Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-lung Cancer Activity of Synthesized Substituted 1,4-Benzothiazines: An Insight from Molecular Docking and Experimental Studies

Author(s): Andleeb Amin, Zubaid-Ul-Khazir, Arfa Ji, Basharat Ahmad Bhat, Dar Murtaza, Aaqib A. Hurrah, Imtiyaz A. Bhat, Shaheena Parveen, Syed Nisar and Praveen Kumar Sharma*

Volume 24, Issue 5, 2024

Published on: 10 November, 2023

Page: [358 - 371] Pages: 14

DOI: 10.2174/0118715206276737231103114924

Price: $65

Abstract

Background: Thiazine, a 6-membered distinctive heterocyclic motif with sulfur and nitrogen atoms, is one of the heterocyclic compounds that functions as a core scaffold in a number of medicinally significant molecules. Small thiazine-based compounds may operate simultaneously on numerous therapeutic targets and by employing a variety of methods to halt the development, proliferation, and vasculature of cancer cells. We have, herein, reported a series of substituted 1,4 benzothiazines as potential anticancer agents for the treatment of lung cancer.

Methods: In order to synthesize 2,3-disubstituted-1,4 benzothiazines in good yield, a facile green approach for the oxidative cycloaddition of 2-amino benzenethiol and 1,3-dicarbonyls employing a catalytic amount of ceric ammonium nitrate has been devised. All the molecules have been characterized by spectral analysis and tested for anticancer activity against the A-549 lung cancer cell line using various functional assays. Further in silico screening of compound 3c against six crucial inflammatory molecular targets, such as Il1-α (PDB ID: 5UC6), Il1- β (PDB ID: 6Y8I), Il6 (PDB ID: 1P9M), vimentin (PDB ID: 3TRT), COX-2 (PDB ID: 5KIR), Il8 (PDB ID: 5D14), and TNF-α (PDB ID: 2AZ5), was done using AutoDock tool.

Results: Among the synthesized compounds, propyl 3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazine-2- carboxylate (3c) was found to be most active based on cell viability assays using A-549 lung cancer cell line and was found to effectively downregulate various pro-inflammatory genes, like Il1-α, Il1-β, Il6, vimentin, COX-2, Il8, and TNF-α in vitro. The ability of the molecule to effectively suppress the proliferation and migration of lung cancer cells in vitro has been further demonstrated by the colony formation unit assay and wound healing assay. Molecular docking analysis showed the maximal binding affinity (− 7.54 kcal/mol) to be exhibited by compound 3c against IL8.

Conclusion: A green unconventional route for the synthesis of 2,3-disubstituted-1,4 benzothiazines has been developed. All the molecules were screened for their activity against lung cancer and the data suggested that the presence of an additional unbranched alkyl group attached to the thiazine ring increased their activity. Also, in vitro and in silico modeling confirmed the anti-cancer efficiency of compound 3c, encouraging the exploration of such small molecules against cancer.

Graphical Abstract

[1]
Moserle, L.; Amadori, A.; Indraccolo, S. The angiogenic switch: Implications in the regulation of tumor dormancy. Curr. Mol. Med., 2009, 9(8), 935-941.
[http://dx.doi.org/10.2174/156652409789712800] [PMID: 19925406]
[2]
Bakavoli, M.; Nikpour, M.; Rahimizadeh, M.; Saberi, M.R.; Sadeghian, H. Design and synthesis of pyrimido[4,5-b][1,4]benzothiazine derivatives, as potent 15-lipoxygenase inhibitors. Bioorg. Med. Chem., 2007, 15(5), 2120-2126.
[http://dx.doi.org/10.1016/j.bmc.2006.12.022] [PMID: 17210254]
[3]
Matysiak, J. Synthesis, antiproliferative and antifungal activities of some 2-(2,4-dihydroxyphenyl)-4H-3,1-benzothiazines. Bioorg. Med. Chem., 2006, 14(8), 2613-2619.
[http://dx.doi.org/10.1016/j.bmc.2005.11.053] [PMID: 16377195]
[4]
Ohlow, M.J.; Moosmann, B. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discov. Today, 2011, 16(3-4), 119-131.
[http://dx.doi.org/10.1016/j.drudis.2011.01.001] [PMID: 21237283]
[5]
Gupta, S.S.; Kumari, S.; Kumar, I.; Sharma, U. Eco-friendly and sustainable synthetic approaches to biologically significant fused N-heterocycles. Chem. Heterocycl. Compd., 2020, 56(4), 433-444.
[http://dx.doi.org/10.1007/s10593-020-02678-5]
[6]
Kaur, N. Ionic liquid promoted eco-friendly and efficient synthesis of six-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15(8), 1124-1146.
[http://dx.doi.org/10.2174/1570179415666180903102542]
[7]
Karmakar, R.; Mukhopadhyay, C. Green synthetic approach: A well-organized eco-friendly tool for synthesis of bio-active fused heterocyclic compounds. Curr. Green Chem., 2023, 10(1), 5-24.
[http://dx.doi.org/10.2174/2213346110666230120154516]
[8]
Nasiriani, T.; Javanbakht, S.; Nazeri, M.T.; Farhid, H.; Khodkari, V.; Shaabani, A. Isocyanide-based multicomponent reactions in water: Advanced green tools for the synthesis of heterocyclic compounds. Top. Curr. Chem., 2022, 380(6), 50.
[http://dx.doi.org/10.1007/s41061-022-00403-8] [PMID: 36136281]
[9]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Photochem. Rev., 2005, 6(2-3), 139-167.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]
[10]
Felicetti, T.; Cannalire, R.; Burali, M.S.; Massari, S.; Manfroni, G.; Barreca, M.L.; Tabarrini, O.; Schindler, B.D.; Sabatini, S.; Kaatz, G.W.; Cecchetti, V. Searching for novel inhibitors of the S. aureus NorA efflux pump: synthesis and biological evaluation of the 3phenyl-1, 4-benzothiazine analogues. ChemMedChem, 2017, 12(16), 1293-1302.
[http://dx.doi.org/10.1002/cmdc.201700286] [PMID: 28598572]
[11]
Chaucer, P.; Sharma, P.K. Study of thiazines as potential anticancer agents. Plant Arch., 2020, 20(2), 3199-3202.
[12]
Lombardino, J.G.; Wiseman, E.H. Antiinflammatory 3,4-dihydro-2-alkyl-3-oxo-2H-1,2-benzothiazine-4-carboxamide 1,1-dioxides. J. Med. Chem., 1971, 14(10), 973-977.
[http://dx.doi.org/10.1021/jm00292a022] [PMID: 5115698]
[13]
Ukrainets, I.V.; Petrushova, L.A.; Dzyubenko, S.P. 2, 1-Benzothiazine 2, 2-dioxides. 1. Synthesis, structure, and analgesic activity of 1-R-4-hydroxy-2, 2-dioxo-1 H-2λ 6, 1-benzothiazine-3-carboxylic acid esters. Chem. Heterocycl. Compd., 2013, 49(9), 1378-1383.
[http://dx.doi.org/10.1007/s10593-013-1388-9]
[14]
Prashanth, M.; Revanasiddappa, H. Synthesis and antioxidant activity of novel quinazolinones functionalized with urea/thiourea/thiazole derivatives as 5-lipoxygenase inhibitors. Lett. Drug Des. Discov., 2014, 11(6), 712-720.
[http://dx.doi.org/10.2174/1570180811666131230235157]
[15]
Tanaka, T.; Yajima, N.; Tanitame, A.; Kiyoshi, T.; Miura, Y. Discovery of benzothiazine derivatives as novel, orally-active anti-epileptic drug candidates with broad anticonvulsant effect. Bioorg. Med. Chem. Lett., 2015, 25(20), 4518-4521.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.071] [PMID: 26364945]
[16]
Tawada, H.; Sugiyama, Y.; Ikeda, H.; Yamamoto, Y.; Meguro, K. Studies on antidiabetic agents. IX. A new aldose reductase inhibitor, AD-5467, and related 1,4-benzoxazine and 1,4-benzothiazine derivatives: Synthesis and biological activity. Chem. Pharm. Bull., 1990, 38(5), 1238-1245.
[http://dx.doi.org/10.1248/cpb.38.1238] [PMID: 2118427]
[17]
Amin, A.; Qadir, T.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Pharmacological significance of synthetic bioactive thiazole derivatives. Curr. Bioact. Compd., 2022, 18(9), e030322201633.
[http://dx.doi.org/10.2174/1573407218666220303100501]
[18]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[19]
Qadir, T.; Amin, A.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Recent advances in the synthesis of benzothiazole and its derivatives. Curr. Org. Chem., 2022, 26(2), 189-214.
[http://dx.doi.org/10.2174/1385272826666211229144446]
[20]
Ali, T.E.S.; El-Kazak, A.M. Synthesis and antimicrobial activity of some new 1,3-thiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and 1,3-thiazines incorporating acridine and 1,2,3,4-tetrahydroacridine moieties. Eur. J. Chem., 2010, 1(1), 6-11.
[http://dx.doi.org/10.5155/eurjchem.1.1.6-11.12]
[21]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[22]
Inamura, K. Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol., 2017, 7, 193.
[http://dx.doi.org/10.3389/fonc.2017.00193] [PMID: 28894699]
[23]
Hasegawa, Y.; Kawaguchi, T.; Kubo, A.; Ando, M.; Shiraishi, J.; Isa, S.; Tsuji, T.; Tsujino, K.; Ou, S.H.I.; Nakagawa, K.; Takada, M. Ethnic difference in hematological toxicity in patients with non-small cell lung cancer treated with chemotherapy: A pooled analysis on Asian versus non-Asian in phase II and III clinical trials. J. Thorac. Oncol., 2011, 6(11), 1881-1888.
[http://dx.doi.org/10.1097/JTO.0b013e31822722b6] [PMID: 21841503]
[24]
Han, Y.; Li, H. miRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC). J. Thorac. Dis., 2018, 10(5), 3119-3131.
[http://dx.doi.org/10.21037/jtd.2018.05.32] [PMID: 29997981]
[25]
Scagliotti, G.; Stahel, R.A.; Rosell, R.; Thatcher, N.; Soria, J.C. ALK translocation and crizotinib in non-small cell lung cancer: An evolving paradigm in oncology drug development. Eur. J. Cancer, 2012, 48(7), 961-973.
[http://dx.doi.org/10.1016/j.ejca.2012.02.001] [PMID: 22397764]
[26]
Sequist, L.V.; Bell, D.W.; Lynch, T.J.; Haber, D.A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol., 2007, 25(5), 587-595.
[http://dx.doi.org/10.1200/JCO.2006.07.3585] [PMID: 17290067]
[27]
Woodman, C. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. In: Seminars in cancer biology; Elsevier, 2021.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.009]
[28]
Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214.
[http://dx.doi.org/10.1038/s41568-019-0123-y] [PMID: 30842595]
[29]
Müzes, G.; Sipos, F. Inflammasome, inflammation and cancer: An interrelated pathobiological triad. Curr. Drug Targets, 2015, 16(3), 249-257.
[http://dx.doi.org/10.2174/1389450115666141229154157] [PMID: 25547909]
[30]
He, Q.; Fu, Y.; Tian, D.; Yan, W. The contrasting roles of inflammasomes in cancer. Am. J. Cancer Res., 2018, 8(4), 566-583.
[PMID: 29736304]
[31]
Litmanovich, A.; Khazim, K.; Cohen, I. The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol. Ther., 2018, 6(2), 109-127.
[http://dx.doi.org/10.1007/s40487-018-0089-z] [PMID: 32700032]
[32]
Apte, R.N.; Krelin, Y.; Song, X.; Dotan, S.; Recih, E.; Elkabets, M.; Carmi, Y.; Dvorkin, T.; White, R.M.; Gayvoronsky, L.; Segal, S.; Voronov, E. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour–host interactions. Eur. J. Cancer, 2006, 42(6), 751-759.
[http://dx.doi.org/10.1016/j.ejca.2006.01.010] [PMID: 16530403]
[33]
Voronov, E.; Apte, R.N. Targeting the tumor microenvironment by intervention in interleukin-1 biology. Curr. Pharm. Des., 2017, 23(32), 4893-4905.
[http://dx.doi.org/10.2174/1381612823666170613080919] [PMID: 28606052]
[34]
Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol., 2012, 2, 98.
[http://dx.doi.org/10.3389/fimmu.2011.00098] [PMID: 22566887]
[35]
Vendramini-Costa, D.B.; Carvalho, J.E. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des., 2012, 18(26), 3831-3852.
[http://dx.doi.org/10.2174/138161212802083707] [PMID: 22632748]
[36]
Spiekstra, S.W.; Toebak, M.J.; Sampat-Sardjoepersad, S.; Van Beek, P.J.; Boorsma, D.M.; Stoof, T.J.; Von Blomberg, B.M.E.; Scheper, R.J.; Bruynzeel, D.P.; Rustemeyer, T.; Gibbs, S. Induction of cytokine (interleukin-1α and tumor necrosis factor-α) and chemokine (CCL20, CCL27, and CXCL8) alarm signals after allergen and irritant exposure. Exp. Dermatol., 2005, 14(2), 109-116.
[http://dx.doi.org/10.1111/j.0906-6705.2005.00226.x] [PMID: 15679580]
[37]
Koj, A. Initiation of acute phase response and synthesis of cytokines. Biochim. Biophys. Acta Mol. Basis Dis., 1996, 1317(2), 84-94.
[http://dx.doi.org/10.1016/S0925-4439(96)00048-8]
[38]
Dinarello, C.A.; van der Meer, J.W. Treating inflammation by blocking interleukin-1 in humans. In: Seminars in immunology; Elsevier, 2013.
[http://dx.doi.org/10.1016/j.smim.2013.10.008]
[39]
Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol., 2010, 6(4), 232-241.
[http://dx.doi.org/10.1038/nrrheum.2010.4] [PMID: 20177398]
[40]
Lin, A.; Wang, G.; Zhao, H.; Zhang, Y.; Han, Q.; Zhang, C.; Tian, Z.; Zhang, J. TLR4 signaling promotes a COX-2/PGE 2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells. OncoImmunology, 2016, 5(2), e1074376.
[http://dx.doi.org/10.1080/2162402X.2015.1074376] [PMID: 27057441]
[41]
Tadokoro, A.; Kanaji, N.; Liu, D.; Yokomise, H.; Haba, R.; Ishii, T.; Takagi, T.; Watanabe, N.; Kita, N.; Kadowaki, N.; Bandoh, S. Vimentin regulates invasiveness and is a poor prognostic marker in non-small cell lung cancer. Anticancer Res., 2016, 36(4), 1545-1551.
[PMID: 27069130]
[42]
Fang, T.; Zhang, L.; Yin, X.; Wang, Y.; Zhang, X.; Bian, X.; Jiang, X.; Yang, S.; Xue, Y. The prognostic marker elastin correlates with EPITHELIAL–MESENCHYMAL transition and VIMENTIN POSITIVE fibroblasts in gastric cancer. J. Pathol. Clin. Res., 2023, 9(1), 56-72.
[http://dx.doi.org/10.1002/cjp2.298] [PMID: 36226731]
[43]
Thomas, P.A.; Kirschmann, D.A.; Cerhan, J.R.; Folberg, R.; Seftor, E.A.; Sellers, T.A.; Hendrix, M.J. Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin. Cancer Res., 1999, 5(10), 2698-2703.
[PMID: 10537332]
[44]
Castro, D.; Moreira, M.; Gouveia, A.M.; Pozza, D.H.; De Mello, R.A. MicroRNAs in lung cancer. Oncotarget, 2017, 8(46), 81679-81685.
[http://dx.doi.org/10.18632/oncotarget.20955] [PMID: 29113423]
[45]
Stolina, M.; Sharma, S.; Lin, Y.; Dohadwala, M.; Gardner, B.; Luo, J.; Zhu, L.; Kronenberg, M.; Miller, P.W.; Portanova, J.; Lee, J.C.; Dubinett, S.M. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J. Immunol., 2000, 164(1), 361-370.
[http://dx.doi.org/10.4049/jimmunol.164.1.361] [PMID: 10605031]
[46]
Millares, L.; Barreiro, E.; Cortes, R.; Martinez-Romero, A.; Balcells, C.; Cascante, M.; Enguita, A.B.; Alvarez, C.; Rami-Porta, R.; Sánchez de Cos, J.; Seijo, L.; Monsó, E. Tumor-associated metabolic and inflammatory responses in early stage non-small cell lung cancer: Local patterns and prognostic significance. Lung Cancer, 2018, 122, 124-130.
[http://dx.doi.org/10.1016/j.lungcan.2018.06.015] [PMID: 30032820]
[47]
Dohadwala, M.; Yang, S.C.; Luo, J.; Sharma, S.; Batra, R.K.; Huang, M.; Lin, Y.; Goodglick, L.; Krysan, K.; Fishbein, M.C.; Hong, L.; Lai, C.; Cameron, R.B.; Gemmill, R.M.; Drabkin, H.A.; Dubinett, S.M. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res., 2006, 66(10), 5338-5345.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3635] [PMID: 16707460]
[48]
Shen, F. Yuedong, Wang; Yuan, L.; Lei, Y.; Xishi, L.; Sun-Wei, G. Immunoreactivity of progesterone receptor isoform B and nuclear factor kappa-B as biomarkers for recurrence of ovarian endometriomas. Am. J. Obstet. Gynecol., 2008, 199(5), 486.e1-486.e10.
[http://dx.doi.org/10.1016/j.ajog.2008.04.040]
[49]
Li, Y.; Zhang, J.; Ma, H. Chronic inflammation and gallbladder cancer. Cancer Lett., 2014, 345(2), 242-248.
[http://dx.doi.org/10.1016/j.canlet.2013.08.034] [PMID: 23981574]
[50]
Sharma, J.; Gray, K.P.; Harshman, L.C.; Evan, C.; Nakabayashi, M.; Fichorova, R.; Rider, J.; Mucci, L.; Kantoff, P.W.; Sweeney, C.J. Elevated IL-8, TNFα and MCP1 in men with metastatic prostate cancer starting androgen-deprivation therapy (ADT) are associated with shorter time to castration resistance and overall survival. Prostate, 2014, 74(8), 820-828.
[http://dx.doi.org/10.1002/pros.22788] [PMID: 24668612]
[51]
Landvik, N.E.; Hart, K.; Skaug, V.; Stangeland, L.B.; Haugen, A.; Zienolddiny, S. A specific interleukin-1B haplotype correlates with high levels of IL1B mRNA in the lung and increased risk of non-small cell lung cancer. Carcinogenesis, 2009, 30(7), 1186-1192.
[http://dx.doi.org/10.1093/carcin/bgp122] [PMID: 19461122]
[52]
Apte, R.N.; Dotan, S.; Elkabets, M.; White, M.R.; Reich, E.; Carmi, Y.; Song, X.; Dvozkin, T.; Krelin, Y.; Voronov, E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev., 2006, 25(3), 387-408.
[http://dx.doi.org/10.1007/s10555-006-9004-4] [PMID: 17043764]
[53]
Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood, 1996, 87(6), 2095-20147.
[http://dx.doi.org/10.1182/blood.V87.6.2095.bloodjournal8762095]
[54]
Isomäki, P.; Punnonen, J. Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann. Med., 1997, 29(6), 499-507.
[http://dx.doi.org/10.3109/07853899709007474] [PMID: 9562516]
[55]
Tan, Z.; Xue, H.; Sun, Y.; Zhang, C.; Song, Y.; Qi, Y. The role of tumor inflammatory microenvironment in lung cancer. Front. Pharmacol., 2021, 12, 688625.
[http://dx.doi.org/10.3389/fphar.2021.688625] [PMID: 34079469]
[56]
Kidd, M.E.; Shumaker, D.K.; Ridge, K.M. The role of vimentin intermediate filaments in the progression of lung cancer. Am. J. Respir. Cell Mol. Biol., 2014, 50(1), 1-6.
[http://dx.doi.org/10.1165/rcmb.2013-0314TR] [PMID: 23980547]
[57]
Bhat, I.A.; Naykoo, N.A.; Qasim, I.; Ganie, F.A.; Yousuf, Q.; Bhat, B.A.; Rasool, R.; Aziz, S.A.; Shah, Z.A. Association of interleukin 1 beta (IL-1β) polymorphism with mRNA expression and risk of non small cell lung cancer. Meta Gene, 2014, 2, 123-133.
[http://dx.doi.org/10.1016/j.mgene.2013.12.002] [PMID: 25606396]
[58]
Bhat, I.A.; Mir, I.R.; Malik, G.H.; Mir, J.I.; Dar, T.A.; Nisar, S.; Naik, N.A.; Sabah, Z.U.; Shah, Z.A. Comparative study of TNF-α and vitamin D reveals a significant role of TNF-α in NSCLC in an ethnically conserved vitamin D deficient population. Cytokine, 2022, 160, 156039.
[http://dx.doi.org/10.1016/j.cyto.2022.156039] [PMID: 36201891]
[59]
Dandia, A.; Arya, K.; Sati, M.; Gautam, S. Microwave assisted green chemical synthesis of novel spiro[indole-pyrido thiazines]: a system reluctant to be formed under thermal conditions. Tetrahedron, 2004, 60(24), 5253-5258.
[http://dx.doi.org/10.1016/j.tet.2004.04.018]
[60]
Ramya Sucharitha, E.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo[1,3]thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett., 2021, 47, 128201.
[http://dx.doi.org/10.1016/j.bmcl.2021.128201] [PMID: 34139328]
[61]
Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H.L.; Ullah, M.F.; Parvez, M. Microwave assisted synthesis and structure–activity relationship of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. Eur. J. Med. Chem., 2011, 46(6), 2368-2377.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.020] [PMID: 21470723]
[62]
Pratap, U.R.; Jawale, D.V.; Londhe, B.S.; Mane, R.A. Baker’s yeast catalyzed synthesis of 1,4-benzothiazines, performed under ultrasonication. J. Mol. Catal., B Enzym., 2011, 68(1), 94-97.
[http://dx.doi.org/10.1016/j.molcatb.2010.09.018]
[63]
Chu, C.M.; Gao, S.; Sastry, M.N.V.; Kuo, C-W.; Lu, C.; Liu, J-T.; Yao, C-F. Ceric ammonium nitrate (CAN) as a green and highly efficient promoter for the 1,4-addition of thiols and benzeneselenol to αβ-unsaturated ketones. Tetrahedron, 2007, 63(8), 1863-1871.
[http://dx.doi.org/10.1016/j.tet.2006.12.018]
[64]
Comin, M.J.; Elhalem, E.; Rodriguez, J.B. Cerium ammonium nitrate: a new catalyst for regioselective protection of glycols. Tetrahedron, 2004, 60(51), 11851-11860.
[http://dx.doi.org/10.1016/j.tet.2004.09.097]
[65]
Shelke, K.F.; Sapkal, S.B.; Shingare, M.S. Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chin. Chem. Lett., 2009, 20(3), 283-287.
[http://dx.doi.org/10.1016/j.cclet.2008.11.033]
[66]
Verma, M.; Thakur, A.; Kapil, S.; Sharma, R.; Sharma, A.; Bharti, R. Antibacterial and antioxidant assay of novel heteroaryl-substituted methane derivatives synthesized via ceric ammonium nitrate (CAN) catalyzed one-pot green approach. Mol. Divers., 2023, 27(2), 889-900.
[http://dx.doi.org/10.1007/s11030-022-10461-1] [PMID: 35781657]
[67]
Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene glycol: A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J. Chem. Sci., 2010, 122(4), 607-612.
[http://dx.doi.org/10.1007/s12039-010-0095-7]
[68]
Grotjahn, D.B.; Brown, D.B.; Martin, J.K.; Marelius, D.C.; Abadjian, M.C.; Tran, H.N.; Kalyuzhny, G.; Vecchio, K.S.; Specht, Z.G.; Cortes-Llamas, S.A.; Miranda-Soto, V.; van Niekerk, C.; Moore, C.E.; Rheingold, A.L. Evolution of iridium-based molecular catalysts during water oxidation with ceric ammonium nitrate. J. Am. Chem. Soc., 2011, 133(47), 19024-19027.
[http://dx.doi.org/10.1021/ja203095k] [PMID: 22059883]
[69]
Tongkhan, S.; Radchatawedchakoon, W.; Kruanetr, S.; Sakee, U. Silica-supported ceric ammonium nitrate catalyzed chemoselective formylation of indoles. Tetrahedron Lett., 2014, 55(29), 3909-3912.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.124]
[70]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[71]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[72]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[73]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[74]
Majumdar, K.C.; Ghosh, D. An efficient ligand-free ferric chloride catalyzed synthesis of annulated 1,4-thiazine-3-one derivatives. Tetrahedron Lett., 2014, 55(19), 3108-3110.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.005]
[75]
Singh, U.P.; Bhat, H.R.; Singh, R.K. Ceric ammonium nitrate (CAN) catalysed expeditious one-pot synthesis of 1,3-thiazine as IspE kinase inhibitor of Gram-negative bacteria using polyethylene glycol (PEG-400) as an efficient recyclable reaction medium. C. R. Chim., 2013, 16(5), 462-468.
[http://dx.doi.org/10.1016/j.crci.2012.11.019]
[76]
Xia, L.; Lee, Y.R. A novel and efficient synthesis of diverse dihydronaphtho[1,2-b]furans using the ceric ammonium nitrate-catalyzed formal [3 + 2] cycloaddition of 1,4-naphthoquinones to olefins and its application to furomollugin. Org. Biomol. Chem., 2013, 11(36), 6097-6107.
[http://dx.doi.org/10.1039/c3ob40977e] [PMID: 23963248]
[77]
Hwu, J.R.; Jain, M.L.; Tsay, S-C.; Hakimelahi, G.H. New detritylation method for nucleosides and nucleotides by ceric ammonium nitrate. Chem. Commun., 1996, (4), 545-546.
[http://dx.doi.org/10.1039/cc9960000545]
[78]
Iqbal, Z.; Joshi, A.; De, S.R. Ceric ammonium nitrate promoted highly chemo- and regioselective ortho-nitration of anilines under mild conditions. Eur. J. Org. Chem., 2022, 2022(31), e202200746.
[http://dx.doi.org/10.1002/ejoc.202200746]
[79]
Roy, R.; Béha, S.; Giguère, D.; Patnam, R. Formation of isoxazoles using cerium ammonium nitrate (CAN): A one-pot synthesis of glycomimetics. Synlett, 2006, 2006(11), 1739-1743.
[http://dx.doi.org/10.1055/s-2006-947330]
[80]
Karimi Zarchi, M.A.; Banihashemi, R. Thiocyanation of aromatic and heteroaromatic compounds using polymer-supported thiocyanate ion as the versatile reagent and ceric ammonium nitrate as the versatile single-electron oxidant. J. Sulfur Chem., 2016, 37(3), 282-295.
[http://dx.doi.org/10.1080/17415993.2015.1137919]
[81]
Kuttan, A.; Nowshudin, S.; Rao, M.N.A. Ceric ammonium nitrate (CAN) mediated esterification of N-Boc amino acids allows either retention or removal of the N-Boc group. Tetrahedron Lett., 2004, 45(12), 2663-2665.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.136]
[82]
Penta, S.; Vedula, R.R. Synthesis of 2,4,6-tri-substituted pyridine derivatives in aqueous medium via hantzsch multi-component reaction catalyzed by cerium (IV) ammonium nitrate. J. Heterocycl. Chem., 2013, 50(4), 859-862.
[http://dx.doi.org/10.1002/jhet.1589]
[83]
Raslan, R.R.; Hessein, S.A.; Fouad, S.A.; Shmiess, N.A.M. Synthesis and antitumor evaluation of some new thiazolopyridine, nicotinonitrile, pyrazolopyridine, and polyhydroquinoline derivatives using ceric ammonium nitrate as a green catalyst. J. Heterocycl. Chem., 2022, 59(5), 832-846.
[http://dx.doi.org/10.1002/jhet.4423]
[84]
Nagendra Prasad, T.; Eeda, K.R.; Gudise, V.B.; Basha, S.F.; Anwar, S. Design, synthesis and biological evaluation of substituted 2-amino-1,3-thiazine derivatives as antituberculosis and anti-cancer agents. Synth. Commun., 2019, 49(10), 1277-1285.
[http://dx.doi.org/10.1080/00397911.2019.1597125]
[85]
Caetano, M.S.; Zhang, H.; Cumpian, A.M.; Gong, L.; Unver, N.; Ostrin, E.J.; Daliri, S.; Chang, S.H.; Ochoa, C.E.; Hanash, S.; Behrens, C.; Wistuba, I.I.; Sternberg, C.; Kadara, H.; Ferreira, C.G.; Watowich, S.S.; Moghaddam, S.J. IL6 blockade reprograms the lung tumor microenvironment to limit the development and progression of k-ras–mutant lung cancer. Cancer Res., 2016, 76(11), 3189-3199.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2840] [PMID: 27197187]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy