Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Gamma-mangostin Protects S16Y Schwann Cells Against tert-Butyl Hydroperoxide-induced Apoptotic Cell Death

Author(s): Purin Charoensuksai, Kwanputtha Arunprasert, Audchara Saenkham, Praneet Opanasopit, Sunit Suksamrarn and Pawaris Wongprayoon*

Volume 29, Issue 42, 2023

Published on: 05 December, 2023

Page: [3400 - 3407] Pages: 8

DOI: 10.2174/0113816128270941231124102032

Price: $65

Abstract

Background: Peripheral neuropathy is a common complication that affects individuals with diabetes. Its development involves an excessive presence of oxidative stress, which leads to cellular damage in various tissues. Schwann cells, which are vital for peripheral nerve conduction, are particularly susceptible to oxidative damage, resulting in cell death.

Materials and Methods: Gamma-mangostin (γ-mangostin), a xanthone derived from Garcinia mangostana, possesses cytoprotective properties in various pathological conditions. In this study, we employed S16Y cells as a representative Schwann cell model to investigate the protective effects of γ-mangostin against the toxicity induced by tert-Butyl hydroperoxide (tBHP). Different concentrations of γ-mangostin and tBHP were used to determine non-toxic doses of γ-mangostin and toxic doses of tBHP for subsequent experiments. MTT cell viability assays, cell flow cytometry, and western blot analysis were used for evaluating the protective effects of γ-mangostin.

Results: The results indicated that tBHP (50 μM) significantly reduced S16Y cell viability and induced apoptotic cell death by upregulating cleaved caspase-3 and cleaved PARP protein levels and reducing the Bcl- XL/Bax ratio. Notably, pretreatment with γ-mangostin (2.5 μM) significantly mitigated the decrease in cell viability caused by tBHP treatment. Furthermore, γ-mangostin effectively reduced cellular apoptosis induced by tBHP. Lastly, γ-mangostin significantly reverted tBHP-mediated caspase-3 and PARP cleavage and increased the Bcl-XL/Bax ratio.

Conclusion: Collectively, these findings highlight the ability of γ-mangostin to protect Schwann cells from apoptotic cell death induced by oxidative stress.

[1]
Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep 2019; 19(10): 86.
[http://dx.doi.org/10.1007/s11892-019-1212-8] [PMID: 31456118]
[2]
Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: A position statement by the American diabetes association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[3]
Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira- Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[4]
Askwith T, Zeng W, Eggo MC, Stevens MJ. Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: Implications for pathogenesis of diabetic neuropathy. Am J Physiol Endocrinol Metab 2009; 297(3): E620-8.
[http://dx.doi.org/10.1152/ajpendo.00287.2009] [PMID: 19602579]
[5]
Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL. Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal 2009; 11(3): 425-38.
[http://dx.doi.org/10.1089/ars.2008.2235] [PMID: 19072199]
[6]
Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA. Ischemia-reperfusion injury causes oxidative stress and apoptosis of Schwann cell in acute and chronic experimental diabetic neuropathy. Antioxid Redox Signal 2005; 7(11-12): 1513-20.
[http://dx.doi.org/10.1089/ars.2005.7.1513] [PMID: 16356115]
[7]
Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 2017; 13(3): 135-47.
[http://dx.doi.org/10.1038/nrneurol.2016.201] [PMID: 28134254]
[8]
Do HTT, Cho J. Mangosteen pericarp and its bioactive xanthones: Potential therapeutic value in Alzheimer’s disease, Parkinson’s disease, and depression with pharmacokinetic and safety profiles. Int J Mol Sci 2020; 21(17): 6211.
[http://dx.doi.org/10.3390/ijms21176211] [PMID: 32867357]
[9]
Simon SE, Lim HS, Jayakumar FA, Tan EW, Tan KO. Alpha-mangostin activates MOAP-1 tumor suppressor and mitochondrial signaling in MCF-7 human breast cancer cells. Evid Based Complement Alternat Med 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/7548191] [PMID: 35082905]
[10]
Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Investigating the ameliorative effect of alpha-mangostin on development and existing pain in a rat model of neuropathic pain. Phytother Res 2020; 34(12): 3211-25.
[http://dx.doi.org/10.1002/ptr.6768] [PMID: 32592535]
[11]
Jaisin Y, Ratanachamnong P, Kuanpradit C, Khumpum W, Suksamrarn S. Protective effects of γ-mangostin on 6-OHDA-induced toxicity in SH-SY5Y cells. Neurosci Lett 2018; 665: 229-35.
[http://dx.doi.org/10.1016/j.neulet.2017.11.059] [PMID: 29195909]
[12]
Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull (Tokyo) 2006; 54(3): 301-5.
[http://dx.doi.org/10.1248/cpb.54.301] [PMID: 16508181]
[13]
Chaivisuthangkura A, Malaikaew Y, Chaovanalikit A, et al. Prenylated xanthone composition of Garcinia mangostana (Mangosteen) fruit hull. Chromatographia 2009; 69(3-4): 315-8.
[http://dx.doi.org/10.1365/s10337-008-0890-1]
[14]
Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. Quantitation of apoptosis and necrosis by annexin v binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc 2016; 2016(11): pdb.prot087288.
[http://dx.doi.org/10.1101/pdb.prot087288] [PMID: 27803250]
[15]
Wongprayoon P, Govitrapong P. Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell death. Neurotox Res 2017; 31(1): 1-10.
[http://dx.doi.org/10.1007/s12640-016-9647-z] [PMID: 27370255]
[16]
Toda K, Small JA, Goda S, Quarles RH. Biochemical and cellular properties of three immortalized Schwann cell lines expressing different levels of the myelin-associated glycoprotein. J Neurochem 1994; 63(5): 1646-57.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63051646.x] [PMID: 7523597]
[17]
Kučera O, Endlicher R, Roušar T, et al. The effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro. Oxid Med Cell Longev 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/752506] [PMID: 24847414]
[18]
Ye J, Yao JP, Wang X, et al. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016; 13(4): 3083-91.
[http://dx.doi.org/10.3892/mmr.2016.4914] [PMID: 26935530]
[19]
Lu D, Zhu LH, Shu XM, et al. Ginsenoside Rg1 relieves tert- Butyl hydroperoxide-induced cell impairment in mouse microglial BV2 cells. J Asian Nat Prod Res 2015; 17(9): 930-45.
[http://dx.doi.org/10.1080/10286020.2015.1031117] [PMID: 25971787]
[20]
Pan X, Zhu Y, Lin N, et al. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: Implications for Alzheimer’s disease. Mol Neurodegener 2011; 6(1): 45.
[http://dx.doi.org/10.1186/1750-1326-6-45] [PMID: 21718498]
[21]
Cai L, Wang LF, Pan JP, et al. Neuroprotective effects of methyl 3,4-dihydroxybenzoate against TBHP-induced oxidative damage in SH-SY5Y cells. Molecules 2016; 21(8): 1071.
[http://dx.doi.org/10.3390/molecules21081071] [PMID: 27556437]
[22]
Chang HF, Wu CH, Yang LL. Antitumour and free radical scavenging effects of γ-mangostin isolated from Garcinia mangostana pericarps against hepatocellular carcinoma cell. J Pharm Pharmacol 2013; 65(9): 1419-28.
[http://dx.doi.org/10.1111/jphp.12111] [PMID: 23927480]
[23]
Krishnamachary B, Subramaniam D, Dandawate P, et al. Targeting transcription factor TCF4 by γ-mangostin, a natural xanthone. Oncotarget 2019; 10(54): 5576-91.
[http://dx.doi.org/10.18632/oncotarget.27159] [PMID: 31608135]
[24]
Baek JY, Jung K, Kim YM, Kim HY, Kang KS, Chin YW. Protective effect of γ-mangostin isolated from the peel of Garcinia mangostana against glutamate-induced cytotoxicity in HT22 hippocampal neuronal cells. Biomolecules 2021; 11(2): 170.
[http://dx.doi.org/10.3390/biom11020170] [PMID: 33514017]
[25]
Day RM, Suzuki YJ. Cell proliferation, reactive oxygen and cellular glutathione. Dose Response 2006; 3(3): 425-42.
[PMID: 18648617]
[26]
Ma L, Zhu WZ, Liu TT, et al. H2O2 inhibits proliferation and mediates suppression of migration via DLC1/RhoA signaling in cancer cells. Asian Pac J Cancer Prev 2015; 16(4): 1637-42.
[http://dx.doi.org/10.7314/APJCP.2015.16.4.1637] [PMID: 25743845]
[27]
Chua PJ, Yip GWC, Bay BH. Cell cycle arrest induced by hydrogen peroxide is associated with modulation of oxidative stress related genes in breast cancer cells. Exp Biol Med 2009; 234(9): 1086-94.
[http://dx.doi.org/10.3181/0903-RM-98] [PMID: 19596828]
[28]
Li J, Guan R, Pan L. Mechanism of Schwann cells in diabetic peripheral neuropathy: A review. Medicine 2023; 102(1): e32653.
[http://dx.doi.org/10.1097/MD.0000000000032653] [PMID: 36607875]
[29]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 2016; 1863(12): 2977-92.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[30]
Tait SWG, Green DR. Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 2013; 5(9): a008706.
[http://dx.doi.org/10.1101/cshperspect.a008706] [PMID: 24003207]
[31]
Hu PS, Hsia NY, Chien WC, et al. Protective effects of gamma- mangostin on hydrogen peroxideinduced cytotoxicity in human retinal pigment epithelial cells. In Vivo 2022; 36(4): 1676-83.
[http://dx.doi.org/10.21873/invivo.12879] [PMID: 35738618]
[32]
Hu Z, Wang W, Ling J, Jiang C. α-mangostin inhibits α-synuclein-induced microglial neuroinflammation and neurotoxicity. Cell Mol Neurobiol 2016; 36(5): 811-20.
[http://dx.doi.org/10.1007/s10571-015-0264-9] [PMID: 27002719]
[33]
Eisvand F, Imenshahidi M, Ghasemzadeh Rahbardar M, et al. Cardioprotective effects of alpha-mangostin on doxorubicin-induced cardiotoxicity in rats. Phytother Res 2022; 36(1): 506-24.
[http://dx.doi.org/10.1002/ptr.7356] [PMID: 34962009]
[34]
Ahmadian R, Heidari MR, Razavi BM, Hosseinzadeh H. Alpha- mangostin protects PC12 cells against neurotoxicity induced by cadmium and arsenic. Biol Trace Elem Res 2022.
[PMID: 36445559]
[35]
Hao XM, Li LD, Duan CL, Li YJ. Neuroprotective effect of α- mangostin on mitochondrial dysfunction and α-synuclein aggregation in rotenone-induced model of Parkinson’s disease in differentiated SH-SY5Y cells. J Asian Nat Prod Res 2017; 19(8): 833-45.
[http://dx.doi.org/10.1080/10286020.2017.1339349] [PMID: 28696167]
[36]
Lee D, Choi YO, Kim KH, et al. Protective effect of α-mangostin against iodixanol-induced apoptotic damage in LLC-PK1 cells. Bioorg Med Chem Lett 2016; 26(15): 3806-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.031] [PMID: 27293071]
[37]
Luo Y, Lei M. α-mangostin protects against high-glucose induced apoptosis of human umbilical vein endothelial cells. Biosci Rep 2017; 37(6): BSR20170779.
[http://dx.doi.org/10.1042/BSR20170779] [PMID: 29054969]
[38]
Lee D, Kim YM, Jung K, Chin YW, Kang K. Alpha-mangostin improves insulin secretion and protects INS-1 cells from streptozotocin-induced damage. Int J Mol Sci 2018; 19(5): 1484.
[http://dx.doi.org/10.3390/ijms19051484] [PMID: 29772703]
[39]
Jariyapongskul A, Areebambud C, Suksamrarn S, Mekseepralard C. Alpha-mangostin attenuation of hyperglycemia-induced ocular hypoperfusion and blood retinal barrier leakage in the early stage of type 2 diabetes rats. BioMed Res Int 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/785826] [PMID: 25950001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy