Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis

Author(s): Nicoleta Ene, Valeria Gabriela Savoiu, Maria Spiridon, Catalina Ileana Paraschiv and Emanuel Vamanu*

Volume 29, Issue 39, 2023

Published on: 11 December, 2023

Page: [3089 - 3102] Pages: 14

DOI: 10.2174/0113816128263175231102061920

Price: $65

Abstract

Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.

[1]
Law KL, Narayan R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat Rev Mater 2021; 7(2): 104-16.
[http://dx.doi.org/10.1038/s41578-021-00382-0]
[2]
Xu X, Leng Z, Lan J, et al. Sustainable practice in pavement engineering through value-added collective recycling of waste plastic and waste tyre rubber. Engineering (Beijing) 2021; 7(6): 857-67.
[http://dx.doi.org/10.1016/j.eng.2020.08.020]
[3]
Hendiarti N. Combating marine plastic debris in Indonesia. 2018. Available From: http://www.unesco.or.id/publication/SC_Re- treat/4_MarineDebrisIndonesia.pdf
[4]
Hanif I, Faraz Raza SM, Gago-de-Santos P, Abbas Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence. Energy 2019; 171: 493-501.
[http://dx.doi.org/10.1016/j.energy.2019.01.011]
[5]
Abokyi E, Appiah-Konadu P, Abokyi F, Oteng-Abayie EF. Industrial growth and emissions of CO2 in Ghana: The role of financial development and fossil fuel consumption. Energy Rep 2019; 5: 1339-53.
[http://dx.doi.org/10.1016/j.egyr.2019.09.002]
[6]
Martins F, Felgueiras C, Smitková M. Fossil fuel energy consumption in European countries. Energy Procedia 2018; 153: 107-11.
[http://dx.doi.org/10.1016/j.egypro.2018.10.050]
[7]
Didenko N, Skripnuk D, Mirolyubova O. Modeling the changes in global temperature due to pollution. Int Multidiscip Sci Geoconf SGEM 2017; 17: 559-67.
[8]
Al Qubeissi M. Biofuels - Challenges and Opportunities. Biofuels. London: IntechOpen Limited 2019.
[9]
Gilpin G, Hanssen OJ, Czerwinski J. Biodiesel’s and advanced exhaust aftertreatment’s combined effect on global warming and air pollution in EU road-freight transport. J Clean Prod 2014; 78: 84-93.
[http://dx.doi.org/10.1016/j.jclepro.2014.05.011]
[10]
Gebremariam SN, Marchetti JM. Economics of biodiesel production: Review. Energy Convers Manage 2018; 168: 74-84.
[http://dx.doi.org/10.1016/j.enconman.2018.05.002]
[11]
Esan AO, Adeyemi AD, Ganesan S. A review on the recent application of dimethyl carbonate in sustainable biodiesel production. J Clean Prod 2020; 257: 120561.
[http://dx.doi.org/10.1016/j.jclepro.2020.120561]
[12]
Koller M. Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. CABEQ 2018; 32(4): 413-38.
[13]
Sharma B, Shekhar S, Sharma S, et al. 2021; The paradigm in conversion of plastic waste into value added materials. Cleaner Eng Tech 2021; 4(5): 100254.
[http://dx.doi.org/10.1016/j.clet.2021.100254]
[14]
Amaro TMMM, Rosa D, Comi G, Iacumin L. Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Front Microbiol 2019; 10: 992.
[http://dx.doi.org/10.3389/fmicb.2019.00992] [PMID: 31143164]
[15]
Snell KD, Peoples OP. PHA bioplastic: A value-added coproduct for biomass biorefineries. Biofuels Bioprod Biorefin 2009; 3(4): 456-67.
[http://dx.doi.org/10.1002/bbb.161]
[16]
Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J Biotechnol 1998; 65(2-3): 127-61.
[http://dx.doi.org/10.1016/S0168-1656(98)00126-6] [PMID: 9828458]
[17]
Lemoigne M. Produits de deshydration et de polymerisation de l’acide b-oxybutyric. Bull Soc Chim Biol (Paris) 1926; 8: 770-82.
[18]
Lemos PC, Viana C, Salgueiro EN, et al. Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture. Enzyme Microb Technol 1998; 22(8): 662-71.
[http://dx.doi.org/10.1016/S0141-0229(97)00243-3]
[19]
Prados E, Maicas S. Bacterial production of hydroxyalkanoates (PHA). Univers J Microbiol Res 2016; 4(1): 23-30.
[http://dx.doi.org/10.13189/ujmr.2016.040104]
[20]
Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 2014; 8(11): 791-808.
[http://dx.doi.org/10.3144/expresspolymlett.2014.82]
[21]
Sudesh K, Bhubalan K, Chuah JA. Synthesis of polyhydroxyalkanoate from palm oil and some new applications. App microbial 2011; 89: 1373-86.
[http://dx.doi.org/10.1007/s00253-011-3098-5]
[22]
Muneer F, Rasul I, Azeem F, Siddique MH, Zubair M, Nadeem H. Microbial polyhydroxyalkanoates (PHAs): Efficient replacement of synthetic polymers. J Polym Environ 2020; 28(9): 2301-23.
[http://dx.doi.org/10.1007/s10924-020-01772-1]
[23]
Verlinden RA, Hill DJ, Kenward MA, et al. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J App microbiol 2007; 102(6): 1437-49.
[24]
Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018; 23(2): 362.
[http://dx.doi.org/10.3390/molecules23020362] [PMID: 29419813]
[25]
Kim YB, Lenz RW, Fuller RC. Preparation and characterization of poly(beta-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 1991; 24(19): 5256-60.
[http://dx.doi.org/10.1021/ma00019a004]
[26]
Yean OS, Yee CJ, Kumar S. Degradation of polyhydroxyalkanoate (PHA): A review. J Siberian Fed Univ Biol 2017; 10(2): 211-25.
[27]
Tan GY, Chen CL, Li L, et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers (Basel) 2014; 6(3): 706-54.
[http://dx.doi.org/10.3390/polym6030706]
[28]
Morgan-Sagastume F. Characterisation of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production. Rev Environ Sci Biotechnol 2016; 15(4): 593-625.
[http://dx.doi.org/10.1007/s11157-016-9411-0]
[29]
Tella JL, Lemus JA, Carrete M, Blanco G. The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One 2008; 3(9): e3295.
[http://dx.doi.org/10.1371/journal.pone.0003295] [PMID: 18820730]
[30]
Garcia-Garcia D, Quiles-Carrillo L, Balart R, Torres-Giner S, Arrieta MP. Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022; 178: 111505.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111505]
[31]
Liu Q, Zhang H, Deng B, Zhao X. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure, property, and fiber. Int J Polym Sci 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/374368]
[32]
Cheng ML, Lin CC, Su HL, Chen PY, Sun YM. Processing and characterization of electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanofibrous membranes. Polymer (Guildf) 2008; 49(2): 546-53.
[http://dx.doi.org/10.1016/j.polymer.2007.11.049]
[33]
Mota C, Wang SY, Puppi D, et al. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J Tissue Eng Regen Med 2017; 11(1): 175-86.
[http://dx.doi.org/10.1002/term.1897] [PMID: 24889107]
[34]
Giubilini A, Messori M, Bondioli F, et al. 3D-Printed Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules 2023; 24(9): 3961-71.
[http://dx.doi.org/10.1021/acs.biomac.3c00263] [PMID: 37589321]
[35]
Ching KY, Andriotis OG, Li S, et al. Nanofibrous poly (3-hydroxybutyrate)/poly (3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair. J Biomater Appl 2016; 31(1): 77-91.
[36]
Agresti A, John W. An introduction to categorical data analysis 2016; 38.
[37]
Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 2011; 13(1): 11-7.
[http://dx.doi.org/10.1016/j.ymben.2010.10.004] [PMID: 20971206]
[38]
Zhila N, Shishatskaya E. Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units. Int J Biol Macromol 2018; 111: 1019-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.130] [PMID: 29360547]
[39]
Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnol Adv 2007; 25(2): 148-75.
[http://dx.doi.org/10.1016/j.biotechadv.2006.11.007] [PMID: 17222526]
[40]
Santhanam A, Sasidharan S. Microbial production of polyhydroxy alkanotes (PHA) from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotechnol 2010; 9(21): 3144-50.
[41]
Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer (Guildf) 2007; 48(5): 1419-27.
[http://dx.doi.org/10.1016/j.polymer.2007.01.014]
[42]
Lyu Q, Song L, Tong YW, Wang W, Zhou J, Yan Z. Editorial: Highly efficient bioconversion of biomass waste: From theory to industry. Front Bioeng Biotechnol 2023; 11: 1147993.
[http://dx.doi.org/10.3389/fbioe.2023.1147993] [PMID: 37113671]
[43]
Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering. J Biomater Sci Polym Ed 2017; 28(16): 1797-825.
[http://dx.doi.org/10.1080/09205063.2017.1354674] [PMID: 28707508]
[44]
Torgbo S, Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl Mater Today 2018; 11: 34-49.
[http://dx.doi.org/10.1016/j.apmt.2018.01.004]
[45]
Ibrahim MI, Alsafadi D, Alamry KA, Hussein MA. Properties and applications of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites. J Polym Environ 2021; 29(4): 1010-30.
[http://dx.doi.org/10.1007/s10924-020-01946-x]
[46]
Kovalcik A. Recent advances in 3D printing of polyhydroxyalkanoates: A review. EuroBiotech J 2021; 5(1): 48-55.
[http://dx.doi.org/10.2478/ebtj-2021-0008]
[47]
Sarkar B, Dissanayake PD, Bolan NS, et al. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environ Res 2022; 207: 112179.
[http://dx.doi.org/10.1016/j.envres.2021.112179] [PMID: 34624271]
[48]
Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar Pollut Bull 2019; 142: 15-24.
[http://dx.doi.org/10.1016/j.marpolbul.2019.03.020] [PMID: 31232288]
[49]
Favaro L, Basaglia M, Rodriguez JEG, et al. Bacterial production of PHAs from lipid-rich by-products. Applied Food Biotechnology 2019; 6(1): 45-52.
[50]
Song JH, Jeon CO, Choi MH, Yoon SC, Park W. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 2008; 18(8): 1408-15.
[PMID: 18756101]
[51]
Rahman A, Anthony RJ, Sathish A, Sims RC, Miller CD. Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production. Bioresour Technol 2014; 156: 364-7.
[http://dx.doi.org/10.1016/j.biortech.2014.01.034] [PMID: 24491426]
[52]
Girotto F, Alibardi L, Cossu R. 2015; Food waste generation and industrial uses: A review. Waste Manag 2015; 45: 32-41.
[http://dx.doi.org/10.1016/j.wasman.2015.06.008]
[53]
Poomipuk N, Reungsang A, Plangklang P. Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38. Int J Biol Macromol 2014; 65: 51-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.002] [PMID: 24412153]
[54]
Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S. Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 2011; 61(3): 623-9.
[http://dx.doi.org/10.1007/s13213-010-0181-6]
[55]
Martino L, Cruz MV, Scoma A, et al. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 2014; 71: 117-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.016] [PMID: 24751509]
[56]
Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 2014; 98(13): 5883-90.
[http://dx.doi.org/10.1007/s00253-014-5653-3] [PMID: 24652066]
[57]
Wang Y, Cai J, Lan J, et al. Biosynthesis of poly(hydroxybutyrate-hydroxyvalerate) from the acclimated activated sludge and microbial characterization in this process. Bioresour Technol 2013; 148: 61-9.
[http://dx.doi.org/10.1016/j.biortech.2013.08.102] [PMID: 24035892]
[58]
Andler R, Vivod R, Steinbüchel A. Synthesis of polyhydroxyalkanoates through the biodegradation of poly(cis-1,4-isoprene) rubber. J Biosci Bioeng 2019; 127(3): 360-5.
[http://dx.doi.org/10.1016/j.jbiosc.2018.08.015] [PMID: 30352739]
[59]
Obruca S, Benesova P, Marsalek L, et al. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-44.
[http://dx.doi.org/10.15255/CABEQ.2014.2253]
[60]
Saavedra del Oso M, Mauricio-Iglesias M, Hospido A, Steubing B. Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. J Clean Prod 2023; 383: 135331.
[http://dx.doi.org/10.1016/j.jclepro.2022.135331]
[61]
Tamis J, Marang L, Jiang Y, van Loosdrecht MCM, Kleerebezem R. Modeling PHA-producing microbial enrichment cultures-towards a generalized model with predictive power. N Biotechnol 2014; 31(4): 324-34.
[http://dx.doi.org/10.1016/j.nbt.2013.11.007] [PMID: 24333144]
[62]
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 2016; 89: 161-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.069] [PMID: 27126172]
[63]
Riedel SL, Jahns S, Koenig S, et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol 2015; 214: 119-27.
[http://dx.doi.org/10.1016/j.jbiotec.2015.09.002] [PMID: 26428087]
[64]
Cruz MV, Freitas F, Paiva A, et al. Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. N Biotechnol 2016; 33(1): 206-15.
[http://dx.doi.org/10.1016/j.nbt.2015.05.005] [PMID: 26047553]
[65]
Oh YH, Lee SH, Jang YA, et al. Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 2015; 181: 283-90.
[http://dx.doi.org/10.1016/j.biortech.2015.01.075] [PMID: 25661307]
[66]
Haas C, Steinwandter V, Diaz De Apodaca E, et al. Production of PHB from chicory roots–comparison of three Cupriavidus necator strains. Chem Biochem Eng Q 2015; 29(2): 99-112.
[http://dx.doi.org/10.15255/CABEQ.2014.2250]
[67]
Patel SK, Kumar P, Singh M, et al. Integrative approach for biohydrogen and polyhydroxyalkanoate production. Microbial Factories. Cham: Springer 2015; pp. 73-85.
[http://dx.doi.org/10.1007/978-81-322-2598-0_5]
[68]
Kumar P, Ray S, Kalia VC. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 2016; 200: 413-9.
[http://dx.doi.org/10.1016/j.biortech.2015.10.045] [PMID: 26512866]
[69]
Follonier S, Riesen R, Zinn M. Pilot-scale production of functionalized mcl-PHA from grape pomace supplemented with fatty acids. Chem Biochem Eng Q 2015; 29(2): 113-21.
[http://dx.doi.org/10.15255/CABEQ.2014.2251]
[70]
Bhati R, Mallick N. Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: A sustainable approach. J Appl Phycol 2016; 28(1): 161-8.
[http://dx.doi.org/10.1007/s10811-015-0573-x]
[71]
Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. N Biotechnol 2017; 34: 47-53.
[http://dx.doi.org/10.1016/j.nbt.2016.05.003] [PMID: 27224675]
[72]
Campanari S, e Silva FA, Bertin L, Villano M, Majone M. Effect of the organic loading rate on the production of polyhydroxyalkanoates in a multi-stage process aimed at the valorization of olive oil mill wastewater. Int J Biol Macromol 2014; 71: 34-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.006] [PMID: 24950311]
[73]
Kourmentza C, Ntaikou I, Lyberatos G, et al. PHA production by mixed and pure cultures of Pseudomonas sp. using synthetic and olive mill wastewater under nitrogen and dual nitrogen-oxygen limitation. Int J Biol Macromol 2015; 74: 202-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.032] [PMID: 25542172]
[74]
Pais J, Serafim LS, Freitas F, Reis MAM. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. N Biotechnol 2016; 33(1): 224-30.
[http://dx.doi.org/10.1016/j.nbt.2015.06.001] [PMID: 26134839]
[75]
Cruz MV, Paiva A, Lisboa P, et al. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour Technol 2014; 157: 360-3.
[http://dx.doi.org/10.1016/j.biortech.2014.02.013] [PMID: 24594316]
[76]
Oliveira C, Silva M, Silva CE, Carvalho G, Reis MAM. Assessment of protein-rich cheese whey waste stream as a nutrients source for low-cost mixed microbial PHA production. Appl Sci (Basel) 2018; 8(10): 1817.
[http://dx.doi.org/10.3390/app8101817]
[77]
Pittmann T, Steinmetz H. Polyhydroxyalkanoate production on waste water treatment plants: Process scheme, operating conditions and potential analysis for German and European municipal waste water treatment plants. Bioengineering (Basel) 2017; 4(4): 54.
[http://dx.doi.org/10.3390/bioengineering4020054] [PMID: 28952533]
[78]
Venkateswar Reddy M, Mawatari Y, Yajima Y, Satoh K, Venkata Mohan S, Chang YC. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB- co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresour Technol 2016; 215: 155-62.
[http://dx.doi.org/10.1016/j.biortech.2016.03.025] [PMID: 26995321]
[79]
Gołębiewska E, Kalinowska M, Yildiz G. Sustainable use of apple pomace (AP) in different industrial sectors. Materials (Basel) 2022; 15(5): 1788.
[http://dx.doi.org/10.3390/ma15051788] [PMID: 35269018]
[80]
Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Trends and challenges for microporous polymers. Chem Soc Rev 2017; 46(11): 3302-21.
[http://dx.doi.org/10.1039/C7CS00071E] [PMID: 28422212]
[81]
Schmidt M, Ienczak JL, Quines LK, Zanfonato K, Schmidell W, de Aragão GMF. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in a system with external cell recycle and limited nitrogen feeding during the production phase. Biochem Eng J 2016; 112: 130-5.
[http://dx.doi.org/10.1016/j.bej.2016.04.013]
[82]
Bera A, Dubey S, Bhayani K, Mondal D, Mishra S, Ghosh PK. Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient. Int J Biol Macromol 2015; 72: 487-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.037] [PMID: 25193103]
[83]
Colombo B, Pepè Sciarria T, Reis M, Scaglia B, Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour Technol 2016; 218: 692-9.
[http://dx.doi.org/10.1016/j.biortech.2016.07.024] [PMID: 27420156]
[84]
Rodríguez Y, Firmino PIM, Pérez V, Lebrero R, Muñoz R. Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor. Waste Manag 2020; 113: 395-403.
[http://dx.doi.org/10.1016/j.wasman.2020.06.009] [PMID: 32585559]
[85]
Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour Technol 2019; 282: 361-9.
[http://dx.doi.org/10.1016/j.biortech.2019.03.037] [PMID: 30884455]
[86]
Moretto G, Lorini L, Pavan P, et al. Biopolymers from urban organic waste: Influence of the solid retention time to cycle length ratio in the enrichment of a mixed microbial culture (MMC). ACS Sustain Chem Eng 2020; 8(38): 14531-9.
[http://dx.doi.org/10.1021/acssuschemeng.0c04980]
[87]
Wei Z, Zhu Y, Ai M, Liu C, Jia X. Construction and analysis of a Pseudomonas saccharomyces microbial consortium for mcl-PHA production from xylose and octanoate. Can J Chem Eng 2023; 101(7): 3680-92.
[http://dx.doi.org/10.1002/cjce.24751]
[88]
Al Battashi H, Al-Kindi S, Gupta VK, Sivakumar N. Polyhydroxyalkanoate (PHA) production using volatile fatty acids derived from the anaerobic digestion of waste paper. J Polym Environ 2021; 29(1): 250-9.
[http://dx.doi.org/10.1007/s10924-020-01870-0]
[89]
Kasemiire A, Avohou HT, De Bleye C, et al. Design of experiments and design space approaches in the pharmaceutical bioprocess optimization. Eur J Pharm Biopharm 2021; 166: 144-54.
[http://dx.doi.org/10.1016/j.ejpb.2021.06.004] [PMID: 34147574]
[90]
Reddy MV, Watanabe A, Onodera R, et al. Polyhydroxyalkanoates (PHA) production using single or mixture of fatty acids with Bacillus sp. CYR1: Identification of PHA synthesis genes. Bioresour Technol Rep 2020; 11: 100483.
[http://dx.doi.org/10.1016/j.biteb.2020.100483]
[91]
Khang TU, Kim MJ, Yoo JI, et al. Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis- gas chromatography combined with mass spectrometry (Py-GC/MS). Int J Biol Macromol 2021; 174: 449-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.108] [PMID: 33485890]
[92]
Samrot AV, Samanvitha SK, Shobana N, et al. The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles. Polymers (Basel) 2021; 13(19): 3302.
[http://dx.doi.org/10.3390/polym13193302] [PMID: 34641118]
[93]
Arcos-Hernandez MV, Gurieff N, Pratt S, et al. Rapid quantification of intracellular PHA using infrared spectroscopy: An application in mixed cultures. J Biotechnol 2010; 150(3): 372-9.
[http://dx.doi.org/10.1016/j.jbiotec.2010.09.939] [PMID: 20851154]
[94]
Khanna S, Srivastava AK. Recent advances in microbial polyhydroxyalkanoates. Process Biochem 2005; 40(2): 607-19.
[http://dx.doi.org/10.1016/j.procbio.2004.01.053]
[95]
Bhardwaj U, Dhar P, Kumar A, Katiyar V. Polyhydroxyalkanoates (PHA)-cellulose based nanobiocomposites for food packaging applications.Food Additives and Packaging. Washington, D.C.: American Chemical Society 2014; pp. 275-314.
[http://dx.doi.org/10.1021/bk-2014-1162.ch019]
[96]
Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009; 38(8): 2434-46.
[http://dx.doi.org/10.1039/b812677c] [PMID: 19623359]
[97]
Policastro G, Panico A, Fabbricino M. Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: A critical review. Rev Environ Sci Biotechnol 2021; 20(2): 479-513.
[http://dx.doi.org/10.1007/s11157-021-09575-z]
[98]
Kumar G, Ponnusamy VK, Bhosale RR, et al. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour Technol 2019; 287: 121427.
[http://dx.doi.org/10.1016/j.biortech.2019.121427] [PMID: 31104939]
[99]
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour Technol 2021; 325: 124685.
[http://dx.doi.org/10.1016/j.biortech.2021.124685] [PMID: 33508681]
[100]
Chen GQ. Industrial production of PHA. Plastics from Bacteria. Berlin, Heidelberg: Springer Link 2010.
[http://dx.doi.org/10.1007/978-3-642-03287-5_6]
[101]
Palmeiro-Sánchez T, O’Flaherty V, Lens PNL. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J Biotechnol 2022; 348: 10-25.
[http://dx.doi.org/10.1016/j.jbiotec.2022.03.001] [PMID: 35298952]
[102]
Dalton B, Bhagabati P, De Micco J, Padamati RB, O’Connor K. A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts 2022; 12(3): 319.
[http://dx.doi.org/10.3390/catal12030319]
[103]
Sharma P, Gaur VK, Gupta S, et al. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci Total Environ 2022; 811: 152357.
[http://dx.doi.org/10.1016/j.scitotenv.2021.152357] [PMID: 34921885]
[104]
Reddy VUN, Ramanaiah SV, Reddy MV, Chang YC. Review of the developments of bacterial medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9(5): 225.
[http://dx.doi.org/10.3390/bioengineering9050225] [PMID: 35621503]
[105]
Borrero-de Acuña JM, Bielecka A, Häussler S, et al. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Fact 2014; 13(1): 88.
[http://dx.doi.org/10.1186/1475-2859-13-88] [PMID: 24948031]
[106]
Fontaine P, Mosrati R, Corroler D. Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures. Int J Biol Macromol 2017; 98: 430-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.115] [PMID: 28174083]
[107]
Bhatia SK, Gurav R, Choi TR, et al. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour Technol 2019; 271: 306-15.
[http://dx.doi.org/10.1016/j.biortech.2018.09.122] [PMID: 30290323]
[108]
Huschner F, Grousseau E, Brigham CJ, et al. Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem 2015; 50(2): 165-72.
[http://dx.doi.org/10.1016/j.procbio.2014.12.004]
[109]
Lim J, You M, Li J, Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C 2017; 79: 917-29.
[http://dx.doi.org/10.1016/j.msec.2017.05.132] [PMID: 28629097]
[110]
Gregory DA, Taylor CS, Fricker ATR, et al. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol Med 2022; 28(4): 331-42.
[http://dx.doi.org/10.1016/j.molmed.2022.01.007] [PMID: 35232669]
[111]
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers (Basel) 2022; 14(11): 2141.
[http://dx.doi.org/10.3390/polym14112141] [PMID: 35683815]
[112]
Ielo I, Calabrese G, De Luca G, Conoci S. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int J Mol Sci 2022; 23(17): 9721.
[http://dx.doi.org/10.3390/ijms23179721] [PMID: 36077119]
[113]
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, et al. A comprehensive review on the applications of carbon-based nanostructures in wound healing: From antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10(24): 6911-38.
[http://dx.doi.org/10.1039/D2BM01308H] [PMID: 36314845]
[114]
Pandey A, Adama N, Adjallé K, Blais JF. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. Int J Biol Macromol 2022; 221: 1184-201.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.098] [PMID: 36113591]
[115]
Dhania S, Bernela M, Rani R, et al. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208: 243-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.030] [PMID: 35278518]
[116]
de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 1983; 154(2): 870-8.
[http://dx.doi.org/10.1128/jb.154.2.870-878.1983] [PMID: 6841319]
[117]
Meereboer KW, Misra M, Mohanty AK. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 2020; 22(17): 5519-58.
[http://dx.doi.org/10.1039/D0GC01647K]
[118]
Kumar M, Rathour R, Singh R, et al. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. J Clean Prod 2020; 263: 121500.
[http://dx.doi.org/10.1016/j.jclepro.2020.121500]
[119]
Gopi K, Balaji S, Muthuvelan B. Isolation purification and screening of biodegradable polymer PHB producing cyanobacteria from marine and fresh water resources. Iranian (Iranica). J Energy Envir 2014; 5(1).
[120]
Sedlacek P, Slaninova E, Koller M, et al. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. N Biotechnol 2019; 49: 129-36.
[http://dx.doi.org/10.1016/j.nbt.2018.10.005] [PMID: 30389520]
[121]
Gasser E, Ballmann P, Dröge S, Bohn J, König H. Microbial production of biopolymers from the renewable resource wheat straw. J Appl Microbiol 2014; 117(4): 1035-44.
[http://dx.doi.org/10.1111/jam.12581] [PMID: 24947657]
[122]
Obruca S, Marova I, Melusova S, Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 2011; 61(4): 947-53.
[http://dx.doi.org/10.1007/s13213-011-0218-5]
[123]
Alkotaini B, Koo H, Kim BS. Production of polyhydroxyalkanoates by batch and fed-batch cultivations of Bacillus megaterium from acid-treated red algae. Korean J Chem Eng 2016; 33(5): 1669-73.
[http://dx.doi.org/10.1007/s11814-015-0293-6]
[124]
Rao A, Haque S, El-Enshasy HA, Singh V, Mishra BN. RSM-GA based optimization of bacterial PHA production and in silico modulation of citrate synthase for enhancing PHA production. Biomolecules 2019; 9(12): 872.
[http://dx.doi.org/10.3390/biom9120872] [PMID: 31842491]
[125]
Getachew A, Woldesenbet F. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes 2016; 9(1): 509.
[http://dx.doi.org/10.1186/s13104-016-2321-y] [PMID: 27955705]
[126]
Koller M, Muhr A. Continuous production mode as a viable process-engineering tool for efficient poly (hydroxyalkanoate)(PHA) bio-production. Chem Biochem Eng Q 2014; 28(1): 65-77.
[127]
Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. N Biotechnol 2017; 37(Pt A): 117-22.
[http://dx.doi.org/10.1016/j.nbt.2016.06.1461] [PMID: 27373779]
[128]
Gomez JGC, Rodrigues MFA, Alli RCP, et al. Evaluation of soil gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Appl Microbiol Biotechnol 1996; 45(6): 785-91.
[http://dx.doi.org/10.1007/s002530050763]
[129]
Rebocho AT, Pereira JR, Neves LA, et al. Preparation and characterization of films based on a natural p (3hb)/mcl-pha blend obtained through the co-culture of cupriavidus necator and pseudomonas citronellolis in apple pulp waste. Bioengineering (Basel) 2020; 7(2): 34.
[http://dx.doi.org/10.3390/bioengineering7020034] [PMID: 32260526]
[130]
Miranda De Sousa Dias M, Koller M, Puppi D, Morelli A, Chiellini F, Braunegg G. Fed-batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering (Basel) 2017; 4(4): 36.
[http://dx.doi.org/10.3390/bioengineering4020036] [PMID: 28952515]
[131]
Bedade DK, Edson CB, Gross RA. Emergent approaches to efficient and sustainable polyhydroxyalkanoate production. Molecules 2021; 26(11): 3463.
[http://dx.doi.org/10.3390/molecules26113463]
[132]
Solaiman DKY, Ashby RD, Foglia TA. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl Microbiol Biotechnol 2000; 53(6): 690-4.
[http://dx.doi.org/10.1007/s002530000332] [PMID: 10919328]
[133]
Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their pathogenesis and prevalence in clinical settings and the environment. Infect Epidemiol Med 2016; 2(1): 25-32.
[http://dx.doi.org/10.18869/modares.iem.2.1.25]
[134]
Balamurugan D, Udayasooriyan C, Kamaladevi B. Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils. Int J Environ Sci 2014; 5(3): 522-9.
[135]
Soare MG, Lakatos ES, Ene N, et al. The potential applications of Bacillus sp. and Pseudomonas sp. strains with antimicrobial activity against phytopathogens, in waste oils and the bioremediation of hydrocarbons. Catalysts 2019; 9(11): 959.
[http://dx.doi.org/10.3390/catal9110959]
[136]
Sangkharak K, Choonut A, Rakkan T, Prasertsan P. The degradation of phenanthrene, pyrene, and fluoranthene and its conversion into medium-chain-length polyhydroxyalkanoate by novel polycyclic aromatic hydrocarbon-degrading bacteria. Curr Microbiol 2020; 77(6): 897-909.
[http://dx.doi.org/10.1007/s00284-020-01883-x] [PMID: 31960091]
[137]
Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol 2016; 120(4): 868-76.
[http://dx.doi.org/10.1111/jam.13049] [PMID: 26742560]
[138]
Eswari JS, Dhagat S, Yadav M. Computer-Aided design of antimicrobial lipopeptides as prospective drug candidates. Boca Raton, Florida: CRC Press 2019.
[139]
Lee SY. High cell-density culture of Escherichia coli. Trends Biotechnol 1996; 14(3): 98-105.
[http://dx.doi.org/10.1016/0167-7799(96)80930-9] [PMID: 8867291]
[140]
Rehm BHA, Steinbüchel A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 1999; 25(1-3): 3-19.
[http://dx.doi.org/10.1016/S0141-8130(99)00010-0] [PMID: 10416645]
[141]
Ratledge C, Kristiansen B. Basic biotechnology. Cambridge, England: Cambridge University Press 2006.
[142]
Rehm BHA, Mitsky TA, Steinbüchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 2001; 67(7): 3102-9.
[http://dx.doi.org/10.1128/AEM.67.7.3102-3109.2001] [PMID: 11425728]
[143]
Meng DC, Chen GQ. Synthetic biology of polyhydroxyalkanoates (PHA). Adv Biochem Eng Biotechnol 2018; 162(7): 147-74.
[144]
Koller M, Mukherjee A. A new wave of industrialization of PHA biopolyesters. Bioengineering (Basel) 2022; 9(2): 74.
[http://dx.doi.org/10.3390/bioengineering9020074] [PMID: 35200427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy