Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antitumor Effects of Curcumin on Cervical Cancer with the Focus on Molecular Mechanisms: An Exegesis

Author(s): Ali Govahi, Neda Zahmatkesh, Omid Pourbagherian, Neda Maleki Khas, Tala Salamzadeh, Hasti Moshtagh Mehr, Esmaeil Babaei* and Mahsa Hajivalili*

Volume 29, Issue 42, 2023

Published on: 08 December, 2023

Page: [3385 - 3399] Pages: 15

DOI: 10.2174/0113816128279330231129180250

Price: $65

Abstract

Cervical cancer is one of the most prevalent malignancies among females and is correlated with a significant fatality rate. Chemotherapy is the most common treatment for cervical cancer; however, it has a low success rate due to significant side effects and the incidence of chemo-resistance. Curcumin, a polyphenolic natural compound derived from turmeric, acts as an antioxidant by diffusing across cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it performs its effects. As a result, it's been promoted as a chemo-preventive, anti-metastatic, and anti-angiogenic agent. As a consequence, the main goal of the present review was to gather research information that looked at the link between curcumin and its derivatives against cervical cancer.

[1]
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer 2013; 49(6): 1374-403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[2]
Nour NM. Cervical cancer: A preventable death. Rev Obstet Gynecol 2009; 2(4): 240-4.
[PMID: 20111660]
[3]
Sharma S, Deep A, Sharma AK. Current treatment for cervical cancer: An update. Anticancer Agents Med Chem 2020; 20(15): 1768-79.
[4]
Herfs M, Yamamoto Y, Laury A, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci USA 2012; 109(26): 10516-21.
[http://dx.doi.org/10.1073/pnas.1202684109] [PMID: 22689991]
[5]
Li W, Qi Y, Cui X, et al. Characteristic of HPV integration in the genome and transcriptome of cervical cancer tissues. Biomed Res Int 2018; 2018
[http://dx.doi.org/10.1155/2018/6242173]
[6]
Wężowska M, Giedrys-Kalemba S, Szymaniak L, Borowiec-Chłopek Ż, Konstanty-Kurkiewicz V, Menkiszak J. Risk factors for cervical cancer among young women. Cent Eur J Med 2013; 8(1): 22-9.
[7]
Burns M, Costello J, Ryan-Woolley B, Davidson S. Assessing the impact of late treatment effects in cervical cancer: An exploratory study of women’s sexuality. Eur J Cancer Care 2007; 16(4): 364-72.
[http://dx.doi.org/10.1111/j.1365-2354.2006.00743.x] [PMID: 17587362]
[8]
Yin M, Zhang H, Li H, et al. The toxicity and long-term efficacy of nedaplatin and paclitaxel treatment as neoadjuvant chemotherapy for locally advanced cervical cancer. J Surg Oncol 2012; 105(2): 206-11.
[http://dx.doi.org/10.1002/jso.22052] [PMID: 21815150]
[9]
Lal J. Turmeric, curcumin and our life: A review. Bull Env Pharmacol Life Sci 2012; 1(7): 11-7.
[10]
Kritis P, Karampela I, Kokoris S, Dalamaga M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metabolism Open 2020; 8: 100066.
[http://dx.doi.org/10.1016/j.metop.2020.100066] [PMID: 33205039]
[11]
Ammon H, Anazodo M, Safayhi H, Dhawan B, Srimal R. Curcumin: A potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta Med 1992; 58(2): 226.
[http://dx.doi.org/10.1055/s-2006-961438] [PMID: 1326775]
[12]
Hatamipour M, Johnston TP, Sahebkar A. One molecule, many targets and numerous effects: The pleiotropy of curcumin lies in its chemical structure. Curr Pharm Des 2018; 24(19): 2129-36.
[http://dx.doi.org/10.2174/1381612824666180522111036] [PMID: 29788873]
[13]
Priyadarsini KI. Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 2013; 19(11): 2093-100.
[PMID: 23116315]
[14]
Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: Misconceptions in drug discovery. Nat Rev Drug Discov 2010; 9(12): 929-39.
[http://dx.doi.org/10.1038/nrd3287] [PMID: 21119731]
[15]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[16]
Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853(1-2): 183-9.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[17]
Ravindranath V, Chandrasekhara N. Metabolism of curcumn-studies with [3H]curcumin. Toxicology 1981-1982; 22(4): 337-44.
[http://dx.doi.org/10.1016/0300-483X(81)90027-5] [PMID: 7342372]
[18]
Perkins S, Verschoyle RD, Hill K, et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 2002; 11(6): 535-40.
[PMID: 12050094]
[19]
Pan M-H, Huang T-M, Lin J-K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 1999; 27(4): 486-94.
[PMID: 10101144]
[20]
Vareed SK, Kakarala M, Ruffin MT, et al. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 2008; 17(6): 1411-7.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[21]
Carroll RE, Benya RV, Turgeon DK, et al. Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res 2011; 4(3): 354-64.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0098] [PMID: 21372035]
[22]
Sanidad KZ, Sukamtoh E, Xiao H, McClements DJ, Zhang G. Curcumin: Recent advances in the development of strategies to improve oral bioavailability. Annu Rev Food Sci Technol 2019; 10(1): 597-617.
[http://dx.doi.org/10.1146/annurev-food-032818-121738] [PMID: 30633561]
[23]
Lin JK, Pan MH, Lin-Shiau SY. Recent studies on the biofunctions and biotransformations of curcumin. Biofactors 2000; 13(1-4): 153-8.
[http://dx.doi.org/10.1002/biof.5520130125] [PMID: 11237176]
[24]
Abegg D, Frei R, Cerato L, et al. Proteome-wide profiling of targets of cysteine reactive small molecules by using ethynyl benziodoxolone reagents. Angew Chem Int Ed 2015; 54(37): 10852-7.
[http://dx.doi.org/10.1002/anie.201505641] [PMID: 26211368]
[25]
Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci USA 2011; 108(16): 6615-20.
[http://dx.doi.org/10.1073/pnas.1016217108] [PMID: 21467222]
[26]
Wang W, Sukamtoh E, Xiao H, Zhang G. Curcumin inhibits lymphangiogenesis in vitro and in vivo. Mol Nutr Food Res 2015; 59(12): 2345-54.
[http://dx.doi.org/10.1002/mnfr.201500399] [PMID: 26375757]
[27]
Dance-Barnes ST, Kock ND, Moore JE, et al. Lung tumor promotion by curcumin. Carcinogenesis 2009; 30(6): 1016-23.
[http://dx.doi.org/10.1093/carcin/bgp082] [PMID: 19359593]
[28]
Singh V, Singh N, Verma M, et al. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity. Antioxidants 2022; 11(12): 2375.
[http://dx.doi.org/10.3390/antiox11122375] [PMID: 36552581]
[29]
Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol Sci 2009; 30(2): 85-94.
[http://dx.doi.org/10.1016/j.tips.2008.11.002] [PMID: 19110321]
[30]
Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, Orlowski RZ. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 2002; 62(13): 3868-75.
[PMID: 12097302]
[31]
Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 2005; 11(20): 7490-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[32]
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the marketing of curcumin as a drug. Int J Mol Sci 2020; 21(18): 6619.
[http://dx.doi.org/10.3390/ijms21186619] [PMID: 32927725]
[33]
Wongcharoen W, Phrommintikul A. The protective role of curcumin in cardiovascular diseases. Int J Cardiol 2009; 133(2): 145-51.
[http://dx.doi.org/10.1016/j.ijcard.2009.01.073] [PMID: 19233493]
[34]
Zhang K, Chen M, Du Z-Y, Zheng X, Li D-L, Zhou R-P. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 2018; 13(4): 742-52.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[35]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[36]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[37]
Feng T, Wei Y, Lee R, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomedicine 2017; 12: 6027-44.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[38]
Bhawana , Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J Agric Food Chem 2011; 59(5): 2056-61.
[http://dx.doi.org/10.1021/jf104402t] [PMID: 21322563]
[39]
Khudhayer Oglah M, Fakri Mustafa Y. Curcumin analogs: Synthesis and biological activities. Med Chem Res 2020; 29(3): 479-86.
[http://dx.doi.org/10.1007/s00044-019-02497-0]
[40]
Panda SK, Nirvanashetty S, Missamma M, Jackson-Michel S. The enhanced bioavailability of free curcumin and bioactive-metabolite tetrahydrocurcumin from a dispersible, oleoresin-based turmeric formulation. Medicine 2021; 100(27): e26601.
[http://dx.doi.org/10.1097/MD.0000000000026601] [PMID: 34232211]
[41]
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 64(4): 353-6.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[42]
Zhang JY, Lin MT, Zhou MJ, et al. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules 2015; 20(6): 11524-34.
[http://dx.doi.org/10.3390/molecules200611524] [PMID: 26111180]
[43]
Cruz-Correa M, Shoskes DA, Sanchez P, et al. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 2006; 4(8): 1035-8.
[http://dx.doi.org/10.1016/j.cgh.2006.03.020] [PMID: 16757216]
[44]
Purpura M, Lowery RP, Wilson JM, Mannan H, Münch G, Razmovski-Naumovski V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr 2018; 57(3): 929-38.
[http://dx.doi.org/10.1007/s00394-016-1376-9] [PMID: 28204880]
[45]
Sadeghizadeh M, Ranjbar B, Damaghi M, et al. Dendrosomes as novel gene porters-III. Journal of chemical technology & biotechnology: International research in process. Environ Clean Technol 2008; 83(6): 912-20.
[46]
Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol 2012; 12(1): 226-34.
[http://dx.doi.org/10.1016/j.intimp.2011.11.015] [PMID: 22155627]
[47]
Menger FM, Keiper JS, Azov V. Gemini surfactants with acetylenic spacers. Langmuir 2000; 16(5): 2062-7.
[http://dx.doi.org/10.1021/la9910576]
[48]
Karimpour M, Feizi MAH, Mahdavi M, et al. Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines. Phytomedicine 2019; 57: 183-90.
[http://dx.doi.org/10.1016/j.phymed.2018.11.017] [PMID: 30776589]
[49]
Hu K, Huang X, Gao Y, Huang X, Xiao H, McClements DJ. Core–shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chem 2015; 182: 275-81.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.009] [PMID: 25842338]
[50]
Jithan AV, Madhavi K, Madhavi M, Prabhakar K. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig 2011; 1(2): 119-25.
[http://dx.doi.org/10.4103/2230-973X.82432] [PMID: 23071931]
[51]
Hu S, Wang T, Fernandez ML, Luo Y. Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin. Food Hydrocoll 2016; 61: 821-31.
[http://dx.doi.org/10.1016/j.foodhyd.2016.07.006]
[52]
Gupta V, Aseh A, Ríos CN, Aggarwal BB, Mathur AB. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine 2009; 4: 115-22.
[http://dx.doi.org/10.2147/IJN.S5581] [PMID: 19516890]
[53]
Hasan M, Ben Messaoud G, Michaux F, et al. Chitosan-coated liposomes encapsulating curcumin: Study of lipid–polysaccharide interactions and nanovesicle behavior. RSC Advances 2016; 6(51): 45290-304.
[http://dx.doi.org/10.1039/C6RA05574E]
[54]
Dey S, Sreenivasan K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym 2014; 99: 499-507.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.067] [PMID: 24274536]
[55]
Li XM, Wu ZZ, Zhang B, Pan Y, Meng R, Chen HQ. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chem 2019; 293: 197-203.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.096] [PMID: 31151601]
[56]
Mohan Yallapu M, Ray Dobberpuhl M, Michele Maher D, Jaggi M, Chand Chauhan S. Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 2012; 13(1): 120-8.
[http://dx.doi.org/10.2174/138920012798356952] [PMID: 21892919]
[57]
Tamkovich S, Tutanov O, Laktionov P. Exosomes: Generation, structure, transport, biological activity, and diagnostic application. Biochem (Moscow). Suppl Ser A: Membr Cell Biol 2016; 10(3): 163-73.
[58]
Zhao X, Wu D, Ma X, Wang J, Hou W, Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother 2020; 128: 110237.
[http://dx.doi.org/10.1016/j.biopha.2020.110237] [PMID: 32470747]
[59]
Moballegh Nasery M, Abadi B, Poormoghadam D, et al. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules 2020; 25(3): 689.
[http://dx.doi.org/10.3390/molecules25030689] [PMID: 32041140]
[60]
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov Today 2012; 17(1-2): 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[61]
Thangapazham R, Puri A, Tele S, Blumenthal R, Maheshwari R. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol 2008; 32(5): 1119-23.
[http://dx.doi.org/10.3892/ijo.32.5.1119] [PMID: 18425340]
[62]
Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: Bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 2009; 57(19): 9141-6.
[http://dx.doi.org/10.1021/jf9013923] [PMID: 19757811]
[63]
Wang J, Mijiti Y, Chen Y, Liu Z. Aryl hydrocarbon receptor is a prognostic biomarker and is correlated with immune responses in cervical cancer. Bioengineered 2021; 12(2): 11922-35.
[http://dx.doi.org/10.1080/21655979.2021.2006953] [PMID: 34784845]
[64]
Ashida H, Nishiumi S, Fukuda I. An update on the dietary ligands of the AhR. Expert Opin Drug Metab Toxicol 2008; 4(11): 1429-47.
[http://dx.doi.org/10.1517/17425255.4.11.1429] [PMID: 18950284]
[65]
Xue Z, Li D, Yu W, et al. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8(4): 1414-37.
[http://dx.doi.org/10.1039/C6FO01810F] [PMID: 28287659]
[66]
Nadile M, Retsidou MI, Gioti K, Beloukas A, Tsiani E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients 2022; 14(24): 5273.
[http://dx.doi.org/10.3390/nu14245273] [PMID: 36558430]
[67]
Sabanayagam R, Krishnamoorthy S, Gnanagurusamy J, Muruganatham B, Muthusami S. EGCG attenuate EGF triggered matrix abundance and migration in HPV positive and HPV negative cervical cancer cells. Med Oncol 2023; 40(9): 261.
[http://dx.doi.org/10.1007/s12032-023-02135-1] [PMID: 37544940]
[68]
Anderson G. Tumour microenvironment: Roles of the aryl hydrocarbon receptor, O-GlcNAcylation, Acetyl-CoA and melatonergic pathway in regulating dynamic metabolic interactions across cell types-tumour microenvironment and metabolism. Int J Mol Sci 2020; 22(1): 141.
[http://dx.doi.org/10.3390/ijms22010141] [PMID: 33375613]
[69]
Zhao J, Zhao Y. Effects of curcumin on proliferation and apoptosis of human cervical carcinoma HeLa cells in vitro. Chin J Cancer Res 2004; 16(3): 225-8.
[http://dx.doi.org/10.1007/s11670-004-0032-8]
[70]
Kim B, Kim HS, Jung EJ, et al. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Mol Carcinog 2016; 55(5): 918-28.
[http://dx.doi.org/10.1002/mc.22332] [PMID: 25980682]
[71]
Zorzi E, Bonvini P. Inducible hsp70 in the regulation of cancer cell survival: Analysis of chaperone induction, expression and activity. Cancers 2011; 3(4): 3921-56.
[http://dx.doi.org/10.3390/cancers3043921] [PMID: 24213118]
[72]
Shang HS, Chang CH, Chou YR, et al. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells. Oncol Rep 2016; 36(4): 2207-15.
[http://dx.doi.org/10.3892/or.2016.5002] [PMID: 27499229]
[73]
Santos P, Avanço G, Nerilo S, et al. Assessment of cytotoxic activity of rosemary (Rosmarinus officinalis L.), turmeric (Curcuma longa L.), and ginger (Zingiber officinale R.) essential oils in cervical cancer cells (HeLa). Sci World J 2016; 2016.
[74]
Wang T, Wu X, Al rudaisat M, Song Y, Cheng H. Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells. J Cancer 2020; 11(22): 6704-15.
[http://dx.doi.org/10.7150/jca.45176] [PMID: 33046993]
[75]
Pandey S, Chandravati C. Autophagy in cervical cancer: An emerging therapeutic target. Asian Pac J Cancer Prev 2012; 13(10): 4867-71.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.4867] [PMID: 23244072]
[76]
Shi YA, Zhao Q, Zhang LH, et al. Knockdown of hTERT by siRNA inhibits cervical cancer cell growth in vitro and in vivo. Int J Oncol 2014; 45(3): 1216-24.
[http://dx.doi.org/10.3892/ijo.2014.2493] [PMID: 24920549]
[77]
Park H, Cho B, Kim J. Rad50 mediates DNA demethylation to establish pluripotent reprogramming. Exp Mol Med 2020; 52(7): 1116-27.
[http://dx.doi.org/10.1038/s12276-020-0467-0] [PMID: 32665583]
[78]
Tong R, Wu X, Liu Y, et al. Curcumin-induced DNA Demethylation in human gastric cancer cells is mediated by the DNA-damage response pathway. Oxid Med Cell Longev 2020; 2020.
[79]
Pich A, Chiusa L, Margaria E. Prognostic relevance of AgNORs in tumor pathology. Micron 2000; 31(2): 133-41.
[http://dx.doi.org/10.1016/S0968-4328(99)00070-0] [PMID: 10588059]
[80]
Derenzini M. The AgNORs. Micron 2000; 31(2): 117-20.
[http://dx.doi.org/10.1016/S0968-4328(99)00067-0] [PMID: 10588056]
[81]
Lewinska A, Adamczyk J, Pajak J, et al. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells. Mutat Res Genet Toxicol Environ Mutagen 2014; 771: 43-52.
[http://dx.doi.org/10.1016/j.mrgentox.2014.07.001] [PMID: 25308441]
[82]
Roy M, Mukherjee S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev 2014; 15(3): 1403-10.
[http://dx.doi.org/10.7314/APJCP.2014.15.3.1403] [PMID: 24606473]
[83]
Yi Y, Li H, Lv Q, et al. miR-202 inhibits the progression of human cervical cancer through inhibition of cyclin D1. Oncotarget 2016; 7(44): 72067-75.
[http://dx.doi.org/10.18632/oncotarget.12499] [PMID: 27732565]
[84]
Sagawa Y, Nishi H, Isaka K, Fujito A, Takayama M. The correlation of TERT expression with c-myc expression in cervical cancer. Cancer Lett 2001; 168(1): 45-50.
[http://dx.doi.org/10.1016/S0304-3835(01)00501-8] [PMID: 11368876]
[85]
Song C, Zhu S, Wu C, Kang J. Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem 2013; 288(39): 28021-33.
[http://dx.doi.org/10.1074/jbc.M113.498758] [PMID: 23897811]
[86]
Xu F, Mu X, Zhao J. Effects of curcumin on invasion and metastasis in the human cervical cancer cells Caski. Chin J Cancer Res 2009; 21(2): 159-62.
[http://dx.doi.org/10.1007/s11670-009-0159-8]
[87]
Kong J, Di C, Piao J, et al. Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition. Oncotarget 2016; 7(15): 19631-42.
[http://dx.doi.org/10.18632/oncotarget.7779] [PMID: 26933912]
[88]
Madden K, Flowers L, Salani R, et al. Proteomics-based approach to elucidate the mechanism of antitumor effect of curcumin in cervical cancer. Prostaglandins Leukot Essent Fatty Acids 2009; 80(1): 9-18.
[http://dx.doi.org/10.1016/j.plefa.2008.10.003] [PMID: 19058955]
[89]
Aedo-Aguilera V, Carrillo-Beltrán D, Calaf GM, et al. Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells. Oncol Rep 2019; 42(5): 2139-48.
[http://dx.doi.org/10.3892/or.2019.7288] [PMID: 31436299]
[90]
Carrillo D, Muñoz JP, Huerta H, et al. Upregulation of PIR gene expression induced by human papillomavirus E6 and E7 in epithelial oral and cervical cells. Open Biol 2017; 7(11): 170111.
[http://dx.doi.org/10.1098/rsob.170111] [PMID: 29118270]
[91]
Carrillo-Beltrán D, Muñoz JP, Guerrero-Vásquez N, et al. Human papillomavirus 16 E7 promotes EGFR/PI3K/AKT1/NRF2 Signaling pathway contributing to PIR/NF-κB activation in oral cancer cells. Cancers 2020; 12(7): 1904.
[http://dx.doi.org/10.3390/cancers12071904] [PMID: 32679705]
[92]
Shahid M, Naim M, Hasan M, Islam N, Rabbani T, Mubeen A. Apoptotic effects of curcumin (Diferuloyl Methane) on squamous cell carcinoma of the cervix. JK Science 2011; 13(2): 61.
[93]
Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020; 130: 155066.
[http://dx.doi.org/10.1016/j.cyto.2020.155066] [PMID: 32208336]
[94]
Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet 2007; 370(9590): 890-907.
[http://dx.doi.org/10.1016/S0140-6736(07)61416-0] [PMID: 17826171]
[95]
Hellberg D. Sex steroids and cervical cancer. Anticancer Res 2012; 32(8): 3045-54.
[PMID: 22843872]
[96]
Singh M, Singh N. Curcumin counteracts the proliferative effect of estradiol and induces apoptosis in cervical cancer cells. Mol Cell Biochem 2011; 347(1-2): 1-11.
[http://dx.doi.org/10.1007/s11010-010-0606-3] [PMID: 20941532]
[97]
Luo Y, Wang Q, Tian P, Jia Y. Highly expressed CHAF1A and PCNA are positively associated with malignancy of cervical squamous cell carcinoma Chin J Cell Molec Immunol 2017; 33(12): 1696-701.
[98]
Makovec T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 2019; 53(2): 148-58.
[http://dx.doi.org/10.2478/raon-2019-0018] [PMID: 30956230]
[99]
Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules 2020; 10(3): 487.
[http://dx.doi.org/10.3390/biom10030487] [PMID: 32210029]
[100]
Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol 2017; 9(12): a022277.
[http://dx.doi.org/10.1101/cshperspect.a022277] [PMID: 28246180]
[101]
Yu H, Shen Y, Hong J, Xia Q, Zhou F, Liu X. The contribution of TGF-β in epithelial–mesenchymal transition (EMT): Down-regulation of E-cadherin via snail. Neoplasma 2015; 62(1): 1-15.
[http://dx.doi.org/10.4149/neo_2015_002] [PMID: 25563362]
[102]
Han J, Alvarez-Breckenridge CA, Wang Q-E, Yu J. TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res 2015; 5(3): 945-55.
[PMID: 26045979]
[103]
Thacker PC, Karunagaran D. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells. PLoS One 2015; 10(3): e0120045.
[http://dx.doi.org/10.1371/journal.pone.0120045] [PMID: 25786122]
[104]
Khongthong P, Roseweir AK, Edwards J. The NF-KB pathway and endocrine therapy resistance in breast cancer. Endocr Relat Cancer 2019; 26(6): R369-80.
[http://dx.doi.org/10.1530/ERC-19-0087] [PMID: 32013374]
[105]
Hong S, Laimins LA. Manipulation of the innate immune response by human papillomaviruses. Virus Res 2017; 231: 34-40.
[http://dx.doi.org/10.1016/j.virusres.2016.11.004] [PMID: 27826042]
[106]
Zhou C, Tuong ZK, Frazer IH. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol 2019; 9: 682.
[http://dx.doi.org/10.3389/fonc.2019.00682] [PMID: 31428574]
[107]
Tilborghs S, Corthouts J, Verhoeven Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120: 141-50.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.001] [PMID: 29198328]
[108]
Sun X, Liu Y. Activation of the Wnt/β-catenin signaling pathway may contribute to cervical cancer pathogenesis via upregulation of twist. Oncol Lett 2017; 14(4): 4841-4.
[http://dx.doi.org/10.3892/ol.2017.6754] [PMID: 29085489]
[109]
Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 2019; 215(10): 152556.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[110]
Liberti MV, Locasale JW. The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci 2016; 41(3): 211-8.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[111]
Pani S, Sahoo A, Patra A, Debata PR. Phytocompounds curcumin, quercetin, indole-3-carbinol, and resveratrol modulate lactate-pyruvate level along with cytotoxic activity in HeLa cervical cancer cells. Biotechnol Appl Biochem 2021; 68(6): 1396-402.
[PMID: 33099806]
[112]
Lodi A, Woods SM, Ronen SM. Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells. NMR Biomed 2013; 26(3): 299-306.
[http://dx.doi.org/10.1002/nbm.2848] [PMID: 22945392]
[113]
Nijsten MWN, van Dam GM. Hypothesis: Using the Warburg effect against cancer by reducing glucose and providing lactate. Med Hypotheses 2009; 73(1): 48-51.
[http://dx.doi.org/10.1016/j.mehy.2009.01.041] [PMID: 19264418]
[114]
Zhao J, Zhao Y, Zhang Y, Chen W. Anti-tumor effect of curcumin on human cervical carcinoma HeLa cells in vitro and in vivo. Chin J Cancer Res 2007; 19(1): 32-6.
[http://dx.doi.org/10.1007/s11670-007-0032-6]
[115]
Sreekanth CN, Bava SV, Sreekumar E, Anto RJ. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene 2011; 30(28): 3139-52.
[http://dx.doi.org/10.1038/onc.2011.23] [PMID: 21317920]
[116]
Debata PR, Castellanos MR, Fata JE, et al. A novel curcumin-based vaginal cream Vacurin selectively eliminates apposed human cervical cancer cells. Gynecol Oncol 2013; 129(1): 145-53.
[http://dx.doi.org/10.1016/j.ygyno.2012.12.005] [PMID: 23234806]
[117]
Yoysungnoen-Chintana P, Bhattarakosol P, Patumraj S. Antitumor and antiangiogenic activities of curcumin in cervical cancer xenografts in nude mice. Biomed Res Int 2014; 2014
[http://dx.doi.org/10.1155/2014/817972]
[118]
Liu A, Zheng R, Yang F, Huang L, Zhang L, Zhang J. Effects of curcumin on growth of human cervical cancer xenograft in nude mice and underlying mechanism. Food Sci Technol 2017; 38(1): 106-11.
[http://dx.doi.org/10.1590/1678-457x.02817]
[119]
He G, Mu T, Yuan Y, et al. Effects of notch signaling pathway in cervical cancer by curcumin mediated photodynamic therapy and its possible mechanisms in vitro and in vivo. J Cancer 2019; 10(17): 4114-22.
[http://dx.doi.org/10.7150/jca.30690] [PMID: 31417656]
[120]
Cianfruglia L, Minnelli C, Laudadio E, Scirè A, Armeni T. Side effects of curcumin: Epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells. Antioxidants 2019; 8(9): 382.
[http://dx.doi.org/10.3390/antiox8090382] [PMID: 31505772]
[121]
Moos PJ, Edes K, Mullally JE, Fitzpatrick FA. Curcumin impairs tumor suppressor p53 function in colon cancer cells. Carcinogenesis 2004; 25(9): 1611-7.
[http://dx.doi.org/10.1093/carcin/bgh163] [PMID: 15090465]
[122]
Hosseinzadehdehkordi M, Adelinik A, Tashakor A. Dual effect of curcumin targets reactive oxygen species, adenosine triphosphate contents and intermediate steps of mitochondria-mediated apoptosis in lung cancer cell lines. Eur J Pharmacol 2015; 769: 203-10.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.019] [PMID: 26593433]
[123]
Shehzad A, Lee YS. Curcumin: Multiple molecular targets mediate multiple pharmacological actions: A review. Drugs Future 2010; 35(2): 113.
[http://dx.doi.org/10.1358/dof.2010.35.2.1426640]
[124]
Goodpasture CE, Arrighi FE. Effects of food seasonings on the cell cycle and chromosome morphology of mammalian cells in vitro with special reference to turmeric. Food Cosmet Toxicol 1976; 14(1): 9-14.
[http://dx.doi.org/10.1016/S0015-6264(76)80356-2] [PMID: 943364]
[125]
Verschoyle RD, Steward WP, Gescher AJ. Putative cancer chemopreventive agents of dietary origin-how safe are they? Nutr Cancer 2007; 59(2): 152-62.
[http://dx.doi.org/10.1080/01635580701458186] [PMID: 18001209]
[126]
Urbina-Cano P, Bobadilla-Morales L, Ramírez-Herrera MA, et al. DNA damage in mouse lymphocytes exposed to curcumin and copper. J Appl Genet 2006; 47(4): 377-82.
[http://dx.doi.org/10.1007/BF03194648] [PMID: 17132903]
[127]
Cao J, Jia L, Zhou HM, Liu Y, Zhong LF. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci 2006; 91(2): 476-83.
[http://dx.doi.org/10.1093/toxsci/kfj153] [PMID: 16537656]
[128]
Kelly MR, Xu J, Alexander KE, Loo G. Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. Mutat Res DNA Repair 2001; 485(4): 309-18.
[http://dx.doi.org/10.1016/S0921-8777(01)00066-0] [PMID: 11585363]
[129]
Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease-merits and limitations. Curr Med Chem 2013; 20(32): 3955-85.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[130]
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99: 411-21.
[http://dx.doi.org/10.1016/j.biopha.2018.01.072] [PMID: 29367110]
[131]
Singh V, Singh J, Singh N, et al. Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. Biometals 2023; 36(4): 829-45.
[http://dx.doi.org/10.1007/s10534-022-00476-4] [PMID: 36454510]
[132]
Saengkrit N, Saesoo S, Srinuanchai W, Phunpee S, Ruktanonchai UR. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces 2014; 114: 349-56.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.005] [PMID: 24246195]
[133]
Zhang X, Wang R, Chen G, Dejean L, Chen Q-H. The effects of curcumin-based compounds on proliferation and cell death in cervical cancer cells. Anticancer Res 2015; 35(10): 5293-8.
[PMID: 26408689]
[134]
Paulraj F, Abas F, Lajis N, Othman I, Hassan S, Naidu R. The curcumin analogue 1, 5-bis (2-hydroxyphenyl)-1, 4-pentadiene-3-one induces apoptosis and downregulates E6 and E7 oncogene expression in HPV16 and HPV18-infected cervical cancer cells. Molecules 2015; 20(7): 11830-60.
[http://dx.doi.org/10.3390/molecules200711830] [PMID: 26132907]
[135]
Ma Y, Wang X, Zong S, et al. Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances 2015; 5(129): 106325-32.
[http://dx.doi.org/10.1039/C5RA17230F]
[136]
Zheng M, Liu S, Guan X, Xie Z. One-step synthesis of nanoscale zeolitic imidazolate frameworks with high curcumin loading for treatment of cervical cancer. ACS Appl Mater Interfaces 2015; 7(40): 22181-7.
[http://dx.doi.org/10.1021/acsami.5b04315] [PMID: 26403308]
[137]
Zaman MS, Chauhan N, Yallapu MM, et al. Curcumin nanoformulation for cervical cancer treatment. Sci Rep 2016; 6(1): 20051.
[http://dx.doi.org/10.1038/srep20051] [PMID: 26837852]
[138]
Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MMA. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. Int J Biol Macromol 2016; 93(Pt A): 242-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.050] [PMID: 27565296]
[139]
Li C, Ge X, Wang L. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother 2017; 86: 628-36.
[http://dx.doi.org/10.1016/j.biopha.2016.12.042] [PMID: 28027539]
[140]
Wang J, Liu Q, Yang L, et al. Curcumin-loaded TPGS/F127/P123 mixed polymeric micelles for cervical cancer therapy: Formulation, characterization, and in vitro and in vivo evaluation. J Biomed Nanotechnol 2017; 13(12): 1631-46.
[http://dx.doi.org/10.1166/jbn.2017.2442] [PMID: 29490752]
[141]
Luong D, Kesharwani P, Alsaab HO, et al. Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf B Biointerfaces 2017; 157: 490-502.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.025] [PMID: 28658642]
[142]
Naidu R, Paulraj F, Abas F, Lajis NH, Othman I, Hassan SS. Identification of commonly regulated genes in HPV18- and HPV16-infected cervical cancer cells treated with the curcumin analogue 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one. Asian Pac J Trop Biomed 2018; 8(1): 44.
[http://dx.doi.org/10.4103/2221-1691.221137]
[143]
Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi M, Moshahid A. Physicochemical characterization of curcumin loaded chitosan nanoparticles: Implications in cervical cancer. Anticancer Agents Med Chem 2018; 18(8): 1131-7.
[144]
Gawde KA, Sau S, Tatiparti K, et al. Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf B Biointerfaces 2018; 167: 8-19.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.046] [PMID: 29625422]
[145]
Chaudhary M, Kumar N, Baldi A, Chandra R, Arockia Babu M, Madan J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: Design, synthesis, in silico docking and in vitro cytotoxicity analysis. J Biomol Struct Dyn 2020; 38(1): 200-18.
[http://dx.doi.org/10.1080/07391102.2019.1578264] [PMID: 30784365]
[146]
R David S, Akmar Binti Anwar N, Yian KR, Mai C-W, Das SK, Rajabalaya R. Development and evaluation of curcumin liquid crystal systems for cervical cancer. Sci Pharm 2020; 88(1): 15.
[http://dx.doi.org/10.3390/scipharm88010015]
[147]
Chaudhary M, Kumar N, Baldi A, Chandra R, Babu MA, Madan J. 4-Bromo-4′-chloro pyrazoline analog of curcumin augmented anticancer activity against human cervical cancer, HeLa cells: In silico-guided analysis, synthesis, and in vitro cytotoxicity. J Biomol Struct Dyn 2020; 38(5): 1335-53.
[http://dx.doi.org/10.1080/07391102.2019.1604266] [PMID: 30957694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy