Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
[http://dx.doi.org/10.1038/s41578-021-00382-0]
[http://dx.doi.org/10.1016/j.eng.2020.08.020]
[http://dx.doi.org/10.1016/j.energy.2019.01.011]
[http://dx.doi.org/10.1016/j.egyr.2019.09.002]
[http://dx.doi.org/10.1016/j.egypro.2018.10.050]
[http://dx.doi.org/10.1016/j.jclepro.2014.05.011]
[http://dx.doi.org/10.1016/j.enconman.2018.05.002]
[http://dx.doi.org/10.1016/j.jclepro.2020.120561]
[http://dx.doi.org/10.1016/j.clet.2021.100254]
[http://dx.doi.org/10.3389/fmicb.2019.00992] [PMID: 31143164]
[http://dx.doi.org/10.1002/bbb.161]
[http://dx.doi.org/10.1016/S0168-1656(98)00126-6] [PMID: 9828458]
[http://dx.doi.org/10.1016/S0141-0229(97)00243-3]
[http://dx.doi.org/10.13189/ujmr.2016.040104]
[http://dx.doi.org/10.3144/expresspolymlett.2014.82]
[http://dx.doi.org/10.1007/s00253-011-3098-5]
[http://dx.doi.org/10.1007/s10924-020-01772-1]
[http://dx.doi.org/10.3390/molecules23020362] [PMID: 29419813]
[http://dx.doi.org/10.1021/ma00019a004]
[http://dx.doi.org/10.3390/polym6030706]
[http://dx.doi.org/10.1007/s11157-016-9411-0]
[http://dx.doi.org/10.1371/journal.pone.0003295] [PMID: 18820730]
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111505]
[http://dx.doi.org/10.1155/2014/374368]
[http://dx.doi.org/10.1016/j.polymer.2007.11.049]
[http://dx.doi.org/10.1002/term.1897] [PMID: 24889107]
[http://dx.doi.org/10.1021/acs.biomac.3c00263] [PMID: 37589321]
[http://dx.doi.org/10.1016/j.ymben.2010.10.004] [PMID: 20971206]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.130] [PMID: 29360547]
[http://dx.doi.org/10.1016/j.biotechadv.2006.11.007] [PMID: 17222526]
[http://dx.doi.org/10.1016/j.polymer.2007.01.014]
[http://dx.doi.org/10.3389/fbioe.2023.1147993] [PMID: 37113671]
[http://dx.doi.org/10.1080/09205063.2017.1354674] [PMID: 28707508]
[http://dx.doi.org/10.1016/j.apmt.2018.01.004]
[http://dx.doi.org/10.1007/s10924-020-01946-x]
[http://dx.doi.org/10.2478/ebtj-2021-0008]
[http://dx.doi.org/10.1016/j.envres.2021.112179] [PMID: 34624271]
[http://dx.doi.org/10.1016/j.marpolbul.2019.03.020] [PMID: 31232288]
[PMID: 18756101]
[http://dx.doi.org/10.1016/j.biortech.2014.01.034] [PMID: 24491426]
[http://dx.doi.org/10.1016/j.wasman.2015.06.008]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.002] [PMID: 24412153]
[http://dx.doi.org/10.1007/s13213-010-0181-6]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.016] [PMID: 24751509]
[http://dx.doi.org/10.1007/s00253-014-5653-3] [PMID: 24652066]
[http://dx.doi.org/10.1016/j.biortech.2013.08.102] [PMID: 24035892]
[http://dx.doi.org/10.1016/j.jbiosc.2018.08.015] [PMID: 30352739]
[http://dx.doi.org/10.15255/CABEQ.2014.2253]
[http://dx.doi.org/10.1016/j.jclepro.2022.135331]
[http://dx.doi.org/10.1016/j.nbt.2013.11.007] [PMID: 24333144]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.069] [PMID: 27126172]
[http://dx.doi.org/10.1016/j.jbiotec.2015.09.002] [PMID: 26428087]
[http://dx.doi.org/10.1016/j.nbt.2015.05.005] [PMID: 26047553]
[http://dx.doi.org/10.1016/j.biortech.2015.01.075] [PMID: 25661307]
[http://dx.doi.org/10.15255/CABEQ.2014.2250]
[http://dx.doi.org/10.1007/978-81-322-2598-0_5]
[http://dx.doi.org/10.1016/j.biortech.2015.10.045] [PMID: 26512866]
[http://dx.doi.org/10.15255/CABEQ.2014.2251]
[http://dx.doi.org/10.1007/s10811-015-0573-x]
[http://dx.doi.org/10.1016/j.nbt.2016.05.003] [PMID: 27224675]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.006] [PMID: 24950311]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.032] [PMID: 25542172]
[http://dx.doi.org/10.1016/j.nbt.2015.06.001] [PMID: 26134839]
[http://dx.doi.org/10.1016/j.biortech.2014.02.013] [PMID: 24594316]
[http://dx.doi.org/10.3390/app8101817]
[http://dx.doi.org/10.3390/bioengineering4020054] [PMID: 28952533]
[http://dx.doi.org/10.1016/j.biortech.2016.03.025] [PMID: 26995321]
[http://dx.doi.org/10.3390/ma15051788] [PMID: 35269018]
[http://dx.doi.org/10.1039/C7CS00071E] [PMID: 28422212]
[http://dx.doi.org/10.1016/j.bej.2016.04.013]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.037] [PMID: 25193103]
[http://dx.doi.org/10.1016/j.biortech.2016.07.024] [PMID: 27420156]
[http://dx.doi.org/10.1016/j.wasman.2020.06.009] [PMID: 32585559]
[http://dx.doi.org/10.1016/j.biortech.2019.03.037] [PMID: 30884455]
[http://dx.doi.org/10.1021/acssuschemeng.0c04980]
[http://dx.doi.org/10.1002/cjce.24751]
[http://dx.doi.org/10.1007/s10924-020-01870-0]
[http://dx.doi.org/10.1016/j.ejpb.2021.06.004] [PMID: 34147574]
[http://dx.doi.org/10.1016/j.biteb.2020.100483]
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.108] [PMID: 33485890]
[http://dx.doi.org/10.3390/polym13193302] [PMID: 34641118]
[http://dx.doi.org/10.1016/j.jbiotec.2010.09.939] [PMID: 20851154]
[http://dx.doi.org/10.1016/j.procbio.2004.01.053]
[http://dx.doi.org/10.1021/bk-2014-1162.ch019]
[http://dx.doi.org/10.1039/b812677c] [PMID: 19623359]
[http://dx.doi.org/10.1007/s11157-021-09575-z]
[http://dx.doi.org/10.1016/j.biortech.2019.121427] [PMID: 31104939]
[http://dx.doi.org/10.1016/j.biortech.2021.124685] [PMID: 33508681]
[http://dx.doi.org/10.1007/978-3-642-03287-5_6]
[http://dx.doi.org/10.1016/j.jbiotec.2022.03.001] [PMID: 35298952]
[http://dx.doi.org/10.3390/catal12030319]
[http://dx.doi.org/10.1016/j.scitotenv.2021.152357] [PMID: 34921885]
[http://dx.doi.org/10.3390/bioengineering9050225] [PMID: 35621503]
[http://dx.doi.org/10.1186/1475-2859-13-88] [PMID: 24948031]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.115] [PMID: 28174083]
[http://dx.doi.org/10.1016/j.biortech.2018.09.122] [PMID: 30290323]
[http://dx.doi.org/10.1016/j.procbio.2014.12.004]
[http://dx.doi.org/10.1016/j.msec.2017.05.132] [PMID: 28629097]
[http://dx.doi.org/10.1016/j.molmed.2022.01.007] [PMID: 35232669]
[http://dx.doi.org/10.3390/polym14112141] [PMID: 35683815]
[http://dx.doi.org/10.3390/ijms23179721] [PMID: 36077119]
[http://dx.doi.org/10.1039/D2BM01308H] [PMID: 36314845]
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.098] [PMID: 36113591]
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.030] [PMID: 35278518]
[http://dx.doi.org/10.1128/jb.154.2.870-878.1983] [PMID: 6841319]
[http://dx.doi.org/10.1039/D0GC01647K]
[http://dx.doi.org/10.1016/j.jclepro.2020.121500]
[http://dx.doi.org/10.1016/j.nbt.2018.10.005] [PMID: 30389520]
[http://dx.doi.org/10.1111/jam.12581] [PMID: 24947657]
[http://dx.doi.org/10.1007/s13213-011-0218-5]
[http://dx.doi.org/10.1007/s11814-015-0293-6]
[http://dx.doi.org/10.3390/biom9120872] [PMID: 31842491]
[http://dx.doi.org/10.1186/s13104-016-2321-y] [PMID: 27955705]
[http://dx.doi.org/10.1016/j.nbt.2016.06.1461] [PMID: 27373779]
[http://dx.doi.org/10.1007/s002530050763]
[http://dx.doi.org/10.3390/bioengineering7020034] [PMID: 32260526]
[http://dx.doi.org/10.3390/bioengineering4020036] [PMID: 28952515]
[http://dx.doi.org/10.3390/molecules26113463]
[http://dx.doi.org/10.1007/s002530000332] [PMID: 10919328]
[http://dx.doi.org/10.18869/modares.iem.2.1.25]
[http://dx.doi.org/10.3390/catal9110959]
[http://dx.doi.org/10.1007/s00284-020-01883-x] [PMID: 31960091]
[http://dx.doi.org/10.1111/jam.13049] [PMID: 26742560]
[http://dx.doi.org/10.1016/0167-7799(96)80930-9] [PMID: 8867291]
[http://dx.doi.org/10.1016/S0141-8130(99)00010-0] [PMID: 10416645]
[http://dx.doi.org/10.1128/AEM.67.7.3102-3109.2001] [PMID: 11425728]
[http://dx.doi.org/10.3390/bioengineering9020074] [PMID: 35200427]