Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Mini-Review Article

A Review on the Neuroanatomy of Bee Brain and Social Behavior

Author(s): Ridahunlang Nongkhlaw*

Volume 2, 2024

Published on: 12 December, 2023

Article ID: e2210299X266380 Pages: 7

DOI: 10.2174/012210299X266380231206072655

Price: $

Abstract

At present, there is a growing interest among researchers in studying the structure and function of the bee brain in relation to their cognitive behavior. The bee brain, despite its small size of approximately 1 million neurons, is known for its ability to facilitate effective communication and collaboration. Just like humans, the bee brain is also controlled by biogenic amines like dopamine, serotonin and tyramine, octopamine, and histamine. The honey bees communicate with each other by using a complex language called the “waggle dance”. Despite existing knowledge about the bee brain's neuroanatomy, there is still a need to understand which specific regions control cognition and social behavior in bees. This review aims to explore the different major parts of the bee brain and how each part contributes to modulating social behavior.

[1]
Giurfa, M.; Zhang, S.; Jenett, A.; Menzel, R.; Srinivasan, M.V. The concepts of ‘sameness’ and ‘difference’ in an insect. Nature, 2001, 410(6831), 930-933.
[http://dx.doi.org/10.1038/35073582] [PMID: 11309617]
[2]
Von Frisc, Karl. The dance language and orientation of bees. In: Sci. Educ; Cambridge University Press, 1969; 1967, p. 566. $15.00
[http://dx.doi.org/10.1002/sce.3730530270]
[3]
Sinakevitch, I.; Bjorklund, G.R.; Newbern, J.M.; Gerkin, R.C.; Smith, B.H. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. Biol. Cybern., 2018, 112(1-2), 127-140.
[http://dx.doi.org/10.1007/s00422-017-0728-8] [PMID: 28852854]
[4]
Popov, T.; Szyszka, P. Alpha oscillations govern interhemispheric spike timing coordination in the honey bee brain. Proc. Biol. Sci., 2020, 287(1921), 20200115.
[http://dx.doi.org/10.1098/rspb.2020.0115] [PMID: 32097593]
[5]
Szyszka, P.; Stierle, J.S.; Biergans, S.; Galizia, C.G. The speed of smell: Odor-object segregation within milliseconds. PLoS One, 2012, 7(4), e36096.
[http://dx.doi.org/10.1371/journal.pone.0036096] [PMID: 22558344]
[6]
Torrealba, F.; Riveros, M.E.; Contreras, M.; Valdes, J.L. Histamine and motivation. Front. Syst. Neurosci., 2012, 6, 51.
[http://dx.doi.org/10.3389/fnsys.2012.00051] [PMID: 22783171]
[7]
Rösch, G.A. Investigations into the division of labor in the bee colony - Part 2: The activities of worker bees under experimentally changed conditions. Z. Vgl. Physiol., 1930.
[http://dx.doi.org/10.1007/BF00339476]
[8]
Farina, W.M. Food-exchange by foragers in the hive - a means of communication among honey bees? Behav. Ecol. Sociobiol., 1996, 38(1), 59-64.
[http://dx.doi.org/10.1007/s002650050217]
[9]
Paffhausen, B.H.; Fuchs, I.; Duer, A.; Hillmer, I.; Dimitriou, I.M.; Menzel, R. Neural correlates of social behavior in mushroom body extrinsic neurons of the honeybee apis mellifera. Front. Behav. Neurosci., 2020, 14, 62.
[http://dx.doi.org/10.3389/fnbeh.2020.00062] [PMID: 32372927]
[10]
Scheiner, R.; Baumann, A.; Blenau, W. Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol., 2006, 4(4), 259-276.
[http://dx.doi.org/10.2174/157015906778520791] [PMID: 18654639]
[11]
Bortolotti, L.; Costa, C. Chemical communication in the honey bee society. In: Neurobilogy of chemical communication; 2014.
[http://dx.doi.org/10.1201/b16511]
[12]
Ortíz-Barrientos, D.; Noor, M. A. F. Evolution: Evidence for a one-allele assortative mating locus Science (80-. ), 2005.
[http://dx.doi.org/10.1126/science.1121260]
[13]
Aubin-Horth, N.; Renn, S.C.P. Genomic reaction norms: Using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol. Ecol., 2009, 18(18), 3763-3780.
[http://dx.doi.org/10.1111/j.1365-294X.2009.04313.x] [PMID: 19732339]
[14]
Elsik, C.G.; Worley, K.C.; Bennett, A.K.; Beye, M.; Camara, F.; Childers, C.P.; de Graaf, D.C.; Debyser, G.; Deng, J.; Devreese, B.; Elhaik, E.; Evans, J.D.; Foster, L.J.; Graur, D.; Guigo, R.; Hoff, K.; Holder, M.E.; Hudson, M.E.; Hunt, G.J.; Jiang, H.; Joshi, V.; Khetani, R.S.; Kosarev, P.; Kovar, C.L.; Ma, J.; Maleszka, R.; Moritz, R.F.A.; Munoz-Torres, M.C.; Murphy, T.D.; Muzny, D.M.; Newsham, I.F.; Reese, J.T.; Robertson, H.M.; Robinson, G.E.; Rueppell, O.; Solovyev, V.; Stanke, M.; Stolle, E.; Tsuruda, J.M.; Vaerenbergh, M.; Waterhouse, R.M.; Weaver, D.B.; Whitfield, C.W.; Wu, Y.; Zdobnov, E.M.; Zhang, L.; Zhu, D.; Gibbs, R.A. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 2014, 15(1), 86.
[http://dx.doi.org/10.1186/1471-2164-15-86] [PMID: 24479613]
[15]
Mercer, A.R.; Mobbs, P.G.; Davenport, A.P.; Evans, P.D. Biogenic amines in the brain of the honeybee, Apis mellifera. Cell Tissue Res., 1983, 234(3), 655-677.
[http://dx.doi.org/10.1007/BF00218658] [PMID: 6420063]
[16]
Roeder, T.; Seifert, M.; Kähler, C.; Gewecke, M. Tyramine and octopamine: Antagonistic modulators of behavior and metabolism. Arch. Insect Biochem. Physiol., 2003, 54(1), 1-13.
[http://dx.doi.org/10.1002/arch.10102] [PMID: 12942511]
[17]
Insel, T.; Young, L.J. Neuropeptides and the evolution of social behavior. Curr. Opin. Neurobiol., 2000, 10(6), 784-789.
[http://dx.doi.org/10.1016/S0959-4388(00)00146-X] [PMID: 11240290]
[18]
Tautz, J.; Maier, S.; Groh, C.; Rössler, W.; Brockmann, A. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 7343-7347.
[http://dx.doi.org/10.1073/pnas.1232346100] [PMID: 12764227]
[19]
Goodson, J.L. The vertebrate social behavior network: Evolutionary themes and variations. Horm. Behav., 2005, 48(1), 11-22.
[http://dx.doi.org/10.1016/j.yhbeh.2005.02.003] [PMID: 15885690]
[20]
Barron, A.B.; Maleszka, J.; Vander Meer, R.K.; Robinson, G.E.; Maleszka, R. Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine. J. Insect Physiol., 2007, 53(2), 187-194.
[http://dx.doi.org/10.1016/j.jinsphys.2006.11.009] [PMID: 17270208]
[21]
Toth, A. L. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality Science (80-. )., 2007.
[http://dx.doi.org/10.1126/science.1146647]
[22]
Hau, M.; Goymann, W. Endocrine mechanisms, behavioral phenotypes and plasticity: Known relationships and open questions. Front. Zool., 2015, 12(Suppl 1)(Suppl. 1), S7.
[http://dx.doi.org/10.1186/1742-9994-12-S1-S7] [PMID: 26816524]
[23]
Schaefer, N.; Rotermund, C.; Blumrich, E.M.; Lourenco, M.V.; Joshi, P.; Hegemann, R.U.; Jamwal, S.; Ali, N.; García Romero, E.M.; Sharma, S.; Ghosh, S.; Sinha, J.K.; Loke, H.; Jain, V.; Lepeta, K.; Salamian, A.; Sharma, M.; Golpich, M.; Nawrotek, K.; Paidi, R.K.; Shahidzadeh, S.M.; Piermartiri, T.; Amini, E.; Pastor, V.; Wilson, Y.; Adeniyi, P.A.; Datusalia, A.K.; Vafadari, B.; Saini, V.; Suárez-Pozos, E.; Kushwah, N.; Fontanet, P.; Turner, A.J. The malleable brain: plasticity of neural circuits and behavior – a review from students to students. J. Neurochem., 2017, 142(6), 790-811.
[http://dx.doi.org/10.1111/jnc.14107] [PMID: 28632905]
[24]
Rittschof, C.C.; Hughes, K.A. Advancing behavioural genomics by considering timescale. Nat. Commun., 2018, 9(1), 489.
[http://dx.doi.org/10.1038/s41467-018-02971-0] [PMID: 29434301]
[25]
Ben-Shahar, Y.; Dudek, N.L.; Robinson, G.E. Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. J. Exp. Biol., 2004, 207(19), 3281-3288.
[http://dx.doi.org/10.1242/jeb.01151] [PMID: 15326204]
[26]
Moosavi-Movahedi, A.A.; Chamani, J.; Ghourchian, H.; Shafiey, H.; Sorenson, C.M.; Sheibani, N. Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations. J. Protein Chem., 2003, 22(1), 23-30.
[http://dx.doi.org/10.1023/A:1023011609931] [PMID: 12739895]
[27]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368, 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[28]
Zhang, X.; Shamsodin, M.; Wang, H.; NoormohammadiArani, O.; Khan, A.M.; Habibi, M.; Al-Furjan, M.S.H. Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J. Biomol. Struct. Dyn., 2020, 39(9), 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1760939] [PMID: 32338161]
[29]
Hosseinzadeh, M.; Nikjoo, S.; Zare, N.; Delavar, D.; Beigoli, S.; Chamani, J. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Res. Chem. Intermed., 2019, 45(2), 401-423.
[http://dx.doi.org/10.1007/s11164-018-3608-5]
[30]
Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-Nikouei, B.; Mokaberi, P.; Chamani, J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J. Mol. Struct., 2022, 1269, 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[31]
Nässel, D.R. Neuropeptides in the insect brain: A review. Cell Tissue Res., 1993, 273(1), 1-29.
[http://dx.doi.org/10.1007/BF00304608] [PMID: 8364953]
[32]
Strausfeld, N.J. Chapter 33 – Brain and Optic Lobes In: Encyclopedia of Insects; , 2009.
[33]
Kenyon, F.C. The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J. Comp. Neurol., 1896, 6(3), 133-210.
[http://dx.doi.org/10.1002/cne.910060302]
[34]
Strausfeld, N.J. Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. J. Comp. Neurol., 2002, 450(1), 4-33.
[http://dx.doi.org/10.1002/cne.10285] [PMID: 12124764]
[35]
Menzel, R.; Erber, J. Learning and memory in bees. Sci. Am., 1978, 239(1), 102-111.
[http://dx.doi.org/10.1038/scientificamerican0778-102]
[36]
Caron, S.; Abbott, L.F. Neuroscience: Intelligence in the honeybee mushroom body. Curr. Biol., 2017, 27(6), R220-R223.
[http://dx.doi.org/10.1016/j.cub.2017.02.011] [PMID: 28324737]
[37]
Hammer, M.; Menzel, R. Learning and memory in the honeybee. J. Neurosci., 1995, 15(3), 1617-1630.
[http://dx.doi.org/10.1523/JNEUROSCI.15-03-01617.1995] [PMID: 7891123]
[38]
Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci., 2003, 4(4), 266-275.
[http://dx.doi.org/10.1038/nrn1074] [PMID: 12671643]
[39]
Walker, R. Anatomy of the honey bee . In: Science (80-; R. E. Snodgrass. Comstock (Cornell University Press): Ithaca, N.Y, 1956.
[http://dx.doi.org/10.1126/science.124.3225.730.b]
[40]
Suzuki, H. Antennal movements induced by odour and central projection of the antennal neurones in the honey-bee. J. Insect Physiol., 1975, 21(4), 831-847.
[http://dx.doi.org/10.1016/0022-1910(75)90012-8]
[41]
Burrows, M.; Boeckh, J.; Esslen, J. Physiological and morphological properties of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone J. Comp. Physiol. □ A,, 1982.
[http://dx.doi.org/10.1007/BF00612810]
[42]
Christensen, T.A.; Hildebrand, J.G. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the mothManduca sexta. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1987, 160(5), 553-569.
[http://dx.doi.org/10.1007/BF00611929] [PMID: 3612589]
[43]
Boeckh, J.; Ernst, K.D.; Sass, H.; Waldow, U. Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J. Insect Physiol., 1984, 30(1), 15-26.
[http://dx.doi.org/10.1016/0022-1910(84)90105-7]
[44]
Nässel, D.R.; Homberg, U. Neuropeptides in interneurons of the insect brain. Cell Tissue Res., 2006, 326(1), 1-24.
[http://dx.doi.org/10.1007/s00441-006-0210-8] [PMID: 16761145]
[45]
Homberg, U. Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1984, 154(6), 825-836.
[http://dx.doi.org/10.1007/BF00610683]
[46]
Schildberger, K. Multimodal interneurons in the cricket brain: Properties of identified extrinsic mushroom body cells. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1984, 154(1), 71-79.
[http://dx.doi.org/10.1007/BF00605392]
[47]
Maza, F.J.; Urbano, F.J.; Delorenzi, A. Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci. Rep., 2022, 12(1), 11408.
[http://dx.doi.org/10.1038/s41598-022-15502-1] [PMID: 35794138]
[48]
Evans, P.D. Biogenic amines in the insect nervous system adv. In: Insect Phys; , 1980.
[http://dx.doi.org/10.1016/S0065-2806(08)60143-5]
[49]
Blenau, W.; Baumann, A. Molecular and pharmacological properties of insect biogenic amine receptors: Lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol., 2001, 48(1), 13-38.
[http://dx.doi.org/10.1002/arch.1055] [PMID: 11519073]
[50]
Schürmann, F.W.; Klemm, N. Serotonin-immunoreactive neurons in the brain of the honeybee. J. Comp. Neurol., 1984, 225(4), 570-580.
[http://dx.doi.org/10.1002/cne.902250407] [PMID: 6376546]
[51]
Schäfer, S.; Rehder, V. Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J. Comp. Neurol., 1989, 280(1), 43-58.
[http://dx.doi.org/10.1002/cne.902800105] [PMID: 2918095]
[52]
Blenau, W.; Schmidt, M.; Faensen, D.; Schürmann, F.W. Neurons with dopamine-like immunoreactivity target mushroom body Kenyon cell somata in the brain of some hymenopteran insects. Int. J. Insect Morphol. Embryol., 1999, 28(3), 203-210.
[http://dx.doi.org/10.1016/S0020-7322(99)00025-2]
[53]
Wright, G.A.; Mustard, J.A.; Simcock, N.K.; Ross-Taylor, A.A.R.; McNicholas, L.D.; Popescu, A.; Marion-Poll, F. Parallel reinforcement pathways for conditioned food aversions in the honeybee. Curr. Biol., 2010, 20(24), 2234-2240.
[http://dx.doi.org/10.1016/j.cub.2010.11.040] [PMID: 21129969]
[54]
Kreissl, S.; Eichmüller, S.; Bicker, G.; Rapus, J.; Eckert, M. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J. Comp. Neurol., 1994, 348(4), 583-595.
[http://dx.doi.org/10.1002/cne.903480408] [PMID: 7530730]
[55]
Bicker, G. Biogenic amines in the brain of the honeybee: Cellular distribution, development, and behavioral functions. Microsc. Res. Tech., 1999, 44(2-3), 166-178.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19990115/01)44:2/3<166::AID-JEMT8>3.0.CO;2-T] [PMID: 10084823]
[56]
Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature, 1993, 366(6450), 59-63.
[http://dx.doi.org/10.1038/366059a0] [PMID: 24308080]
[57]
Sinakevitch, I.; Niwa, M.; Strausfeld, N.J. Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. J. Comp. Neurol., 2005, 488(3), 233-254.
[http://dx.doi.org/10.1002/cne.20572] [PMID: 15952163]
[58]
Simpson, S.J.; Stevenson, P.A. Neuromodulation of social behavior in insects In: The Oxford handbook of molecular psychology; , 2015.
[59]
Wagener-Hulme, C.; Kuehn, J.C.; Schulz, D.J.; Robinson, G.E. Biogenic amines and division of labor in honey bee colonies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 1999, 184(5), 471-479.
[http://dx.doi.org/10.1007/s003590050347] [PMID: 10377980]
[60]
Schulz, D.J.; Robinson, G.E. Octopamine influences division of labor in honey bee colonies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 2001, 187(1), 53-61.
[http://dx.doi.org/10.1007/s003590000177] [PMID: 11318378]
[61]
A, B.; D, S.; G, R. Octopamine modulates responsiveness to foraging-related stimuli in honey bees ( Apis mellifera ). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 2002, 188(8), 603-610.
[http://dx.doi.org/10.1007/s00359-002-0335-5] [PMID: 12355236]
[62]
Nagaya, Y.; Kutsukake, M.; Chigusa, S.I.; Komatsu, A. A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neurosci. Lett., 2002, 329(3), 324-328.
[http://dx.doi.org/10.1016/S0304-3940(02)00596-7] [PMID: 12183041]
[63]
Bornhauser, B.C.; Meyer, E.P. Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res., 1996, 287(1), 211-221.
[http://dx.doi.org/10.1007/s004410050747] [PMID: 9011397]
[64]
Menzel, R. A short history of studies on intelligence and brain in honeybees. Apidologie (Celle), 2021, 52(1), 23-34.
[http://dx.doi.org/10.1007/s13592-020-00794-x]
[65]
K, W.F. The Life of the Bee. Nature, 1901, 64(1653), 231.
[http://dx.doi.org/10.1038/064231a0]
[66]
Wells, P.H.; Wenner, A.M. Do honey bees have a language? Nature, 1973, 241(5386), 171-175.
[http://dx.doi.org/10.1038/241171a0]
[67]
Simpson, J.; von Frisch, K. The dance language and orientation of bees. J. Anim. Ecol., 1969, 38(2), 460.
[http://dx.doi.org/10.2307/2785]
[68]
Menzel, R. The waggle dance as an intended flight: A cognitive perspective. Insects, 2019, 10(12), 424.
[http://dx.doi.org/10.3390/insects10120424] [PMID: 31775270]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy