Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment

Author(s): Negin Alavi, Parvaneh Maghami, Azar Fani Pakdel, Majid Rezaei and Amir Avan*

Volume 29, Issue 39, 2023

Published on: 21 November, 2023

Page: [3103 - 3122] Pages: 20

DOI: 10.2174/0113816128265544231102065515

Price: $65

Abstract

Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.

[1]
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008; 1: 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[2]
Siddique S, Chow JCL. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 2020; 10(11): 3824.
[http://dx.doi.org/10.3390/app10113824]
[3]
Ahmad T, Sarwar R, Iqbal A, et al. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine 2020; 15(12): 1221-37.
[http://dx.doi.org/10.2217/nnm-2020-0051] [PMID: 32370608]
[4]
Ghorani-Azam A, Mottaghipisheh J, Amiri MS, et al. Resveratrol- mediated gold-nanoceria synthesis as green nanomedicine for phytotherapy of hepatocellular carcinoma. Front Biosci-Landmark 2022; 27(8): 227.
[http://dx.doi.org/10.31083/j.fbl2708227] [PMID: 36042163]
[5]
Akkın S, Varan G, Bilensoy E. A review on cancer immunotherapy and applications of nanotechnology to chemoimmunotherapy of different cancers. Molecules 2021; 26(11): 3382.
[http://dx.doi.org/10.3390/molecules26113382] [PMID: 34205019]
[6]
Hashemzadeh A, Asgharzadeh F, Yaghoubi A, et al. Sulfasalazine colon-specific drug delivery by selenium nanoparticle. J Trace Elem Miner 2022; 2: 100012.
[http://dx.doi.org/10.1016/j.jtemin.2022.100012]
[7]
Hashemzadeh A, Drummen GPC, Avan A, et al. When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B Mater Biol Med 2021; 9(19): 3967-82.
[http://dx.doi.org/10.1039/D1TB00155H] [PMID: 33908592]
[8]
Sobhani N, Dolat E, Darroudi M, et al. Accompanying photocytotoxic activity of gold nanoechinus and zinc phthalocyanine on cancerous cell lines. Photodiagn Photodyn Ther 2020; 32: 101929.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101929] [PMID: 32795508]
[9]
Dan Q, Yuan Z, Zheng S, et al. Gold nanoclusters-based NIR-II photosensitizers with catalase-like activity for boosted photodynamic therapy. Pharmaceutics 2022; 14(8): 1645.
[http://dx.doi.org/10.3390/pharmaceutics14081645] [PMID: 36015272]
[10]
Haimov E, Weitman H, Polani S, Schori H, Zitoun D, Shefi O. meso-Tetrahydroxyphenylchlorin-conjugated gold nanoparticles as a tool to improve photodynamic therapy. ACS Appl Mater Interfaces 2018; 10(3): 2319-27.
[http://dx.doi.org/10.1021/acsami.7b16455] [PMID: 29298037]
[11]
García Calavia P, Bruce G, Pérez-García L, Russell DA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 2018; 17(11): 1534-52.
[http://dx.doi.org/10.1039/c8pp00271a] [PMID: 30118115]
[12]
Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J Photochem Photobiol B 2012; 107: 35-44.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.11.007] [PMID: 22209036]
[13]
Huang X, Tian XJ, Yang W, Ehrenberg B, Chen JY. The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Phys Chem Chem Phys 2013; 15(38): 15727-33.
[http://dx.doi.org/10.1039/c3cp44227f] [PMID: 23575880]
[14]
Lavaee F, Motamedifar M, Rafiee G. The effect of photodynamic therapy by gold nanoparticles on Streptococcus mutans and biofilm formation: An in vitro study. Lasers Med Sci 2021; 37(3): 1717-25.
[http://dx.doi.org/10.1007/s10103-021-03422-x] [PMID: 34694502]
[15]
R Mokoena D, P George B, Abrahamse H. Enhancing breast cancer treatment using a combination of cannabidiol and gold nanoparticles for photodynamic therapy. Int J Mol Sci 2019; 20(19): 4771.
[http://dx.doi.org/10.3390/ijms20194771] [PMID: 31561450]
[16]
Li L, Nurunnabi M, Nafiujjaman M, Lee Y, Huh KM. GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release 2013; 171(2): 241-50.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.002] [PMID: 23867285]
[17]
Crous A, Abrahamse H. Photodynamic therapy with an alpcs4cl gold nanoparticle conjugate decreases lung cancer’s metastatic potential. Coatings 2022; 12(2): 199.
[http://dx.doi.org/10.3390/coatings12020199]
[18]
Xin J, Wang S, Wang B, et al. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic® F127 nanomicellar drug carriers. Int J Nanomedicine 2018; 13: 2017-36.
[http://dx.doi.org/10.2147/IJN.S154054] [PMID: 29670347]
[19]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[20]
Liu Y, Yuan H, Fales AM, Register JK, Vo-Dinh T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front Chem 2015; 3: 51.
[http://dx.doi.org/10.3389/fchem.2015.00051] [PMID: 26322306]
[21]
Kim H, Lee D. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 2018; 10(9): 961.
[http://dx.doi.org/10.3390/polym10090961] [PMID: 30960886]
[22]
Wang J, You M, Zhu G, et al. Photosensitizer-gold nanorod composite for targeted multimodal therapy. Small 2013; 9(21): 3678-84.
[http://dx.doi.org/10.1002/smll.201202155] [PMID: 23661612]
[23]
Poderys V, Jarockyte G, Bagdonas S, Karabanovas V, Rotomskis R. Protein-stabilized gold nanoclusters for PDT: ROS and singlet oxygen generation. J Photochem Photobiol B 2020; 204: 111802.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111802] [PMID: 31981990]
[24]
Wang S, Huang P, Nie L, et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 2013; 25(22): 3055-61.
[http://dx.doi.org/10.1002/adma.201204623] [PMID: 23404693]
[25]
Han R, Zhao M, Wang Z, et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020; 14(8): 9532-44.
[http://dx.doi.org/10.1021/acsnano.9b05169] [PMID: 31670942]
[26]
Liu P, Yang W, Shi L, et al. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J Mater Chem B Mater Biol Med 2019; 7(44): 6924-33.
[http://dx.doi.org/10.1039/C9TB01573F] [PMID: 31638633]
[27]
D’Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology 2021; 32(19): 192001.
[http://dx.doi.org/10.1088/1361-6528/abe1ed] [PMID: 33524960]
[28]
Khaing Oo MK, Yang Y, Hu Y, Gomez M, Du H, Wang H. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 2012; 6(3): 1939-47.
[http://dx.doi.org/10.1021/nn300327c] [PMID: 22385214]
[29]
Xu W, Qian J, Hou G, et al. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer. Acta Biomater 2018; 82: 171-83.
[http://dx.doi.org/10.1016/j.actbio.2018.10.019] [PMID: 30336271]
[30]
Yao H, Jiang D, Dong G, et al. Near infrared imaging of intracellular GSH by AuNCs@MnO2 core–shell nanoparticles based on the absorption competition mechanism. Analyst 2021; 146(16): 5115-23.
[http://dx.doi.org/10.1039/D1AN00839K] [PMID: 34269357]
[31]
Jiang D, Pan Y, Yao H, et al. Synthesis of renal-clearable multicolor fluorescent silicon nanodots for tumor imaging and in vivo H2O2 profiling. Anal Chem 2022; 94(25): 9074-80.
[http://dx.doi.org/10.1021/acs.analchem.2c01308] [PMID: 35694855]
[32]
Xu W, Qian J, Hou G, et al. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Acta Biomater 2019; 83: 400-13.
[http://dx.doi.org/10.1016/j.actbio.2018.11.026] [PMID: 30465921]
[33]
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold nanoparticles in cancer theranostics. Front Bioeng Biotechnol 2021; 9: 647905.
[http://dx.doi.org/10.3389/fbioe.2021.647905] [PMID: 33928072]
[34]
Lee J, Lee YH, Jeong CB, Choi JS, Chang KS, Yoon M. Gold nanorods-conjugated TiO2 nanoclusters for the synergistic combination of phototherapeutic treatments of cancer cells. J Nanobiotechnology 2018; 16(1): 104.
[http://dx.doi.org/10.1186/s12951-018-0432-4] [PMID: 30572896]
[35]
Amendoeira A, García LR, Fernandes AR, Baptista PV. Light irradiation of gold nanoparticles toward advanced cancer therapeutics. Adv Ther 2020; 3(1): 1900153.
[http://dx.doi.org/10.1002/adtp.201900153]
[36]
Ai J, Xu Y, Lou B, Li D, Wang E. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Talanta 2014; 118: 54-60.
[http://dx.doi.org/10.1016/j.talanta.2013.09.062] [PMID: 24274270]
[37]
Gao L, Liu R, Gao F, Wang Y, Jiang X, Gao X. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 2014; 8(7): 7260-71.
[http://dx.doi.org/10.1021/nn502325j] [PMID: 24992260]
[38]
Liu B, Qiao G, Han Y, et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater 2020; 117: 361-73.
[http://dx.doi.org/10.1016/j.actbio.2020.09.040] [PMID: 33007481]
[39]
Chen J, Fan T, Xie Z, et al. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020; 237: 119827.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119827] [PMID: 32036302]
[40]
Fakayode OJ, Tsolekile N, Songca SP, Oluwafemi OS. Applications of functionalized nanomaterials in photodynamic therapy. Biophys Rev 2018; 10(1): 49-67.
[http://dx.doi.org/10.1007/s12551-017-0383-2] [PMID: 29294258]
[41]
Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev 2014; 114(21): 10869-939.
[http://dx.doi.org/10.1021/cr400532z] [PMID: 25260098]
[42]
Han G, Ghosh P, Rotello VM. Functionalized gold nanoparticles for drug delivery. 2007; pp. 113-23.
[http://dx.doi.org/10.2217/17435889.2.1.113]
[43]
Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 2010; 7(6): 753-63.
[http://dx.doi.org/10.1517/17425241003777010] [PMID: 20408736]
[44]
Calixto G, Bernegossi J, de Freitas L, Fontana C, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules 2016; 21(3): 342.
[http://dx.doi.org/10.3390/molecules21030342] [PMID: 26978341]
[45]
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-specific agents for photodynamic cancer therapy: A key determinant to boost the efficacy. Adv Healthc Mater 2021; 10(3): 2001240.
[http://dx.doi.org/10.1002/adhm.202001240] [PMID: 33236531]
[46]
Wang R, Li X, Yoon J. Organelle-targeted photosensitizers for precision photodynamic therapy. ACS Appl Mater Interfaces 2021; 13(17): 19543-71.
[http://dx.doi.org/10.1021/acsami.1c02019] [PMID: 33900741]
[47]
Hu JJ, Lei Q, Zhang XZ. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog Mater Sci 2020; 114: 100685.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100685]
[48]
Lamch Ł, Pucek A, Kulbacka J, et al. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261: 62-81.
[http://dx.doi.org/10.1016/j.cis.2018.09.002] [PMID: 30262128]
[49]
Singh M, Harris-Birtill DCC, Markar SR, Hanna GB, Elson DS. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomedicine 2015; 11(8): 2083-98.
[http://dx.doi.org/10.1016/j.nano.2015.05.010] [PMID: 26115635]
[50]
Cifuentes-Rius A, Deepagan VG, Xie J, Voelcker NH. Bright future of gold nanoclusters in theranostics. ACS Appl Mater Interfaces 2021; 13(42): 49581-8.
[http://dx.doi.org/10.1021/acsami.1c14275] [PMID: 34636533]
[51]
Guo J, Rahme K, He Y, Li LL, Holmes J, O’Driscoll C. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12: 6131-52.
[http://dx.doi.org/10.2147/IJN.S140772] [PMID: 28883725]
[52]
Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics 2013; 3(3): 223-38.
[http://dx.doi.org/10.7150/thno.5409] [PMID: 23471510]
[53]
Gamaleia NF, Shton IO. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagn Photodyn Ther 2015; 12(2): 221-31.
[http://dx.doi.org/10.1016/j.pdpdt.2015.03.002] [PMID: 25818545]
[54]
Rajkumar S, Prabaharan M. Theranostics based on iron oxide and gold nanoparticles for imaging-guided photothermal and photodynamic therapy of cancer. Curr Top Med Chem 2017; 17(16): 1858-71.
[http://dx.doi.org/10.2174/1568026617666161122120537] [PMID: 27875977]
[55]
Bucharskaya A, Maslyakova G, Terentyuk G, et al. Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int J Mol Sci 2016; 17(8): 1295.
[http://dx.doi.org/10.3390/ijms17081295] [PMID: 27517913]
[56]
Shiao YS, Chiu HH, Wu PH, Huang YF. Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl Mater Interfaces 2014; 6(24): 21832-41.
[http://dx.doi.org/10.1021/am5026243] [PMID: 24949657]
[57]
Rai A, Ferreira L. Biomedical applications of the peptide decorated gold nanoparticles. Crit Rev Biotechnol 2021; 41(2): 186-215.
[http://dx.doi.org/10.1080/07388551.2020.1853031] [PMID: 33525956]
[58]
Zhao P, Li N, Astruc D. State of the art in gold nanoparticle synthesis. Coord Chem Rev 2013; 257(3-4): 638-65.
[http://dx.doi.org/10.1016/j.ccr.2012.09.002]
[59]
Zabetakis K, Ghann WE, Kumar S, Daniel MC. Effect of high gold salt concentrations on the size and polydispersity of gold nanoparticles prepared by an extended Turkevich–Frens method. Gold Bull 2012; 45(4): 203-11.
[http://dx.doi.org/10.1007/s13404-012-0069-2]
[60]
Volkert AA, Subramaniam V, Haes AJ. Implications of citrate concentration during the seeded growth synthesis of gold nanoparticles. Chem Commun 2011; 47(1): 478-80.
[http://dx.doi.org/10.1039/C0CC02075C] [PMID: 20931116]
[61]
Ojea-Jiménez I, Bastús NG, Puntes V. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles. J Phys Chem C 2011; 115(32): 15752-7.
[http://dx.doi.org/10.1021/jp2017242]
[62]
Li C, Li D, Wan G, Xu J, Hou W. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls. Nanoscale Res Lett 2011; 6(1): 440.
[http://dx.doi.org/10.1186/1556-276X-6-440] [PMID: 21733153]
[63]
Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J Am Chem Soc 2007; 129(45): 13939-48.
[http://dx.doi.org/10.1021/ja074447k] [PMID: 17948996]
[64]
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 2006; 110(32): 15700-7.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[65]
Hu M, Chen J, Li ZY, et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006; 35(11): 1084-94.
[http://dx.doi.org/10.1039/b517615h] [PMID: 17057837]
[66]
Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 1999; 103(21): 4212-7.
[http://dx.doi.org/10.1021/jp984796o]
[67]
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951; 11: 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[68]
Kumari Y, Kaur G, Kumar R, et al. Gold nanoparticles: New routes across old boundaries. Adv Colloid Interface Sci 2019; 274: 102037.
[http://dx.doi.org/10.1016/j.cis.2019.102037] [PMID: 31655366]
[69]
Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine 2020; 15: 9823-57.
[http://dx.doi.org/10.2147/IJN.S279094] [PMID: 33324054]
[70]
da Silva AB, Rufato KB, de Oliveira AC, et al. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int J Biol Macromol 2020; 161: 977-98.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.113] [PMID: 32553969]
[71]
Yu Y, Yang T, Sun T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine 2020; 15(11): 1127-45.
[http://dx.doi.org/10.2217/nnm-2019-0395] [PMID: 32329396]
[72]
Fai TK, Kumar PV. Revolution in the synthesis, physio-chemical and biological characterization of gold nanoplatform. Curr Pharm Des 2021; 27(21): 2482-504.
[http://dx.doi.org/10.2174/1381612827666210127121347] [PMID: 33504298]
[73]
Ielo I, Rando G, Giacobello F, et al. Synthesis, chemical–physical characterization, and biomedical applications of functional gold nanoparticles: A review. Molecules 2021; 26(19): 5823.
[http://dx.doi.org/10.3390/molecules26195823] [PMID: 34641367]
[74]
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. J Chem Soc Chem Commun 1994; (7): 801-2.
[http://dx.doi.org/10.1039/C39940000801]
[75]
Ghosh SK. Spectroscopic evaluation of 4-(dimethylamino)pyridine versus citrate as stabilizing ligand for gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2010; 371(1-3): 98-103.
[http://dx.doi.org/10.1016/j.colsurfa.2010.09.010]
[76]
Vörös NM, Patakfalvi R, Dékány I. Alkylthiol-functionalized gold nanoparticles for sensing organic vapours: The connection between the adsorption isotherm and the sensor resistance. Colloids Surf A Physicochem Eng Asp 2008; 329(3): 205-10.
[http://dx.doi.org/10.1016/j.colsurfa.2008.07.011]
[77]
Kim YJ, Yang YS, Ha SC, et al. Mixed-ligand nanoparticles of chlorobenzenemethanethiol and n-octanethiol as chemical sensors. Sens Actuators B Chem 2005; 106(1): 189-98.
[http://dx.doi.org/10.1016/j.snb.2004.05.056]
[78]
Kang SW, Hong J, Park JH, et al. Nanocomposite membranes containing positively polarized gold nanoparticles for facilitated olefin transport. J Membr Sci 2008; 321(1): 90-3.
[http://dx.doi.org/10.1016/j.memsci.2008.04.047]
[79]
Kuroda Y, Fukumoto K, Kuroda K. Uniform and high dispersion of gold nanoparticles on imogolite nanotubes and assembly into morphologically controlled materials. Appl Clay Sci 2012; 55: 10-7.
[http://dx.doi.org/10.1016/j.clay.2011.07.004]
[80]
Shon YS, Chuc S, Voundi P. Stability of tetraoctylammonium bromide-protected gold nanoparticles: Effects of anion treatments. Colloids Surf A Physicochem Eng Asp 2009; 352(1-3): 12-7.
[http://dx.doi.org/10.1016/j.colsurfa.2009.09.037]
[81]
Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R. Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM. Science 1995; 267(5196): 367-9.
[http://dx.doi.org/10.1126/science.267.5196.367] [PMID: 17837485]
[82]
Huang CJ, Chiu PH, Wang YH, Chen KL, Linn JJ, Yang CF. Electrochemically controlling the size of gold nanoparticles. J Electrochem Soc 2006; 153(12): D193.
[http://dx.doi.org/10.1149/1.2358103]
[83]
Chen S, Yang Y. Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. J Am Chem Soc 2002; 124(19): 5280-1.
[http://dx.doi.org/10.1021/ja025897+] [PMID: 11996564]
[84]
Stanglmair C, Scheeler SP, Pacholski C. Seeding growth approach to gold nanoparticles with diameters ranging from 10 to 80 nanometers in organic solvent. Eur J Inorg Chem 2014; 2014(23): 3633-7.
[http://dx.doi.org/10.1002/ejic.201402467]
[85]
Siti RM, Khairunisak AR, Aziz AA, Noordin R. In Green synthesis of 10 nm gold nanoparticles via seeded-growth method and its conjugation properties on lateral flow immunoassay. Adv Mater Res 2013; pp. 8-12.
[86]
Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001; 17(22): 6782-6.
[http://dx.doi.org/10.1021/la0104323]
[87]
Ziegler C, Eychmüller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. J Phys Chem C 2011; 115(11): 4502-6.
[http://dx.doi.org/10.1021/jp1106982]
[88]
Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 2001; 105(19): 4065-7.
[http://dx.doi.org/10.1021/jp0107964]
[89]
Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003; 15(10): 1957-62.
[http://dx.doi.org/10.1021/cm020732l]
[90]
Hühn J, Carrillo-Carrion C, Soliman MG, et al. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem Mater 2017; 29(1): 399-461.
[http://dx.doi.org/10.1021/acs.chemmater.6b04738]
[91]
Noruzi M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 2015; 38(1): 1-14.
[http://dx.doi.org/10.1007/s00449-014-1251-0] [PMID: 25090979]
[92]
Virkutyte J, Varma RS. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2011; 2(5): 837-46.
[http://dx.doi.org/10.1039/C0SC00338G]
[93]
Sreelakshmi C, Datta KKR, Yadav JS, Reddy BVS. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J Nanosci Nanotechnol 2011; 11(8): 6995-7000.
[http://dx.doi.org/10.1166/jnn.2011.4240] [PMID: 22103111]
[94]
Perveen K, Husain FM, Qais FA, et al. Microwave-assisted rapid green Synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules 2021; 11(2): 197.
[http://dx.doi.org/10.3390/biom11020197] [PMID: 33573343]
[95]
Khalil AT, Ovais M, Iqbal J, et al. In Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics, Seminars in cancer biology. Elsevier 2021.
[96]
Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2002; 2(4): 397-401.
[http://dx.doi.org/10.1021/nl015673+]
[97]
Chahardoli A, Karimi N, Sadeghi F, Fattahi A. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif Cells Nanomed Biotechnol 2018; 46(3): 579-88.
[http://dx.doi.org/10.1080/21691401.2017.1332634] [PMID: 28541741]
[98]
Islam NU, Jalil K, Shahid M, et al. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem 2019; 12(8): 2914-25.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.025]
[99]
Usman AI, Abdul Aziz A, Abu Noqta O. Application of green synthesis of gold nanoparticles: A review. J Teknol 2018; 81(1): 1-5.
[http://dx.doi.org/10.11113/jt.v81.11409]
[100]
Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev 2017; 10(4): 216-27.
[http://dx.doi.org/10.1080/17518253.2017.1349192]
[101]
Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 2008; 62(30): 4588-90.
[http://dx.doi.org/10.1016/j.matlet.2008.08.044]
[102]
Boruah KS, Medhi OKC, Boruah KP, Sarma P. Green synthesis of gold nanoparticles using Camellia sinensis and kinetics of the reaction. Adv Mater Lett 2012; 3(6): 481-6.
[http://dx.doi.org/10.5185/amlett.2012.icnano.103]
[103]
Chen J, Li Y, Fang G, et al. Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab J Chem 2021; 14(3): 103000.
[http://dx.doi.org/10.1016/j.arabjc.2021.103000]
[104]
Bahram M, Mohammadzadeh E. Green synthesis of gold nanoparticles with willow tree bark extract: A sensitive colourimetric sensor for cysteine detection. Anal Methods 2014; 6(17): 6916-24.
[http://dx.doi.org/10.1039/C4AY01362J]
[105]
Rodríguez-León E, Rodríguez-Vázquez BE, Martínez-Higuera A, et al. Synthesis of gold nanoparticles using Mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Res Lett 2019; 14(1): 334.
[http://dx.doi.org/10.1186/s11671-019-3158-9] [PMID: 31654146]
[106]
ElMitwalli OS, Barakat OA, Daoud RM, Akhtar S, Henari FZ. Green synthesis of gold nanoparticles using cinnamon bark extract, characterization, and fluorescence activity in Au/eosin Y assemblies. J Nanopart Res 2020; 22(10): 309.
[http://dx.doi.org/10.1007/s11051-020-04983-8]
[107]
Wang B, Yang G, Chen J, Fang G. Green synthesis and characterization of gold nanoparticles using lignin nanoparticles. Nanomaterials 2020; 10(9): 1869.
[http://dx.doi.org/10.3390/nano10091869] [PMID: 32961968]
[108]
Parida UK, Bindhani BK, Nayak P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 2011; 1(4): 93-8.
[http://dx.doi.org/10.4236/wjnse.2011.14015]
[109]
Lee K X, Shameli K, Miyake M, et al. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 2016; 2016: 1-7.
[110]
Bogireddy NKR, Pal U, Gomez LM, Agarwal V. Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Advances 2018; 8(44): 24819-26.
[http://dx.doi.org/10.1039/C8RA04332A] [PMID: 35542117]
[111]
Molnár Z, Bódai V, Szakacs G, et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 2018; 8(1): 3943.
[http://dx.doi.org/10.1038/s41598-018-22112-3] [PMID: 29500365]
[112]
Mishra A, Tripathy SK, Wahab R, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 2011; 92(3): 617-30.
[http://dx.doi.org/10.1007/s00253-011-3556-0] [PMID: 21894479]
[113]
Singh AK, Tiwari R, Singh VK, et al. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J Drug Deliv Sci Technol 2019; 51: 164-76.
[http://dx.doi.org/10.1016/j.jddst.2019.02.023]
[114]
Chellapandian C, Ramkumar B, Puja P, Shanmuganathan R, Pugazhendhi A, Kumar P. Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochem 2019; 80: 58-63.
[http://dx.doi.org/10.1016/j.procbio.2019.02.009]
[115]
Kumari M, Mishra A, Pandey S, et al. Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci Rep 2016; 6(1): 27575.
[http://dx.doi.org/10.1038/srep27575] [PMID: 27273371]
[116]
He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 2007; 61(18): 3984-7.
[http://dx.doi.org/10.1016/j.matlet.2007.01.018]
[117]
Sathiyanarayanan G, Kiran GS, Selvin J, Saibaba G. Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol 2013; 60: 253-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.031] [PMID: 23748002]
[118]
Nadaf NY, Kanase SS. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem 2019; 12(8): 4806-14.
[http://dx.doi.org/10.1016/j.arabjc.2016.09.020]
[119]
Ahmad A, Senapati S, Khan MI, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 2003; 14(7): 824-8.
[http://dx.doi.org/10.1088/0957-4484/14/7/323]
[120]
Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 2013; 12(1): 75.
[http://dx.doi.org/10.1186/1475-2859-12-75] [PMID: 23919572]
[121]
Sharma N, Pinnaka AK, Raje M, Fnu A, Bhattacharyya MS, Choudhury AR. Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Fact 2012; 11(1): 86.
[http://dx.doi.org/10.1186/1475-2859-11-86] [PMID: 22715848]
[122]
Asgharzadeh F, Hashemzadeh A, Rahmani F, et al. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sci 2021; 278: 119500.
[http://dx.doi.org/10.1016/j.lfs.2021.119500] [PMID: 33862111]
[123]
Hashemzadeh A, Amerizadeh F, Asgharzadeh F, et al. Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH2. Toxicol Appl Pharmacol 2021; 423: 115573.
[http://dx.doi.org/10.1016/j.taap.2021.115573] [PMID: 33991535]
[124]
Xiao B, Zhang M, Viennois E, et al. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015; 48: 147-60.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.014] [PMID: 25701040]
[125]
Hashemzadeh A, Amerizadeh F, Asgharzadeh F, et al. Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: In vitro studies. J Cluster Sci. 2021; pp. 1-17.
[126]
Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 2013; 48(3): 416-27.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[127]
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022; 457: 214423.
[http://dx.doi.org/10.1016/j.ccr.2022.214423]
[128]
Asgharzadeh F, Hashemzadeh A, Yaghoubi A, et al. Therapeutic effects of silver nanoparticle containing sulfasalazine on DSS-induced colitis model. J Drug Deliv Sci Technol 2021; 61: 102133.
[http://dx.doi.org/10.1016/j.jddst.2020.102133]
[129]
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res 2010; 12(7): 2313-33.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[130]
Kalimuthu K, Lubin BC, Bazylevich A, et al. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnology 2018; 16(1): 34.
[http://dx.doi.org/10.1186/s12951-018-0362-1] [PMID: 29602308]
[131]
Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 2009; 30(30): 6065-75.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.048] [PMID: 19674777]
[132]
Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 2007; 4(5): 713-22.
[http://dx.doi.org/10.1021/mp060132k] [PMID: 17708653]
[133]
Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem Rev 1999; 99(7): 1849-62.
[http://dx.doi.org/10.1021/cr970071p] [PMID: 11849013]
[134]
Zarabi MF, Farhangi A, Mazdeh SK, et al. Synthesis of gold nanoparticles coated with aspartic acid and their conjugation with FVIII protein and FVIII antibody. Indian J Clin Biochem 2014; 29(2): 154-60.
[http://dx.doi.org/10.1007/s12291-013-0323-2] [PMID: 24757296]
[135]
Mahato K, Nagpal S, Shah M A, et al. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9(2): 1-19.
[136]
Mugaka BP, Hu Y, Ma Y, Ding Y. Surface modification of gold nanoparticles for targeted drug delivery. Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer 2019; pp. 391-403.
[http://dx.doi.org/10.1007/978-3-030-06115-9_20]
[137]
Kodiyan A, Silva EA, Kim J, Aizenberg M, Mooney DJ. Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. ACS Nano 2012; 6(6): 4796-805.
[http://dx.doi.org/10.1021/nn205073n] [PMID: 22650310]
[138]
Jo S, Sun IC, Yun WS, et al. Thiol-responsive gold nanodot swarm with glycol chitosan for photothermal cancer therapy. Molecules 2021; 26(19): 5980.
[http://dx.doi.org/10.3390/molecules26195980] [PMID: 34641524]
[139]
Goossens J, Sein H, Lu S, et al. Functionalization of gold nanoparticles with nanobodies through physical adsorption. Anal Methods 2017; 9(23): 3430-40.
[http://dx.doi.org/10.1039/C7AY00854F]
[140]
Glomm WR. Functionalized gold nanoparticles for applications in bionanotechnology. J Dispers Sci Technol 2005; 26(3): 389-414.
[http://dx.doi.org/10.1081/DIS-200052457]
[141]
Oliveira JP, Prado AR, Keijok WJ, Antunes PWP, Yapuchura ER, Guimarães MCC. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci Rep 2019; 9(1): 13859.
[http://dx.doi.org/10.1038/s41598-019-50424-5] [PMID: 30626917]
[142]
Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 2008; 19(6): 1309-12.
[http://dx.doi.org/10.1021/bc8001248] [PMID: 18512972]
[143]
Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B Mater Biol Med 2019; 7(6): 876-96.
[http://dx.doi.org/10.1039/C8TB02484G] [PMID: 32255093]
[144]
Conde J, Ambrosone A, Sanz V, et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano 2012; 6(9): 8316-24.
[http://dx.doi.org/10.1021/nn3030223] [PMID: 22882598]
[145]
Kim J-H, Jang HH, Ryou S-M, et al. A functionalized gold nanoparticles-assisted universal carrier for antisense DNA. Chem Commun 2010; 46(23): 4151-3.
[http://dx.doi.org/10.1039/c0cc00103a]
[146]
Daniels AN, Singh M. Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine 2019; 14(11): 1387-401.
[http://dx.doi.org/10.2217/nnm-2018-0462] [PMID: 31166141]
[147]
Tortiglione C. Synthesis of gold nanoparticles for gene silencing. RNA Interference and Cancer Therapy. Springer 2019; pp. 203-14.
[http://dx.doi.org/10.1007/978-1-4939-9220-1_15]
[148]
Rink JS, McMahon KM, Chen X, Mirkin CA, Thaxton CS, Kaufman DB. Transfection of pancreatic islets using polyvalent DNA- functionalized gold nanoparticles. Surgery 2010; 148(2): 335-45.
[http://dx.doi.org/10.1016/j.surg.2010.05.013] [PMID: 20633730]
[149]
Kadkhoda J, Aghanejad A, Safari B, Barar J, Rasta SH, Davaran S. Aptamer-conjugated gold nanoparticles for targeted paclitaxel delivery and photothermal therapy in breast cancer. J Drug Deliv Sci Technol 2022; 67: 102954.
[http://dx.doi.org/10.1016/j.jddst.2021.102954]
[150]
Hu X, Saravanakumar K, Sathiyaseelan A, Rajamanickam V, Wang MH. Cytotoxicity of aptamer-conjugated chitosan encapsulated mycogenic gold nanoparticles in human lung cancer cells. J Nanostruct Chem 2022; 12(4): 641-53.
[http://dx.doi.org/10.1007/s40097-021-00437-2]
[151]
Graczyk A, Pawlowska R, Chworos A. Gold nanoparticles as carriers for functional RNA nanostructures. Bioconjug Chem 2021; 32(8): 1667-74.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00211] [PMID: 34323473]
[152]
Graczyk A, Pawlowska R, Jedrzejczyk D, Chworos A. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules 2020; 25(1): 204.
[http://dx.doi.org/10.3390/molecules25010204] [PMID: 31947834]
[153]
Kim SE, Lee BR, Lee H, et al. Near-infrared plasmonic assemblies of gold nanoparticles with multimodal function for targeted cancer theragnosis. Sci Rep 2017; 7(1): 17327.
[http://dx.doi.org/10.1038/s41598-017-17714-2] [PMID: 29229979]
[154]
Zhang S, Chen C, Xue C, et al. Ribbon of DNA lattice on gold nanoparticles for selective drug delivery to cancer cells. Angew Chem Int Ed 2020; 59(34): 14584-92.
[http://dx.doi.org/10.1002/anie.202005624] [PMID: 32470152]
[155]
Guo W, Chen W, Yu W, Huang W, Deng W. Small interfering RNA-based molecular therapy of cancers. Chin J Cancer 2013; 32(9): 488-93.
[http://dx.doi.org/10.5732/cjc.012.10280] [PMID: 23327796]
[156]
Revia RA, Stephen ZR, Zhang M. Theranostic nanoparticles for RNA-based cancer treatment. Acc Chem Res 2019; 52(6): 1496-506.
[http://dx.doi.org/10.1021/acs.accounts.9b00101] [PMID: 31135134]
[157]
Javier DJ, Castellanos-Gonzalez A, Weigum SE, White AC Jr, Richards-Kortum R. Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA. J Clin Microbiol 2009; 47(12): 4060-6.
[http://dx.doi.org/10.1128/JCM.00807-09] [PMID: 19828740]
[158]
DeLong R, Schaeffer A, Malcolm Y, Schaeffer A, Severs T, Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl 2010; 3: 53-63.
[http://dx.doi.org/10.2147/NSA.S8984] [PMID: 24198471]
[159]
Zhu H, Chen Y, Yan FJ, et al. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater 2017; 50: 534-45.
[http://dx.doi.org/10.1016/j.actbio.2016.12.050] [PMID: 28027959]
[160]
Wangoo N, Bhasin KK, Mehta SK, Suri CR. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J Colloid Interface Sci 2008; 323(2): 247-54.
[http://dx.doi.org/10.1016/j.jcis.2008.04.043] [PMID: 18486946]
[161]
Akinyelu J, Singh M. Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Appl Nanosci 2019; 9(1): 7-17.
[http://dx.doi.org/10.1007/s13204-018-0896-4]
[162]
Heidari Z, Salouti M, Sariri R. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide. Nanotechnology 2015; 26(19): 195101.
[http://dx.doi.org/10.1088/0957-4484/26/19/195101] [PMID: 25900323]
[163]
Tkachenko AG, Xie H, Liu Y, et al. Cellular trajectories of peptide-modified gold particle complexes: Comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 2004; 15(3): 482-90.
[http://dx.doi.org/10.1021/bc034189q] [PMID: 15149175]
[164]
Zhao L, Li Y, Zhu J, et al. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J Nanobiotechnology 2019; 17(1): 30.
[http://dx.doi.org/10.1186/s12951-019-0462-6] [PMID: 30782154]
[165]
Maus L, Dick O, Bading H, Spatz JP, Fiammengo R. Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors. ACS Nano 2010; 4(11): 6617-28.
[http://dx.doi.org/10.1021/nn101867w] [PMID: 20939520]
[166]
Sun L, Liu D, Wang Z. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir 2008; 24(18): 10293-7.
[http://dx.doi.org/10.1021/la8015063] [PMID: 18715022]
[167]
Surujpaul PP, Gutiérrez-Wing C, Ocampo-García B, et al. Gold nanoparticles conjugated to [Tyr3]octreotide peptide. Biophys Chem 2008; 138(3): 83-90.
[http://dx.doi.org/10.1016/j.bpc.2008.09.005] [PMID: 18819743]
[168]
Egorova EA, van Rijt MMJ, Sommerdijk N, et al. One peptide for them all: Gold nanoparticles of different sizes are stabilized by a common peptide amphiphile. ACS Nano 2020; 14(5): 5874-86.
[http://dx.doi.org/10.1021/acsnano.0c01021] [PMID: 32348119]
[169]
Harrison E, Hamilton JWJ, Macias-Montero M, Dixon D. Peptide functionalized gold nanoparticles: The influence of pH on binding efficiency. Nanotechnology 2017; 28(29): 295602.
[http://dx.doi.org/10.1088/1361-6528/aa77ac] [PMID: 28632139]
[170]
Bastús NG, Sánchez-Tilló E, Pujals S, et al. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol Immunol 2009; 46(4): 743-8.
[http://dx.doi.org/10.1016/j.molimm.2008.08.277] [PMID: 18996597]
[171]
Huang X, Peng X, Wang Y, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010; 4(10): 5887-96.
[http://dx.doi.org/10.1021/nn102055s] [PMID: 20863096]
[172]
Liang G, Jin X, Zhang S, Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 2017; 144: 95-104.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.017] [PMID: 28834765]
[173]
Rayavarapu RG, Petersen W, Ungureanu C, Post JN, van Leeuwen TG, Manohar S. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int J Biomed Imaging 2007; 2007: 1-10.
[http://dx.doi.org/10.1155/2007/29817] [PMID: 18354723]
[174]
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Spherical Nucleic Acids 2020; pp. 55-90.
[175]
Ruiz G, Tripathi K, Okyem S, Driskell JD. pH impacts the orientation of antibody adsorbed onto gold nanoparticles. Bioconjug Chem 2019; 30(4): 1182-91.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00123] [PMID: 30844256]
[176]
Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Biosensing Res 2016; 9: 17-22.
[http://dx.doi.org/10.1016/j.sbsr.2016.04.002]
[177]
Janani SP, Arasu PT, Muzaddadi IU, et al. Photodynamic therapy with nanomaterials to combat microbial infections. Emerging Nanomaterials and Nano-based Drug Delivery Approaches to Combat Antimicrobial Resistance. Elsevier 2022; pp. 531-76.
[http://dx.doi.org/10.1016/B978-0-323-90792-7.00016-6]
[178]
Yan J, Gao T, Lu Z, Yin J, Zhang Y, Pei R. Aptamer-targeted photodynamic platforms for tumor therapy. ACS Appl Mater Interfaces 2021; 13(24): 27749-73.
[http://dx.doi.org/10.1021/acsami.1c06818] [PMID: 34110790]
[179]
Kalyane D, Choudhary D, Polaka S, et al. Reactive oxygen nano- generators for cancer therapy. Prog Mater Sci 2022; 130: 100974.
[http://dx.doi.org/10.1016/j.pmatsci.2022.100974]
[180]
Shirasu N, Nam SO, Kuroki M. Tumor-targeted photodynamic therapy. Anticancer Res 2013; 33(7): 2823-31.
[PMID: 23780966]
[181]
Lin L, Xiong L, Wen Y, et al. Active targeting of nano-photosensitizer delivery systems for photodynamic therapy of cancer stem cells. J Biomed Nanotechnol 2015; 11(4): 531-54.
[http://dx.doi.org/10.1166/jbn.2015.2090] [PMID: 26310063]
[182]
Bugaj AM. Targeted photodynamic therapy - A promising strategy of tumor treatment. Photochem Photobiol Sci 2011; 10(7): 1097-109.
[http://dx.doi.org/10.1039/c0pp00147c] [PMID: 21547329]
[183]
Goddard ZR, Marín MJ, Russell DA, Searcey M. Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 2020; 49(23): 8774-89.
[http://dx.doi.org/10.1039/D0CS01121E] [PMID: 33089858]
[184]
Youssef Z, Yesmurzayeva N, Larue L, et al. New targeted gold nanorods for the treatment of glioblastoma by photodynamic therapy. J Clin Med 2019; 8(12): 2205.
[http://dx.doi.org/10.3390/jcm8122205] [PMID: 31847227]
[185]
Ma J, Jiang L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen·-,O·-2) by tetra-brominated hypocrellin B derivative. Free Radic Res 2001; 35(6): 767-77.
[http://dx.doi.org/10.1080/10715760100301271] [PMID: 11811528]
[186]
Bilski P, Motten AG, Bilska M, Chignell CF. The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solutions. Photochem Photobiol 1993; 58(1): 11-8.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb04896.x] [PMID: 8378429]
[187]
Bachowski GJ, Pintar TJ, Girotti AW. Photosensitized lipid peroxidation and enzyme inactivation by membrane-bound merocyanine 540: Reaction mechanisms in the absence and presence of ascorbate. Photochem Photobiol 1991; 53(4): 481-91.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb03660.x] [PMID: 1857743]
[188]
Giroti AW. Mechanisms of photosensitization. Photochem Photobiol 1983; 38(6): 745-51.
[http://dx.doi.org/10.1111/j.1751-1097.1983.tb03610.x] [PMID: 6366837]
[189]
Bachowski GJ, Korytowski W, Girotti AW. Characterization of lipid hydroperoxides generated by photodynamic treatment of leukemia cells. Lipids 1994; 29(7): 449-59.
[http://dx.doi.org/10.1007/BF02578241] [PMID: 7968265]
[190]
Girotti AW. Mechanisms of lipid peroxidation. J Free Radic Biol Med 1985; 1(2): 87-95.
[http://dx.doi.org/10.1016/0748-5514(85)90011-X] [PMID: 3915303]
[191]
Ravanat JL, Cadet J. Reaction of singlet oxygen with 2′-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem Res Toxicol 1995; 8(3): 379-88.
[http://dx.doi.org/10.1021/tx00045a009] [PMID: 7578924]
[192]
Yu K, Hai X, Yue S, Song W, Bi S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem Eng J 2021; 419: 129535.
[http://dx.doi.org/10.1016/j.cej.2021.129535]
[193]
Dash BS, Lu YJ, Pejrprim P, Lan YH, Chen JP. Hyaluronic acid- modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy. Biomater Adv 2022; p. 136.
[194]
Feng L, Chen M, Li R, et al. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomater 2022; 138: 463-77.
[http://dx.doi.org/10.1016/j.actbio.2021.10.032] [PMID: 34718179]
[195]
Feng M, Li M, Dai R, et al. Multifunctional FeS2@SRF@BSA nanoplatform for chemo-combined photothermal enhanced photodynamic/chemodynamic combination therapy. Biomater Sci 2021; 10(1): 258-69.
[http://dx.doi.org/10.1039/D1BM01597D] [PMID: 34850790]
[196]
Gao W, Zhang W, Yu H, et al. 3D CNT/MXene microspheres for combined photothermal/photodynamic/chemo for cancer treatment. Front Bioeng Biotechnol 2022; 10: 996177.
[http://dx.doi.org/10.3389/fbioe.2022.996177] [PMID: 36199359]
[197]
Li S, Wu Y, Xue X, Liu S. NIR and reduction dual-sensitive polymeric prodrug nanoparticles for bioimaging and combined chemo-phototherapy. Polymers 2022; 14(2): 287.
[http://dx.doi.org/10.3390/polym14020287] [PMID: 35054697]
[198]
Liu P, Huang Y, Zhan C, et al. Tumor-overexpressed enzyme responsive amphiphiles small molecular self-assembly nano-prodrug for the chemo-phototherapy against non-small-cell lung cancer. Mater Today Bio 2023; 21: 100722.
[http://dx.doi.org/10.1016/j.mtbio.2023.100722] [PMID: 37545562]
[199]
Nave M, Costa FJP, Alves CG, et al. Simple preparation of POxylated nanomaterials for cancer chemo-PDT/PTT. Eur J Pharm Biopharm 2023; 184: 7-15.
[http://dx.doi.org/10.1016/j.ejpb.2023.01.009] [PMID: 36682512]
[200]
Peng Y, Cheng L, Luo C, et al. Tumor microenvironment-responsive nanosystem achieves reactive oxygen species self-cycling after photothermal induction to enhance efficacy of antitumor therapy. Chem Eng J 2023; 463: 142370.
[http://dx.doi.org/10.1016/j.cej.2023.142370]
[201]
Yang K, Dong Y, Li X, Wang F, Zhang Y. Dual-targeted delivery of paclitaxel and indocyanine green with aptamer-modified ferritin for synergetic chemo-phototherapy. Colloids Surf B Biointerfaces 2023; 229: 113437.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113437] [PMID: 37437411]
[202]
Zhang Q, Wang X, Kuang G, Zhao Y. Pt(IV) prodrug initiated microparticles from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact Mater 2023; 24: 185-96.
[http://dx.doi.org/10.1016/j.bioactmat.2022.12.020] [PMID: 36606251]
[203]
Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine 2020; 27: 102192.
[http://dx.doi.org/10.1016/j.nano.2020.102192] [PMID: 32229215]
[204]
Narayanan N, Kim JH, Santhakumar H, et al. Nanotheranostic probe built on methylene blue loaded cucurbituril [8] and gold nanorod: Targeted phototherapy in combination with sers imaging on breast cancer cells. J Phys Chem B 2021; 125(49): 13415-24.
[http://dx.doi.org/10.1021/acs.jpcb.1c08609] [PMID: 34871005]
[205]
Bolfarini GC, Siqueira-Moura MP, Demets GJF, Morais PC, Tedesco AC. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B 2012; 115: 1-4.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.05.009] [PMID: 22854225]
[206]
Pappalardo A, Gangemi CMA, Testa C, Sfrazzetto GT. Supramolecular assemblies for photodynamic therapy. Curr Org Chem 2021; 25(9): 963-93.
[http://dx.doi.org/10.2174/1385272825666210122094010]
[207]
Sun C, Zhang H, Yue L, Li S, Cheng Q, Wang R. Facile preparation of cucurbit [6] uril-based polymer nanocapsules for targeted photodynamic therapy. ACS Appl Mater Interfaces 2019; 11(26): 22925-31.
[http://dx.doi.org/10.1021/acsami.9b04403] [PMID: 31252492]
[208]
Özkan M, Keser Y, Koc A, Tuncel D. Glycosylated porphyrin-cucurbituril conjugate for photodynamic inactivation of bacteria and doxorubicin carriage for anticancer drug delivery. J Porphyrins Phthalocyanines 2019; 23(11n12): 1406-13.
[209]
Idris M. Synthesis of oligomers, polymers and cucurbituril-based polyrotaxanes towards polymer light emitting diode and photodynamic therapy application. Turkey: Bilkent Universitesi 2014.
[210]
Schneider H-J. Supramolecular systems in biomedical fields. Royal Society of Chemistry 2013.
[http://dx.doi.org/10.1039/9781849737821]
[211]
Li JL, Day D, Gu M. Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods. Adv Mater 2008; 20(20): 3866-71.
[http://dx.doi.org/10.1002/adma.200800941]
[212]
Wang J, Zhu G, You M, et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012; 6(6): 5070-7.
[http://dx.doi.org/10.1021/nn300694v] [PMID: 22631052]
[213]
Kim JY, Choi WI, Kim M, Tae G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J Control Release 2013; 171(2): 113-21.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.006] [PMID: 23860187]
[214]
Liu L, Xie HJ, Mu LM, et al. Functional chlorin gold nanorods enable to treat breast cancer by photothermal/photodynamic therapy. Int J Nanomedicine 2018; 13: 8119-35.
[http://dx.doi.org/10.2147/IJN.S186974] [PMID: 30555230]
[215]
Gong B, Shen Y, Li H, et al. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J Nanobiotechnology 2021; 19(1): 41.
[http://dx.doi.org/10.1186/s12951-020-00754-8] [PMID: 33557807]
[216]
Jin X, Yao S, Qiu F, Mao Z, Wang B. A multifunctional hydrogel containing gold nanorods and methylene blue for synergistic cancer phototherapy. Colloids Surf A Physicochem Eng Asp 2021; 614: 126154.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126154]
[217]
Jiang Y, Liu J, Qin J, et al. Light-activated gold nanorods for effective therapy of venous malformation. Mater Today Bio 2022; 16: 100401.
[http://dx.doi.org/10.1016/j.mtbio.2022.100401] [PMID: 36052154]
[218]
Kim Y, Kim H, Kang HW. Enhancement of gold nanorods-assisted photothermal treatment on cancer with laser power in stepwise modulation. Lasers Surg Med 2022; 54(6): 841-50.
[http://dx.doi.org/10.1002/lsm.23549] [PMID: 35419820]
[219]
Luo X, Zhang B, Zhang Y, et al. Rose bengal-modified gold nanorods for PTT/PDT antibacterial synergistic therapy. Photodiagn Photodyn Ther 2022; 39: 102988.
[http://dx.doi.org/10.1016/j.pdpdt.2022.102988] [PMID: 35781095]
[220]
Lv J, Li B, Luo T, et al. Selective photothermal therapy based on lipopolysaccharide aptamer functionalized MoS2 nanosheet-coated gold nanorods for multidrug-resistant Pseudomonas aeruginosa infection. Adv Healthc Mater 2023; 12(15): 2202794.
[http://dx.doi.org/10.1002/adhm.202202794] [PMID: 36812882]
[221]
Xie L, Ying X, Li X, et al. Engineering of gold nanorods as multifunctional theranostic agent for photothermal-enhanced radiotherapy of cancer. Mater Des 2023; 225: 111456.
[http://dx.doi.org/10.1016/j.matdes.2022.111456]
[222]
Zhang X, Ma Y, Zhang X, Pang X, Yang Z. Bio-inspired self-assembled bacteriochlorin nanoparticles for superior visualization and photothermal ablation of tumors. Biomed Pharmacother 2023; 165: 115014.
[http://dx.doi.org/10.1016/j.biopha.2023.115014] [PMID: 37327585]
[223]
Liang S, Sun M, Lu Y, et al. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B Mater Biol Med 2020; 8(36): 8368-82.
[http://dx.doi.org/10.1039/D0TB01391A] [PMID: 32966532]
[224]
Mahmoudi K, Garvey KL, Bouras A, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 2019; 141(3): 595-607.
[http://dx.doi.org/10.1007/s11060-019-03103-4] [PMID: 30659522]
[225]
Zhang Z, Wang S, Xu H, Wang B, Yao C. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. J Biomed Opt 2015; 20(5): 051043.
[http://dx.doi.org/10.1117/1.JBO.20.5.051043] [PMID: 26021715]
[226]
Chi Y, Qin J, Li Z, Ge Q, Zeng W. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. Braz J Med Biol Res 2020; 53(5): e8457.
[http://dx.doi.org/10.1590/1414-431x20208457] [PMID: 32348428]
[227]
Hadizadeh M, Fateh M. Synergistic cytotoxic effect of gold nanoparticles and 5-aminolevulinic acid-mediated photodynamic therapy against skin cancer cells. Iran J Med Sci 2014; 39(5): 452-8.
[PMID: 25242844]
[228]
Thunshelle C, Yin R, Chen Q, Hamblin MR. Current advances in 5-aminolevulinic acid mediated photodynamic therapy. Curr Dermatol Rep 2016; 5(3): 179-90.
[http://dx.doi.org/10.1007/s13671-016-0154-5] [PMID: 28163981]
[229]
Khaing Oo MK, Yang X, Du H, Wang H. 5-aminolevulinic acid- conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine 2008; 3(6): 777-86.
[http://dx.doi.org/10.2217/17435889.3.6.777] [PMID: 19025452]
[230]
Montaseri H, Kruger CA, Abrahamse H. Targeted photodynamic therapy using alloyed nanoparticle-conjugated 5-aminolevulinic acid for breast cancer. Pharmaceutics 2021; 13(9): 1375.
[http://dx.doi.org/10.3390/pharmaceutics13091375] [PMID: 34575450]
[231]
Penon O, Marín MJ, Russell DA, Pérez-García L. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. J Colloid Interface Sci 2017; 496: 100-10.
[http://dx.doi.org/10.1016/j.jcis.2017.02.006] [PMID: 28214620]
[232]
Nishie H, Kataoka H, Yano S, et al. Excellent antitumor effects for gastrointestinal cancers using photodynamic therapy with a novel glucose conjugated chlorin e6. Biochem Biophys Res Commun 2018; 496(4): 1204-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.171] [PMID: 29408755]
[233]
Yang K, Niu T, Luo M, Tang L, Kang L. Enhanced cytotoxicity and apoptosis through inhibiting autophagy in metastatic potential colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagn Photodyn Ther 2018; 24: 332-41.
[http://dx.doi.org/10.1016/j.pdpdt.2018.10.012] [PMID: 30355513]
[234]
Kim YJ, Lee HI, Kim JK, Kim CH, Kim YJ. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2020; 189: 110829.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110829] [PMID: 32036332]
[235]
Shinoda Y, Kujirai K, Aoki K, et al. Novel photosensitizer β-mannose-conjugated chlorin e6 as a potent anticancer agent for human glioblastoma u251 cells. Pharmaceuticals 2020; 13(10): 316.
[http://dx.doi.org/10.3390/ph13100316] [PMID: 33081106]
[236]
Soyama T, Sakuragi A, Oishi D, et al. Photodynamic therapy exploiting the anti-tumor activity of mannose-conjugated chlorin e6 reduced M2-like tumor-associated macrophages. Transl Oncol 2021; 14(2): 101005.
[http://dx.doi.org/10.1016/j.tranon.2020.101005] [PMID: 33401079]
[237]
Han N, Li LG, Peng XC, et al. Ferroptosis triggered by dihydroartemisinin facilitates chlorin e6 induced photodynamic therapy against lung cancer through inhibiting GPX4 and enhancing ROS. Eur J Pharmacol 2022; 919: 174797.
[http://dx.doi.org/10.1016/j.ejphar.2022.174797]
[238]
Kimura Y, Aoki H, Soyama T, et al. Photodynamic therapy using mannose-conjugated chlorin e6 increases cell surface calreticulin in cancer cells and promotes macrophage phagocytosis. Med Oncol 2022; 39(6): 82.
[http://dx.doi.org/10.1007/s12032-022-01674-3] [PMID: 35478050]
[239]
Ma QL, Shen MO, Han N, et al. Chlorin e6 mediated photodynamic therapy triggers resistance through ATM-related DNA damage response in lung cancer cells. Photodiagn Photodyn Ther 2022; 37: 102645.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102645] [PMID: 34823034]
[240]
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A promising photosensitizer in photo-based cancer nanomedicine. ACS Appl Bio Mater 2023; 6(2): 349-64.
[http://dx.doi.org/10.1021/acsabm.2c00891] [PMID: 36700563]
[241]
Hu H, Li R, Huang P, et al. BSA-coated β-FeOOH nanoparticles efficiently deliver the photosensitizer chlorin e6 for synergistic anticancer PDT/CDT. Colloids Surf B Biointerfaces 2023; 222: 113117.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113117] [PMID: 36586238]
[242]
Hui YJ, Chen H, Peng XC, et al. Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic therapy resistance in colorectal cancer. Photodiagn Photodyn Ther 2023; 42: 103558.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103558] [PMID: 37030434]
[243]
Xia F, Hou W, Liu Y, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials 2018; 170: 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.048] [PMID: 29635107]
[244]
Li R, Zhou Y, Liu Y, et al. Asymmetric, amphiphilic RGD conjugated phthalocyanine for targeted photodynamic therapy of triple negative breast cancer. Signal Transduct Target Ther 2022; 7(1): 64.
[http://dx.doi.org/10.1038/s41392-022-00906-2] [PMID: 35228516]
[245]
Adnane F, El-Zayat E, Fahmy HM. The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review. Tissue Cell 2022; 77: 101856.
[http://dx.doi.org/10.1016/j.tice.2022.101856] [PMID: 35759978]
[246]
Dias LM, de Keijzer MJ, Ernst D, et al. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. J Photochem Photobiol B 2022; 234: 112500.
[http://dx.doi.org/10.1016/j.jphotobiol.2022.112500] [PMID: 35816857]
[247]
Yang Y, Zheng X, Chen L, et al. Multifunctional gold nanoparticles in cancer diagnosis and treatment. Int J Nanomedicine 2022; 17: 2041-67.
[http://dx.doi.org/10.2147/IJN.S355142] [PMID: 35571258]
[248]
Jia X, Jia L. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy. Curr Drug Metab 2012; 13(8): 1119-22.
[http://dx.doi.org/10.2174/138920012802850074] [PMID: 22380016]
[249]
Babu N, Rahaman SA, John AM, Balakrishnan SP. Photosensitizer anchored nanoparticles: A potential material for photodynamic therapy. ChemistrySelect 2022; 7(17): e202200850.
[http://dx.doi.org/10.1002/slct.202200850]
[250]
Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 2011; 10(5): 822-31.
[http://dx.doi.org/10.1039/c1pp05014a] [PMID: 21455532]
[251]
García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2018; 512: 249-59.
[http://dx.doi.org/10.1016/j.jcis.2017.10.030] [PMID: 29073466]
[252]
Crous A, Abrahamse H. Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci 2020; 21(11): 3742.
[http://dx.doi.org/10.3390/ijms21113742] [PMID: 32466428]
[253]
Obaid G, Chambrier I, Cook MJ, Russell DA. Cancer targeting with biomolecules: A comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem Photobiol Sci 2015; 14(4): 737-47.
[http://dx.doi.org/10.1039/c4pp00312h] [PMID: 25604735]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy