Personalized federated learning framework for network traffic anomaly detection", Comput. Net., vol. 209, p. 108906, 2022.
[60]
Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, "Privacy-preserving traffic flow prediction: A federated learning approach", IEEE Internet Things J., vol. 7, no. 8, pp. 7751-7763, 2020.
[61]
H. Yang, X. Li, W. Qiang, Y. Zhao, W. Zhang, and C. Tang, "A network traffic forecasting method based on SA optimized ARIMA–BP neural network", Comput. Netw., vol. 193, p. 108102, 2021.
[http://dx.doi.org/10.1016/j.comnet.2021.108102]
[62]
S.S. Sepasgozar, and S. Pierre, "Network traffic prediction model considering road traffic parameters using artificial intelligence methods in vanet", IEEE Access, vol. 10, pp. 8227-8242, 2022.
[http://dx.doi.org/10.1109/ACCESS.2022.3144112]
[63]
Y. Chen, X. Sun, and Y. Jin, "Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation", IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 4229-4238, 2020.
[http://dx.doi.org/10.1109/TNNLS.2019.2953131] [PMID: 31899435]
[64]
D. Caldarola, M. Mancii, F. Galasso, M. Ciccone, E. Rodolà, and B. Caputo, "Cluster-driven graph federated learning over multiple domains", In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2749-2758
[http://dx.doi.org/10.1109/CVPRW53098.2021.00309]
[65]
C. Meng, S. Rambhatla, and Y. Liu, "Cross-node federated graph neural network for spatio-temporal data modeling", In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 1202-1211
[http://dx.doi.org/10.1145/3447548.3467371]
[66]
T. Zeng, J. Guo, K.J. Kim, K. Parsons, P. Orlik, S. Di Cairano, and W. Saad, "Multi-task federated learning for traffic prediction and its application to route planning", In 2021 IEEE Intelligent Vehicles Symposium (IV), 2021, pp. 451-457
[http://dx.doi.org/10.1109/IV48863.2021.9575211]
[67]
S.R. Pokhrel, and J. Choi, "Federated learning with blockchain for autonomous vehicles: Analysis and design challenges", IEEE Trans. Commun., vol. 68, no. 8, pp. 4734-4746, 2020.
[http://dx.doi.org/10.1109/TCOMM.2020.2990686]
[68]
T. Zeng, O. Semiari, M. Chen, W. Saad, and M. Bennis, "Federated learning on the road autonomous controller design for connected and autonomous vehicles", IEEE Trans. Wirel. Commun., vol. 21, no. 12, pp. 407-423, 2022.
[http://dx.doi.org/10.1109/TWC.2022.3183996]
[69]
Y. Li, X. Tao, X. Zhang, J. Liu, and J. Xu, "Privacy-preserved federated learning for autonomous driving", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 8423-8434, 2022.
[http://dx.doi.org/10.1109/TITS.2021.3081560]
[70]
Z. Zheng, Y. Zhou, Y. Sun, Z. Wang, B. Liu, and K. Li, "Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges", Connect. Sci., vol. 34, no. 1, pp. 1-28, 2022.
[http://dx.doi.org/10.1080/09540091.2021.1936455]
[71]
W. Tang, S. Bi, and Y.J. Zhang, "Online coordinated charging decision algorithm for electric vehicles without future information", IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2810-2824, 2014.
[http://dx.doi.org/10.1109/TSG.2014.2346925]
[72]
Y.M. Saputra, D.T. Hoang, D.N. Nguyen, E. Dutkiewicz, M.D. Mueck, and S. Srikanteswara, "Energy demand prediction with federated learning for electric vehicle networks", In: 2019 IEEE global communications conference., (GLOBECOM).., 2019, pp. 1-6.
[73]
Z. Teimoori, A. Yassine, and M.S. Hossain, "A secure cloudlet-based charging station recommendation for electric vehicles empowered by federated learning", IEEE Trans. Industr. Inform., vol. 18, no. 9, pp. 6464-6473, 2022.
[http://dx.doi.org/10.1109/TII.2022.3148997]
[74]
R. De Rosa, and N. Cesa-Bianchi, "Confidence decision trees via online and active learning for streaming data", J. Artif. Intell. Res., vol. 60, pp. 1031-1055, 2017.
[http://dx.doi.org/10.1613/jair.5440]
[75]
N. Aussel, S. Chabridon, and Y. Petetin, "Combining federated and active learning for communicationefficient distributed failure prediction in aeronautics", arXiv preprint arXiv:2001.07504.
[76]
W.Y.B. Lim, J. Huang, Z. Xiong, J. Kang, D. Niyato, X.S. Hua, C. Leung, and C. Miao, "Towards federated learning in uav-enabled internet of vehicles: A multi-dimensional contract-matching approach", IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5140-5154, 2021.
[http://dx.doi.org/10.1109/TITS.2021.3056341]
[77]
B. Brik, A. Ksentini, and M. Bouaziz, "Federated learning for uavs-enabled wireless networks: Use cases, challenges, and open problems", IEEE Access, vol. 8, pp. 841-849, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2981430]
[78]
S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, "Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks", Phys. Commun., vol. 47, p. 101381, 2021.
[http://dx.doi.org/10.1016/j.phycom.2021.101381]
[79]
D. Saraswat, A. Verma, P. Bhattacharya, S. Tanwar, G. Sharma, P.N. Bokoro, and R. Sharma, "Blockchain-based federated learning in uavs beyond 5g networks: A solution taxonomy and future directions", IEEE Access, vol. 10, pp. 154-182, 2022.
[http://dx.doi.org/10.1109/ACCESS.2022.3161132]
[80]
L. Huang, A.L. Shea, H. Qian, A. Masurkar, H. Deng, and D. Liu, "Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records", J. Biomed. Inform., vol. 99, p. 103291, 2019.
[http://dx.doi.org/10.1016/j.jbi.2019.103291] [PMID: 31560949]
[81]
T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-Palmbach, "A generic framework for privacy preserving deep learning", arXiv preprint arXiv:1811.04017, 2018.
[82]
L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, "Exploiting unintended feature leakage in collaborative learning", In: 2019 IEEE symposium on security and privacy., IEEE: SP, 2019, pp. 691-706.
[83]
Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, "Differentially private asynchronous federated learning for mobile edge computing in urban informatics", IEEE Trans. Industr. Inform., vol. 16, no. 3, pp. 2134-2143, 2020.
[http://dx.doi.org/10.1109/TII.2019.2942179]
[84]
H. Chai, S. Leng, Y. Chen, and K. Zhang, "A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles", IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 3975-3986, 2021.
[http://dx.doi.org/10.1109/TITS.2020.3002712]
[85]
S.R. Pandey, N.H. Tran, M. Bennis, Y.K. Tun, A. Manzoor, and C.S. Hong, "A crowdsourcing framework for on-device federated learning", IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3241-3256, 2020.
[http://dx.doi.org/10.1109/TWC.2020.2971981]
[86]
A. Imteaj, and M.H. Amini, "Distributed sensing using smart end-user devices: Pathway to federated learning for autonomous iot",
[http://dx.doi.org/10.1109/CSCI49370.2019.00218]
[87]
Y. Wang, Z. Su, N. Zhang, and A. Benslimane, "Learning in the air: Secure federated learning for uav-assisted crowdsensing", IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1055-1069, 2021.
[http://dx.doi.org/10.1109/TNSE.2020.3014385]
[88]
H. Kido, Y. Yanagisawa, and T. Satoh, "Protection of location privacy using dummies for location-based services",
[http://dx.doi.org/10.1109/ICDE.2005.269]
[89]
N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar, "Semi-supervised knowledge transfer for deep learning from private training data", arXiv preprint arXiv:1610.05755, 2016.
[90]
W. Li, C. Zhang, and Y. Tanaka, "Pseudo label-driven federated learning-based decentralized indoor localization via mobile crowdsourcing", IEEE Sens. J., vol. 20, no. 19, pp. 556-565, 2020.
[http://dx.doi.org/10.1109/JSEN.2020.2998116]
[91]
Y. Liu, H. Li, J. Xiao, and H. Jin, "Floc: Fingerprint-based indoor localization system under a federated learning updating framework", In 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)., 2019, pp. 113-118
[http://dx.doi.org/10.1109/MSN48538.2019.00033]
[92]
K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, and C. Kiddon, "Towards federated learning at scale: System design", Proc. Mach. Learn. Sys., vol. 1, pp. 374-388, 2019.
[93]
W. Liu, L. Chen, Y. Chen, and W. Zhang, "Accelerating federated learning via momentum gradient descent", IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 8, pp. 1754-1766, 2020.
[http://dx.doi.org/10.1109/TPDS.2020.2975189]
[94]
M. Tsukada, M. Kondo, and H. Matsutani, "A neural network-based on-device learning anomaly detector for edge devices", IEEE Trans. Comput., vol. 69, no. 7, p. 1, 2020.
[http://dx.doi.org/10.1109/TC.2020.2973631]
[95]
B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, "Cost-effective federated learning design", In IEEE INFOCOM 2021-IEEE Conference on Computer Communication, 2021, pp. 1-10
[http://dx.doi.org/10.1109/INFOCOM42981.2021.9488679]
[96]
R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, "Personalized federated learning with differential privacy", IEEE Internet Things J., vol. 7, no. 10, pp. 9530-9539, 2020.
[http://dx.doi.org/10.1109/JIOT.2020.2991416]
[97]
A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, "A performance evaluation of federated learning algorithms", In Proceedings of the second workshop on distributed infrastructures for deep learning, 2018, pp. 1-8
[http://dx.doi.org/10.1145/3286490.3286559]
[98]
B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, and Y. Yang, "Anonymous and privacy-preserving federated learning with industrial big data", IEEE Trans. Industr. Inform., vol. 17, no. 9, pp. 6314-6323, 2021.
[http://dx.doi.org/10.1109/TII.2021.3052183]
[99]
C. Ma, J. Li, M. Ding, H.H. Yang, F. Shu, T.Q.S. Quek, and H.V. Poor, "On safeguarding privacy and security in the framework of federated learning", IEEE Netw., vol. 34, no. 4, pp. 242-248, 2020.
[http://dx.doi.org/10.1109/MNET.001.1900506]
[100]
Z. Xu, Z. Yang, J. Xiong, J. Yang, and X. Chen, "Elfish: Resource-aware federated learning on heterogeneous edge devices", Ratio, vol. 2, no. r1, p. r2, 2019.
[101]
R. Balakrishnan, M. Akdeniz, S. Dhakal, and N. Himayat, "Resource management and fairness for federated learning over wireless edge networks", In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1-5
[http://dx.doi.org/10.1109/SPAWC48557.2020.9154285]
[102]
S. Dhar, J. Guo, J.J. Liu, S. Tripathi, U. Kurup, and M. Shah, "A survey of on-device machine learning: An algorithm and learning theory perspective", ACM Transactions on Internet of Things, vol. 2, no. 3, pp. 1-49, 2021.
[http://dx.doi.org/10.1145/3450494]
[103]
D. Li, X. Wang, and D. Kong, "Deeprebirth: Accelerating deep neural network execution on mobile devices", Proc. Conf. AAAI Artif. Intell., vol. 32, no. 1, 2018.
[http://dx.doi.org/10.1609/aaai.v32i1.11876]
[104]
E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus, "Malicious software classification using transfer learning of resnet-50 deep neural network", In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)., 2017, pp. 1011-1014
[http://dx.doi.org/10.1109/ICMLA.2017.00-19]
[105]
Q. Zhang, B. Gu, C. Deng, S. Gu, L. Bo, J. Pei, and H. Huang, "Asysqn: Faster vertical federated learning algorithms with better computation resource utilization", In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 3917-3927
[http://dx.doi.org/10.1145/3447548.3467169]
[106]
R.H. Jhaveri, R. Tan, A. Easwaran, and S.V. Ramani, "Managing industrial communication delays with software-defined networking", In 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)., 2019, pp. 1-11
[http://dx.doi.org/10.1109/RTCSA.2019.8864557]
[107]
H. Zhang, H. Tian, M. Dong, K. Ota, and J. Jia, "Fed-pcc: Parallelism of communication and computation for federated learning in wireless networks", IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 6, pp. 1368-1377, 2022.
[http://dx.doi.org/10.1109/TETCI.2022.3170471]
[108]
S. Zhou, and G.Y. Li, "Fed-gia: An efficient hybrid algorithm for federated learning", IEEE Trans. Signal Process., vol. 71, pp. 1493-1508, 2023.
[http://dx.doi.org/10.1109/TSP.2023.3268845]
[109]
X. Wang, X. Zheng, and X. Liang, Charging station recommendation for electric vehicle based on federated learning, vol. 1792. IOP Publishing, 2021, no. 1, p. 012055.J. Phys. Conf. Ser., vol. 1792., IOP Publishing, 2021, no. 1, p. 012055.
[http://dx.doi.org/10.1088/1742-6596/1792/1/012055]
[110]
W. Ali, R. Kumar, Z. Deng, Y. Wang, and J. Shao, "A federated learning approach for privacy protection in context-aware recommender systems", Comput. J., vol. 64, no. 7, pp. 1016-1027, 2021.
[http://dx.doi.org/10.1093/comjnl/bxab025]
[111]
A.M. Elbir, and S. Coleri, "Federated learning for hybrid beamforming in mm-wave massive mimo", IEEE Commun. Lett., vol. 24, no. 12, pp. 2795-2799, 2020.
[http://dx.doi.org/10.1109/LCOMM.2020.3019312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy