Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants

Author(s): Merve Akkulak, Emre Evin, Ozlem Durukan, Hasan Ufuk Celebioglu and Orhan Adali*

Volume 24, Issue 5, 2024

Published on: 06 December, 2023

Page: [372 - 378] Pages: 7

DOI: 10.2174/0118715206271514231124111026

Price: $65

Abstract

Background and Objective: Ensuring colon homeostasis is of significant influence on colon cancer and delicate balance is maintained by a healthy human gut microbiota. Probiotics can modulate the diversity of the gut microbiome and prevent colon cancer. Metabolites/byproducts generated by microbial metabolism significantly impact the healthy colonic environment. Hesperidin is a polyphenolic plant compound well known for its anticancer properties. However, low bioavailability of hesperidin after digestion impedes its effectiveness. CYP2W1 is a newly discovered oncofetal gene with an unknown function. CYP2W1 gene expression peaks during embryonic development and is suddenly silenced immediately after birth. Only in the case of some types of cancer, particularly colorectal and hepatocellular carcinomas, this gene is reactivated and its expression is correlated with the severity of the disease. This study aimed to investigate the effects of hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) cell-free supernatants on CaCo2 colon cancer cell viability and CYP2W1 gene expression.

Methods: Alamar Blue cell viability assay was used to investigate the cytotoxic effect of cell-free supernatant of LGG grown in the presence of hesperidin on CaCo2 cells. To observe the effect of cell-free supernatants of LGG on the expression of CYP2W1 gene, qRT-PCR was performed.

Results: Five times diluted hesperidin treated cell-free supernatant (CFS) concentration considerably reduced CaCo2 colon cancer cell viability. Furthermore, CYP2W1 gene expression was similarly reduced following CFS treatments and nearly silenced under probiotic bacteria CFS treatment.

Conclusion: The CYP2W1 gene expression was strongly reduced by cell-free supernatants derived from LGG culture, with or without hesperidin. This suggests that the suppression may be due to bacterial byproducts rather than hesperidin. Therefore, the CYP2W1 gene in the case of deregulation of these metabolites may cause CYP2W1-related colon cancer cell proliferation.

Graphical Abstract

[1]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[2]
dos Reis, S.A.; da Conceição, L.L.; Siqueira, N.P.; Rosa, D.D.; da Silva, L.L.; Peluzio, M.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res., 2017, 37, 1-19.
[http://dx.doi.org/10.1016/j.nutres.2016.11.009] [PMID: 28215310]
[3]
Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers, 2019, 11(1), 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[4]
Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26, 26191.
[PMID: 25651997]
[5]
Ambalam, P.; Raman, M.; Purama, R.K.; Doble, M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 119-131.
[http://dx.doi.org/10.1016/j.bpg.2016.02.009] [PMID: 27048903]
[6]
Fong, W.; Li, Q.; Yu, J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene, 2020, 39(26), 4925-4943.
[http://dx.doi.org/10.1038/s41388-020-1341-1] [PMID: 32514151]
[7]
Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek, 2020, 113(12), 2019-2040.
[http://dx.doi.org/10.1007/s10482-020-01474-7] [PMID: 33136284]
[8]
Zhong, L.; Zhang, X.; Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol., 2014, 20(24), 7878-7886.
[http://dx.doi.org/10.3748/wjg.v20.i24.7878] [PMID: 24976724]
[9]
Banna, G.L.; Torino, F.; Marletta, F.; Santagati, M.; Salemi, R.; Cannarozzo, E.; Falzone, L.; Ferraù, F.; Libra, M. Lactobacillus rhamnosus GG: An overview to explore the rationale of its use in cancer. Front. Pharmacol., 2017, 8, 603.
[http://dx.doi.org/10.3389/fphar.2017.00603] [PMID: 28919861]
[10]
Behzadi, E.; Mahmoodzadeh, H.H.; Imani, F.A.A. The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microb. Pathog., 2017, 110, 1-6.
[http://dx.doi.org/10.1016/j.micpath.2017.06.016] [PMID: 28634130]
[11]
Cheng, Z.; Xu, H.; Wang, X.; Liu, Z. Lactobacillus raises in vitro anticancer effect of geniposide in HSC 3 human oral squamous cell carcinoma cells. Exp. Ther. Med., 2017, 14(5), 4586-4594.
[http://dx.doi.org/10.3892/etm.2017.5105] [PMID: 29104666]
[12]
Si, W.; Liang, H.; Bugno, J.; Xu, Q.; Ding, X.; Yang, K.; Fu, Y.; Weichselbaum, R.R.; Zhao, X.; Wang, L. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut, 2022, 71(3), 521-533.
[http://dx.doi.org/10.1136/gutjnl-2020-323426] [PMID: 33685966]
[13]
Peng, M.; Lee, S.H.; Rahaman, S.O.; Biswas, D. Dietary probiotic and metabolites improve intestinal homeostasis and prevent colorectal cancer. Food Funct., 2020, 11(12), 10724-10735.
[http://dx.doi.org/10.1039/D0FO02652B] [PMID: 33231228]
[14]
Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol., 2018, 75, 105-114.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[15]
Maghsood, F.; Johari, B.; Rohani, M.; Madanchi, H.; Saltanatpour, Z.; Kadivar, M. Anti-proliferative and anti-metastatic potential of high molecular weight secretory molecules from probiotic lactobacillus reuteri cell-free supernatant against human colon cancer stem-like cells (HT29-ShE). Int. J. Pept. Res. Ther., 2020, 26(4), 2619-2631.
[http://dx.doi.org/10.1007/s10989-020-10049-z]
[16]
Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother., 2021, 140, 111596.
[http://dx.doi.org/10.1016/j.biopha.2021.111596] [PMID: 34126315]
[17]
Ponte, L.G.S.; Pavan, I.C.B.; Mancini, M.C.S.; da Silva, L.G.S.; Morelli, A.P.; Severino, M.B.; Bezerra, R.M.N.; Simabuco, F.M. The hallmarks of flavonoids in cancer. Molecules, 2021, 26(7), 2029.
[http://dx.doi.org/10.3390/molecules26072029] [PMID: 33918290]
[18]
Tiwari, A.K. Imbalance in antioxidant defence and human diseases: Multiple approach of natural antioxidants therapy. Curr. Sci., 2001, 81(9), 1179-1187.
[19]
Aggarwal, V.; Tuli, H.S.; Thakral, F.; Singhal, P.; Aggarwal, D.; Srivastava, S.; Pandey, A.; Sak, K.; Varol, M.; Khan, M.A.; Sethi, G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp. Biol. Med., 2020, 245(5), 486-497.
[http://dx.doi.org/10.1177/1535370220903671] [PMID: 32050794]
[20]
Mas-Capdevila, A.; Teichenne, J.; Domenech-Coca, C.; Caimari, A.; Del Bas, J.M.; Escoté, X.; Crescenti, A. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients, 2020, 12(5), 1488.
[http://dx.doi.org/10.3390/nu12051488] [PMID: 32443766]
[21]
Hollenberg, P.F.; Hager, L.P. The P-450 nature of the carbon monoxide complex of ferrous chloroperoxidase. J. Biol. Chem., 1973, 248(7), 2630-2633.
[http://dx.doi.org/10.1016/S0021-9258(19)44155-0] [PMID: 4698233]
[22]
Nebert, D.W.; Russell, D.W. Clinical importance of the cytochromes P450. Lancet, 2002, 360(9340), 1155-1162.
[http://dx.doi.org/10.1016/S0140-6736(02)11203-7] [PMID: 12387968]
[23]
Nebert, D.W.; Dalton, T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer, 2006, 6(12), 947-960.
[http://dx.doi.org/10.1038/nrc2015] [PMID: 17128211]
[24]
Omura, T. Mitochondrial P450s. Chem. Biol. Interact., 2006, 163(1-2), 86-93.
[http://dx.doi.org/10.1016/j.cbi.2006.06.008] [PMID: 16884708]
[25]
Hafner, M.; Rezen, T.; Rozman, D. Regulation of hepatic cytochromes p450 by lipids and cholesterol. Curr. Drug Metab., 2011, 12(2), 173-185.
[http://dx.doi.org/10.2174/138920011795016890] [PMID: 21395540]
[26]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[27]
Choudhary, D.; Jansson, I.; Stoilov, I.; Sarfarazi, M.; Schenkman, J.B. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch. Biochem. Biophys., 2005, 436(1), 50-61.
[http://dx.doi.org/10.1016/j.abb.2005.02.001] [PMID: 15752708]
[28]
Girault, I.; Rougier, N.; Chesné, C.; Lidereau, R.; Beaune, P.; Bieche, I.; de Waziers, I. Simultaneous measurement of 23 isoforms from the human cytochrome P450 families 1 to 3 by quantitative reverse transcriptase-polymerase chain reaction. Drug Metab. Dispos., 2005, 33(12), 1803-1810.
[PMID: 16135659]
[29]
Choong, E.; Guo, J.; Persson, A.; Virding, S.; Johansson, I.; Mkrtchian, S.; Ingelman-Sundberg, M. Developmental regulation and induction of cytochrome P450 2W1, an enzyme expressed in colon tumors. PLoS One, 2015, 10(4), e0122820.
[http://dx.doi.org/10.1371/journal.pone.0122820] [PMID: 25844926]
[30]
Karlgren, M.; Gomez, A.; Stark, K.; Svärd, J.; Rodriguez-Antona, C.; Oliw, E.; Bernal, M.L.; y Cajal, S.R.; Johansson, I.; Ingelman-Sundberg, M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun., 2006, 341(2), 451-458.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.200] [PMID: 16426568]
[31]
Gomez, A.; Karlgren, M.; Edler, D.; Bernal, M.L.; Mkrtchian, S.; Ingelman-Sundberg, M. Expression of CYP2W1 in colon tumors: Regulation by gene methylation. Pharmacogenomics, 2007, 8(10), 1315-1325.
[http://dx.doi.org/10.2217/14622416.8.10.1315] [PMID: 17979506]
[32]
Zhang, K.; Jiang, L.; He, R.; Li, B.L.; Jia, Z.; Huang, R.H.; Mu, Y. Prognostic value of CYP2W1 expression in patients with human hepatocellular carcinoma. Tumour Biol., 2014, 35(8), 7669-7673.
[http://dx.doi.org/10.1007/s13277-014-2023-9] [PMID: 24801906]
[33]
Fei-Lei Chung, F.; Wai, M. C.; Yuen Ng, P.; Leong, C.O. Cytochrome P450 2W1 (CYP2W1) in colorectal cancers. Curr. Cancer Drug Targets, 2015, 16(1), 71-78.
[http://dx.doi.org/10.2174/1568009616888151112095948] [PMID: 26563883]
[34]
Edler, D.; Stenstedt, K.; Öhrling, K.; Hallström, M.; Karlgren, M.; Ingelman-Sundberg, M.; Ragnhammar, P. The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer – A pilot study. Eur. J. Cancer, 2009, 45(4), 705-712.
[http://dx.doi.org/10.1016/j.ejca.2008.11.031] [PMID: 19118998]
[35]
Stenstedt, K.; Hallstrom, M.; Johansson, I.; Ingelman-Sundberg, M.; Ragnhammar, P.; Edler, D. The expression of CYP2W1: A prognostic marker in colon cancer. Anticancer Res., 2012, 32(9), 3869-3874.
[PMID: 22993331]
[36]
Stenstedt, K.; Hallstrom, M.; Lédel, F.; Ragnhammar, P.; Ingelman-Sundberg, M.; Johansson, I.; Edler, D. The expression of CYP2W1 in colorectal primary tumors, corresponding lymph node metastases and liver metastases. Acta Oncol., 2014, 53(7), 885-891.
[http://dx.doi.org/10.3109/0284186X.2014.887224] [PMID: 24625228]
[37]
Celebioglu, H.U.; Delsoglio, M.; Brix, S.; Pessione, E.; Svensson, B. Plant polyphenols stimulate adhesion to intestinal mucosa and induce proteome changes in the probiotic Lactobacillus acidophilus NCFM. Mol. Nutr. Food Res., 2018, 62(4), 1700638.
[http://dx.doi.org/10.1002/mnfr.201700638] [PMID: 29205785]
[38]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[39]
Rendic, S.; Guengerich, F.P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol., 2015, 28(1), 38-42.
[http://dx.doi.org/10.1021/tx500444e] [PMID: 25485457]
[40]
Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; Qin, S. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci., 2021, 22(23), 12808.
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[41]
Kyselova, Z. Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip. Toxicol., 2011, 4(4), 173-183.
[http://dx.doi.org/10.2478/v10102-011-0027-5] [PMID: 22319251]
[42]
Doostdar, H.; Burke, M.D.; Mayer, R.T. Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology, 2000, 144(1-3), 31-38.
[http://dx.doi.org/10.1016/S0300-483X(99)00215-2] [PMID: 10781868]
[43]
Danneskiold-Samsøe, N.B.; Dias de Freitas Queiroz Barros, H.; Santos, R.; Bicas, J.L.; Cazarin, C.B.B.; Madsen, L.; Kristiansen, K.; Pastore, G.M.; Brix, S.; Maróstica, J.M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int., 2019, 115, 23-31.
[http://dx.doi.org/10.1016/j.foodres.2018.07.043] [PMID: 30599936]
[44]
Anhê, F.F.; Nachbar, R.T.; Varin, T.V.; Trottier, J.; Dudonné, S.; Le Barz, M.; Feutry, P.; Pilon, G.; Barbier, O.; Desjardins, Y.; Roy, D.; Marette, A. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 2019, 68(3), 453-464.
[http://dx.doi.org/10.1136/gutjnl-2017-315565] [PMID: 30064988]
[45]
Chmykhalo, V.; Zolotukhin, P.; Pakhomov, V.; Prutskov, A.; Khairullina, S.; Zubtsov, V.; Egyan, M. Approaches to probiotics properties testing using CaCo2 cells. E3S Web of Conferences, 2020, 175, 03024.
[46]
Yi, Z.; Yu, Y.; Liang, Y.; Zeng, B. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium citri reticulatae of a new citrus cultivar and its main flavonoids. Lebensm. Wiss. Technol., 2008, 41(4), 597-603.
[http://dx.doi.org/10.1016/j.lwt.2007.04.008]
[47]
Perche, O.; Vergnaud-Gauduchon, J.; Morand, C.; Dubray, C.; Mazur, A.; Vasson, M.P. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans. Clin. Nutr., 2014, 33(1), 130-135.
[http://dx.doi.org/10.1016/j.clnu.2013.03.012] [PMID: 23602614]
[48]
Pla-Pagà, L.; Companys, J.; Calderón-Pérez, L.; Llauradó, E.; Solà, R.; Valls, R.M.; Pedret, A. Effects of hesperidin consumption on cardiovascular risk biomarkers: A systematic review of animal studies and human randomized clinical trials. Nutr. Rev., 2019, 77(12), 845-864.
[http://dx.doi.org/10.1093/nutrit/nuz036] [PMID: 31271436]
[49]
Takahashi, K.; Sugi, Y.; Nakano, K.; Tsuda, M.; Kurihara, K.; Hosono, A.; Kaminogawa, S. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem., 2011, 286(41), 35755-35762.
[http://dx.doi.org/10.1074/jbc.M111.271007] [PMID: 21862578]
[50]
Bhat, M.I.; Kapila, R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr. Rev., 2017, 75(5), 374-389.
[http://dx.doi.org/10.1093/nutrit/nux001] [PMID: 28444216]
[51]
Dashwood, R.; Ho, E. Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol., 2007, 17(5), 363-369.
[http://dx.doi.org/10.1016/j.semcancer.2007.04.001] [PMID: 17555985]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy