Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Therapeutic Potential of Targeting Transforming Growth Factor-beta (TGF-β) and Programmed Death-ligand 1 (PD-L1) in Pancreatic Cancer

Author(s): Ghazaleh Pourali, Nima Zafari, Mahla Velayati, Shima Mehrabadi, Mina Maftooh, Seyed Mahdi Hassanian, Majid Ghayour Mobarhan, Gordon A. Ferns, Amir Avan* and Majid Khazaei*

Volume 24, Issue 17, 2023

Published on: 05 December, 2023

Page: [1335 - 1345] Pages: 11

DOI: 10.2174/0113894501264450231129042256

Price: $65

Abstract

Pancreatic cancer (PC) is one the most lethal malignancies worldwide affecting around half a million individuals each year. The treatment of PC is relatively difficult due to the difficulty in making an early diagnosis. Transforming growth factor-beta (TGF-β) is a multifunctional factor acting as both a tumor promoter in early cancer stages and a tumor suppressor in advanced disease. Programmed death-ligand 1 (PD-L1) is a ligand of programmed death-1 (PD-1), an immune checkpoint receptor, allowing tumor cells to avoid elimination by immune cells. Recently, targeting the TGF-β signaling and PD-L1 pathways has emerged as a strategy for cancer therapy. In this review, we have summarized the current knowledge regarding these pathways and their contribution to tumor development with a focus on PC. Moreover, we have reviewed the role of TGF-β and PD-L1 blockade in the treatment of various cancer types, including PC, and discussed the clinical trials evaluating TGF-β and PD-L1 antagonists in PC patients.

[1]
Clark DA, Coker R. Molecules in focus Transforming growth factor-beta (TGF-β). Int J Biochem Cell Biol 1998; 30(3): 293-8.
[http://dx.doi.org/10.1016/S1357-2725(97)00128-3] [PMID: 9611771]
[2]
Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 1999; 10(4): 303-60.
[PMID: 10654929]
[3]
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-β superfamily coreceptors in cancer. Biochim Biophys Acta Mol Basis Dis 2009; 1792(10): 954-73.
[http://dx.doi.org/10.1016/j.bbadis.2009.07.003] [PMID: 19607914]
[4]
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12(570): eaav5183.
[http://dx.doi.org/10.1126/scisignal.aav5183] [PMID: 30808818]
[5]
Nakao A, Afrakhte M, Morn A, et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 1997; 389(6651): 631-5.
[http://dx.doi.org/10.1038/39369] [PMID: 9335507]
[6]
Savage-Dunn C. TGF-beta signaling. WormBook 2005; pp: 1-12.
[PMID: 18050404]
[7]
Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390(6659): 465-71.
[http://dx.doi.org/10.1038/37284] [PMID: 9393997]
[8]
Joshi A, Cao D. TGF-ß signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci 2010; 15(1): 180-94.
[http://dx.doi.org/10.2741/3614] [PMID: 20036814]
[9]
Kaminska B, Wesolowska A, Danilkiewicz M. TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 2005; 52(2): 329-37.
[http://dx.doi.org/10.18388/abp.2005_3446] [PMID: 15990918]
[10]
Stewart A G, Thomas B, Koff J. TGF-beta: Master regulator of inflammation and fibrosis 2018.
[11]
Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52: 112-20.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.002] [PMID: 30184463]
[12]
Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 2017; 9(4): a022145.
[http://dx.doi.org/10.1101/cshperspect.a022145] [PMID: 27920038]
[13]
Hao Y, Baker D, ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019; 20(11): 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[14]
Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Transplant 2012; 12(10): 2575-87.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04224.x] [PMID: 22900886]
[15]
Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002; 169(10): 5538-45.
[http://dx.doi.org/10.4049/jimmunol.169.10.5538] [PMID: 12421930]
[16]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[17]
Okazaki T, Honjo T. PD-1 and PD-1 ligands: From discovery to clinical application. Int Immunol 2007; 19(7): 813-24.
[http://dx.doi.org/10.1093/intimm/dxm057] [PMID: 17606980]
[18]
Okazaki T, Honjo T. The PD-1–PD-L pathway in immunological tolerance. Trends Immunol 2006; 27(4): 195-201.
[http://dx.doi.org/10.1016/j.it.2006.02.001] [PMID: 16500147]
[19]
Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol 2019; 234(10): 16824-37.
[http://dx.doi.org/10.1002/jcp.28358] [PMID: 30784085]
[20]
Ribas A. Tumor immunotherapy directed at PD-1. New England Journal of Medicine 2012; 26: 2517-9.
[http://dx.doi.org/10.1056/NEJMe1205943]
[21]
Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006; 203(4): 883-95.
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[22]
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99(19): 12293-7.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[23]
Noguchi T, Ward JP, Gubin MM, et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol Res 2017; 5(2): 106-17.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0391] [PMID: 28073774]
[24]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[25]
Hilmi M, Bartholin L, Neuzillet C. Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 2018; 24(20): 2137-51.
[http://dx.doi.org/10.3748/wjg.v24.i20.2137] [PMID: 29853732]
[26]
Oberstein PE, Olive KP. Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol 2013; 6(4): 321-37.
[http://dx.doi.org/10.1177/1756283X13478680] [PMID: 23814611]
[27]
Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47-52.
[http://dx.doi.org/10.1038/nature16965] [PMID: 26909576]
[28]
Truty MJ, Urrutia R. Basics of TGF-β and pancreatic cancer. Pancreatology 2007; 7(5-6): 423-35.
[http://dx.doi.org/10.1159/000108959] [PMID: 17898532]
[29]
Culhaci N, Sagol O, Karademir S, et al. Expression of transforming growth factor-beta-1 and p27Kip1 in pancreatic adenocarcinomas: relation with cell-cycle-associated proteins and clinicopathologic characteristics. BMC Cancer 2005; 5(1): 98.
[http://dx.doi.org/10.1186/1471-2407-5-98] [PMID: 16086840]
[30]
Wagner M, Kleeff J, Friess H, Büchler MW, Korc M. Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased survival in human pancreatic cancer. Pancreas 1999; 19(4): 370-6.
[http://dx.doi.org/10.1097/00006676-199911000-00008] [PMID: 10547197]
[31]
Korc M. Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer 2003; 2(1): 8.
[http://dx.doi.org/10.1186/1476-4598-2-8] [PMID: 12556241]
[32]
Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 2006; 1765(2): 178-88.
[PMID: 16406676]
[33]
Nolan-Stevaux O, Lau J, Truitt ML, et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 2009; 23(1): 24-36.
[http://dx.doi.org/10.1101/gad.1753809] [PMID: 19136624]
[34]
David CJ, Huang YH, Chen M, et al. TGF-β tumor suppression through a lethal EMT. Cell 2016; 164(5): 1015-30.
[http://dx.doi.org/10.1016/j.cell.2016.01.009] [PMID: 26898331]
[35]
Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res 1996; 56(11): 2527-30.
[PMID: 8653691]
[36]
Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S. Frequency of Smad gene mutations in human cancers. Cancer Res 1997; 57(13): 2578-80.
[PMID: 9205057]
[37]
Bardeesy N, Cheng K, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006; 20(22): 3130-46.
[http://dx.doi.org/10.1101/gad.1478706] [PMID: 17114584]
[38]
Xia X, Wu W, Huang C, et al. SMAD4 and its role in pancreatic cancer. Tumour Biol 2015; 36(1): 111-9.
[http://dx.doi.org/10.1007/s13277-014-2883-z] [PMID: 25464861]
[39]
Huang W, Navarro-Serer B, Jeong YJ, et al. Pattern of invasion in human pancreatic cancer organoids is associated with loss of SMAD4 and clinical outcome. Cancer Res 2020; 80(13): 2804-17.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1523] [PMID: 32376602]
[40]
Kleeff J, Ishiwata T, Maruyama H, et al. The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 1999; 18(39): 5363-72.
[http://dx.doi.org/10.1038/sj.onc.1202909] [PMID: 10498890]
[41]
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012; 7424: pp. 399-405.
[42]
Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018; 48(3): 434-52.
[http://dx.doi.org/10.1016/j.immuni.2018.03.014] [PMID: 29562194]
[43]
Sharma P, Allison JP. The future of immune checkpoint therapy. 2015.
[http://dx.doi.org/10.1126/science.aaa8172]
[44]
Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012; 4(127): 127ra37.
[http://dx.doi.org/10.1126/scitranslmed.3003689]
[45]
Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med 2013; 5(200): 200ra116.
[46]
Pillarisetty VG. The pancreatic cancer microenvironment: an immunologic battleground. OncoImmunology 2014; 3(8): e950171.
[http://dx.doi.org/10.4161/21624011.2014.950171] [PMID: 25610740]
[47]
Seo YD, Pillarisetty VG. T-cell programming in pancreatic adenocarcinoma: A review. Cancer Gene Ther 2017; 24(3): 106-13.
[http://dx.doi.org/10.1038/cgt.2016.66] [PMID: 27910859]
[48]
Zheng L, Xue J, Jaffee EM, Habtezion A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 2013; 144(6): 1230-40.
[http://dx.doi.org/10.1053/j.gastro.2012.12.042] [PMID: 23622132]
[49]
Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67(19): 9518-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0175] [PMID: 17909062]
[50]
Lutz ER, Wu AA, Bigelow E, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2014; 2(7): 616-31.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0027] [PMID: 24942756]
[51]
Scollen S, Luccarini C, Baynes C, et al. TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2011; 20(6): 1112-9.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0062] [PMID: 21527583]
[52]
Bhayal AC, Prabhakar B, Rao KPR, et al. Role of transforming growth factor-β1 −509 C/T promoter polymorphism in gastric cancer in south Indian population. Tumour Biol 2011; 32(5): 1049-53.
[http://dx.doi.org/10.1007/s13277-011-0208-z] [PMID: 21761116]
[53]
Yin J, Lu K, Lin J, et al. Genetic variants in TGF-β pathway are associated with ovarian cancer risk. PLoS One 2011; 6(9): e25559.
[http://dx.doi.org/10.1371/journal.pone.0025559] [PMID: 21984931]
[54]
Fang F, Yu L, Zhong Y, Yao L. TGFB1 509 C/T polymorphism and colorectal cancer risk: A meta-analysis. Med Oncol 2010; 27(4): 1324-8.
[http://dx.doi.org/10.1007/s12032-009-9383-9] [PMID: 20012233]
[55]
Lin M, Stewart DJ, Spitz MR, et al. Genetic variations in the transforming growth factor-beta pathway as predictors of survival in advanced non-small cell lung cancer. Carcinogenesis 2011; 32(7): 1050-6.
[http://dx.doi.org/10.1093/carcin/bgr067] [PMID: 21515830]
[56]
Tang J, Gifford C, Samarakoon R, Higgins P. Deregulation of negative controls on TGF-β1 signaling in tumor progression. Cancers (Basel) 2018; 10(6): 159.
[http://dx.doi.org/10.3390/cancers10060159] [PMID: 29799477]
[57]
Boulay JL, Mild G, Lowy A, et al. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J Cancer 2003; 104(4): 446-9.
[http://dx.doi.org/10.1002/ijc.10908] [PMID: 12584741]
[58]
Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev 1995; 4(5): 549-54.
[PMID: 7549813]
[59]
Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. TGF-beta signalling in colon carcinogenesis. Cancer Lett 2012; 314(1): 1-7.
[http://dx.doi.org/10.1016/j.canlet.2011.09.041] [PMID: 22018778]
[60]
Abou-Shady M, Baer HU, Friess H, et al. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma. Am J Surg 1999; 177(3): 209-15.
[http://dx.doi.org/10.1016/S0002-9610(99)00012-4] [PMID: 10219856]
[61]
Coşkun HŞ, İlhan O, Özcan M, et al. Serum transforming growth factor beta 1 levels in multiple myeloma patients. Turk J Haematol 2006; 23(1): 47-52.
[PMID: 27265228]
[62]
Bierie B, Moses HL. TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6(7): 506-20.
[http://dx.doi.org/10.1038/nrc1926] [PMID: 16794634]
[63]
Shen W, Tao G, Zhang Y, Cai B, Sun J, Tian Z. TGF-β in pancreatic cancer initiation and progression: Two sides of the same coin. Cell Biosci 2017; 7(1): 39.
[http://dx.doi.org/10.1186/s13578-017-0168-0] [PMID: 28794854]
[64]
Iacobuzio-Donahue CA, Fu B, Yachida S, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 2009; 27(11): 1806-13.
[http://dx.doi.org/10.1200/JCO.2008.17.7188] [PMID: 19273710]
[65]
Javle M, Li Y, Tan D, et al. Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS One 2014; 9(1): e85942.
[http://dx.doi.org/10.1371/journal.pone.0085942] [PMID: 24465802]
[66]
Crane CH, Varadhachary GR, Yordy JS, et al. Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol 2011; 29(22): 3037-43.
[http://dx.doi.org/10.1200/JCO.2010.33.8038] [PMID: 21709185]
[67]
Friess H, Yamanaka Y, Büchler M, et al. Enhanced expression of transforming growth factor β isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105(6): 1846-56.
[http://dx.doi.org/10.1016/0016-5085(93)91084-U] [PMID: 8253361]
[68]
Sabatier R, Finetti P, Mamessier E, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015; 6(7): 5449-64.
[http://dx.doi.org/10.18632/oncotarget.3216] [PMID: 25669979]
[69]
Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 2005; 11(8): 2947-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1469] [PMID: 15837746]
[70]
Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8 + T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 2007; 104(9): 3360-5.
[http://dx.doi.org/10.1073/pnas.0611533104] [PMID: 17360651]
[71]
Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 2013; 49(9): 2233-42.
[http://dx.doi.org/10.1016/j.ejca.2013.02.015] [PMID: 23478000]
[72]
Bertucci F, Finetti P, Mamessier E, et al. PDL1 expression is an independent prognostic factor in localized GIST. OncoImmunology 2015; 4(5): e1002729.
[http://dx.doi.org/10.1080/2162402X.2014.1002729] [PMID: 26155391]
[73]
Badoual C, Hans S, Merillon N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73(1): 128-38.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2606] [PMID: 23135914]
[74]
Schalper KA, Velcheti V, Carvajal D, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 2014; 20(10): 2773-82.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2702] [PMID: 24647569]
[75]
Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 2014; 94(1): 107-16.
[http://dx.doi.org/10.1038/labinvest.2013.130] [PMID: 24217091]
[76]
Birnbaum DJ, Finetti P, Lopresti A, et al. Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 2016; 7(44): 71198-210.
[http://dx.doi.org/10.18632/oncotarget.11685] [PMID: 27589570]
[77]
Winograd R, Byrne KT, Evans RA, et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 2015; 3(4): 399-411.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0215] [PMID: 25678581]
[78]
Loos M, Giese NA, Kleeff J, et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett 2008; 268(1): 98-109.
[http://dx.doi.org/10.1016/j.canlet.2008.03.056] [PMID: 18486325]
[79]
Wang L, Ma Q, Chen X, Guo K, Li J, Zhang M. Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma. World J Surg 2010; 34(5): 1059-65.
[http://dx.doi.org/10.1007/s00268-010-0448-x] [PMID: 20145927]
[80]
Danilova L, Ho WJ, Zhu Q, et al. Programmed Cell Death Ligand-1 (PD-L1) and CD8 expression profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol Res 2019; 7(6): 886-95.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0822] [PMID: 31043417]
[81]
Jin CH, Krishnaiah M, Sreenu D, et al. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J Med Chem 2014; 57(10): 4213-38.
[http://dx.doi.org/10.1021/jm500115w] [PMID: 24786585]
[82]
Son JY, Park SY, Kim SJ, et al. EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol Cancer Ther 2014; 13(7): 1704-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0903] [PMID: 24817629]
[83]
Jung SY, Hwang S, Clarke JM, et al. Pharmacokinetic characteristics of vactosertib, a new activin receptor-like kinase 5 inhibitor, in patients with advanced solid tumors in a first-in-human phase 1 study. Invest New Drugs 2020; 38(3): 812-20.
[http://dx.doi.org/10.1007/s10637-019-00835-y] [PMID: 31300967]
[84]
Jung SY, Yug JS, Clarke JM, et al. Population pharmacokinetics of vactosertib, a new TGF-β receptor type Ι inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85(1): 173-83.
[http://dx.doi.org/10.1007/s00280-019-03979-z] [PMID: 31673825]
[85]
Lee K-W, Park YS, Ahn JB, et al. Safety and anti-tumor activity of the transforming growth factor beta receptor I kinase inhibitor, vactosertib, in combination with pembrolizumab in patients with metastatic colorectal or gastric cancer J Immunother Cancer 2019; 7
[86]
Tsukada T, Fushida S, Harada S, et al. Low-dose paclitaxel modulates tumour fibrosis in gastric cancer. Int J Oncol 2013; 42(4): 1167-74.
[http://dx.doi.org/10.3892/ijo.2013.1801] [PMID: 23443842]
[87]
Hong E, Park S, Ooshima A, et al. Inhibition of TGF-β signalling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumour mouse models. Sci Rep 2020; 10(1): 2935.
[http://dx.doi.org/10.1038/s41598-020-59893-5] [PMID: 32076068]
[88]
Fujiwara Y, Nokihara H, Yamada Y, et al. Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 2015; 76(6): 1143-52.
[http://dx.doi.org/10.1007/s00280-015-2895-4] [PMID: 26526984]
[89]
Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther 2015; 9: 4479-99.
[PMID: 26309397]
[90]
Melisi D, Garcia-Carbonero R, Macarulla T, et al. A phase II, double-blind study of galunisertib+ gemcitabine (GG) vs gemcitabine+ placebo (GP) in patients (pts) with unresectable pancreatic cancer (PC). J Clin Oncol 34(1 _suppl): 4019-4019.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.4019]
[91]
Pei H, et al. LY3200882, a novel, highly selective TGFβRI small molecule inhibitor. AACR 2017.
[http://dx.doi.org/10.1158/1538-7445.AM2017-955]
[92]
Simon GR, Ilaria RL Jr, Sovak MA, et al. A phase I study of tasisulam sodium (LY573636 sodium), a novel anticancer compound in patients with refractory solid tumors. Cancer Chemother Pharmacol 2011; 68(5): 1233-41.
[http://dx.doi.org/10.1007/s00280-011-1593-0] [PMID: 21431416]
[93]
Gordon MS, Ilaria R Jr, de Alwis DP, et al. A phase I study of tasisulam sodium (LY573636 sodium), a novel anticancer compound, administered as a 24-h continuous infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 71(1): 21-7.
[http://dx.doi.org/10.1007/s00280-012-1917-8] [PMID: 23228983]
[94]
Melisi D, Ishiyama S, Sclabas GM, et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 2008; 7(4): 829-40.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0337] [PMID: 18413796]
[95]
Connolly EC, Saunier EF, Quigley D, et al. Outgrowth of drug-resistant carcinomas expressing markers of tumor aggression after long-term TβRI/II kinase inhibition with LY2109761. Cancer Res 2011; 71(6): 2339-49.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2941] [PMID: 21282335]
[96]
DaCosta Byfield S, Roberts AB. Lateral signaling enhances TGF-β response complexity. Trends Cell Biol 2004; 14(3): 107-11.
[http://dx.doi.org/10.1016/j.tcb.2004.01.001] [PMID: 15055198]
[97]
Sawyer T. Novel oncogenic protein kinase inhibitors for cancer therapy. Curr Med Chem Anticancer Agents 2004; 4(5): 449-55.
[http://dx.doi.org/10.2174/1568011043352830] [PMID: 15379702]
[98]
Martin CJ, Datta A, Littlefield C, et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med 2020; 12(536): eaay8456.
[http://dx.doi.org/10.1126/scitranslmed.aay8456] [PMID: 32213632]
[99]
Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming growth factor β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 2004; 64(15): 5200-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0018] [PMID: 15289325]
[100]
Schlingensiepen K, Schlingensiepen R, Steinbrecher A, et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006; 17(1-2): 129-39.
[http://dx.doi.org/10.1016/j.cytogfr.2005.09.002] [PMID: 16377233]
[101]
Jaschinski F, Rothhammer T, Jachimczak P, Seitz C, Schneider A, Schlingensiepen KH. The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr Pharm Biotechnol 2011; 12(12): 2203-13.
[http://dx.doi.org/10.2174/138920111798808266] [PMID: 21619536]
[102]
Oettle H, et al. Final results of a phase I/II study in patients with pancreatic cancer, malignant melanoma, and colorectal carcinoma with trabedersen. American Society of Clinical Oncology 2012.
[http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4034]
[103]
Yoo C, Oh DY, Choi HJ, et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J Immunother Cancer 2020; 8(1): e000564.
[http://dx.doi.org/10.1136/jitc-2020-000564] [PMID: 32461347]
[104]
Paz-Ares L, Kim TM, Vicente D, et al. Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Second-Line Treatment of Patients With NSCLC: Results From an Expansion Cohort of a Phase 1 Trial. J Thorac Oncol 2020; 15(7): 1210-22.
[http://dx.doi.org/10.1016/j.jtho.2020.03.003] [PMID: 32173464]
[105]
Strauss J, Gatti-Mays ME, Cho BC, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J Immunother Cancer 2020; 8(2): e001395.
[http://dx.doi.org/10.1136/jitc-2020-001395] [PMID: 33323462]
[106]
Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369(2): 122-33.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[107]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[108]
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23-34.
[http://dx.doi.org/10.1056/NEJMoa1504030] [PMID: 26027431]
[109]
Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369(2): 134-44.
[http://dx.doi.org/10.1056/NEJMoa1305133] [PMID: 23724846]
[110]
Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16(4): 375-84.
[http://dx.doi.org/10.1016/S1470-2045(15)70076-8] [PMID: 25795410]
[111]
Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018-28.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[112]
Borghaei H, Brahmer J. Nivolumab in nonsquamous non-small-cell lung cancer. N Engl J Med 2016; 374(5): 493-4.
[PMID: 26840144]
[113]
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 2016; 375(19): 1823-33.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[114]
Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373(19): 1803-13.
[http://dx.doi.org/10.1056/NEJMoa1510665] [PMID: 26406148]
[115]
Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016; 387(10031): 1909-20.
[http://dx.doi.org/10.1016/S0140-6736(16)00561-4] [PMID: 26952546]
[116]
Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 2015; 372(4): 311-9.
[http://dx.doi.org/10.1056/NEJMoa1411087] [PMID: 25482239]
[117]
Weiss SA, Djureinovic D, Jessel S, et al. A Phase I Study of APX005M and Cabiralizumab with or without Nivolumab in Patients with Melanoma, Kidney Cancer, or Non–Small Cell Lung Cancer Resistant to Anti-PD-1/PD-L1. Clin Cancer Res 2021; 27(17): 4757-67.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0903] [PMID: 34140403]
[118]
Olson DJ, Eroglu Z, Brockstein B, et al. Pembrolizumab plus ipilimumab following anti-PD-1/L1 failure in melanoma. J Clin Oncol 2021; 39(24): 2647-55.
[http://dx.doi.org/10.1200/JCO.21.00079] [PMID: 33945288]
[119]
Niu J, Maurice-Dror C, Lee DH, et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer. Ann Oncol 2022; 33(2): 169-80.
[http://dx.doi.org/10.1016/j.annonc.2021.11.002] [PMID: 34800678]
[120]
Huang MY, Jiang XM, Wang BL, Sun Y, Lu JJ. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Ther 2021; 219: 107694.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107694] [PMID: 32980443]
[121]
Lopez-Beltran A, Cimadamore A, Blanca A, et al. Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers 2021; 13(1): 131.
[http://dx.doi.org/10.3390/cancers13010131] [PMID: 33401585]
[122]
Bonomo P, Desideri I, Loi M, et al. Anti PD-L1 DUrvalumab combined with cetuximab and radiotherapy in locally advanced squamous cell carcinoma of the head and neck: A phase I/II study (DUCRO). Clin Transl Radiat Oncol 2018; 9: 42-7.
[http://dx.doi.org/10.1016/j.ctro.2018.01.005] [PMID: 29594250]
[123]
Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018; 62: 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[124]
Ardizzoni A, Azevedo S, Rubio-Viqueira B, et al. Primary results from TAIL: A global single-arm safety study of atezolizumab monotherapy in a diverse population of patients with previously treated advanced non-small cell lung cancer. J Immunother Cancer 2021; 9(3): e001865.
[http://dx.doi.org/10.1136/jitc-2020-001865] [PMID: 33737339]
[125]
Petrylak DP, Powles T, Bellmunt J, et al. Atezolizumab (MPDL3280A) monotherapy for patients with metastatic urothelial cancer: long-term outcomes from a phase 1 study. JAMA Oncol 2018; 4(4): 537-44.
[http://dx.doi.org/10.1001/jamaoncol.2017.5440] [PMID: 29423515]
[126]
Horn L, Gettinger SN, Gordon MS, et al. Safety and clinical activity of atezolizumab monotherapy in metastatic non-small-cell lung cancer: final results from a phase I study. Eur J Cancer 2018; 101: 201-9.
[http://dx.doi.org/10.1016/j.ejca.2018.06.031] [PMID: 30077125]
[127]
Choueiri TK, Larkin J, Oya M, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol 2018; 19(4): 451-60.
[http://dx.doi.org/10.1016/S1470-2045(18)30107-4] [PMID: 29530667]
[128]
Baker M, Cordes L, Brownell I. Avelumab: A new standard for treating metastatic Merkel cell carcinoma. Expert Rev Anticancer Ther 2018; 18(4): 319-26.
[http://dx.doi.org/10.1080/14737140.2018.1445528] [PMID: 29482384]
[129]
Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380(12): 1103-15.
[http://dx.doi.org/10.1056/NEJMoa1816047] [PMID: 30779531]
[130]
Powles T, Park SH, Voog E, et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 2020; 383(13): 1218-30.
[http://dx.doi.org/10.1056/NEJMoa2002788] [PMID: 32945632]
[131]
Disis ML, Taylor MH, Kelly K, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: Phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol 2019; 5(3): 393-401.
[http://dx.doi.org/10.1001/jamaoncol.2018.6258] [PMID: 30676622]
[132]
Patel MR, Ellerton J, Infante JR, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): Pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol 2018; 19(1): 51-64.
[http://dx.doi.org/10.1016/S1470-2045(17)30900-2] [PMID: 29217288]
[133]
Dirix LY, Takacs I, Jerusalem G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 2018; 167(3): 671-86.
[http://dx.doi.org/10.1007/s10549-017-4537-5] [PMID: 29063313]
[134]
Kim SJ, Lim JQ, Laurensia Y, et al. Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: An open-label phase 2 study. Blood 2020; 136(24): 2754-63.
[http://dx.doi.org/10.1182/blood.2020007247] [PMID: 32766875]
[135]
Syed YY. Durvalumab: First global approval. Drugs 2017; 77(12): 1369-76.
[http://dx.doi.org/10.1007/s40265-017-0782-5] [PMID: 28643244]
[136]
Paz-Ares L, Dvorkin M, Chen Y. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 2019; 394(10212): 1929-39.
[http://dx.doi.org/10.1016/S0140-6736(19)32222-6] [PMID: 31590988]
[137]
Faivre-Finn C, Vicente D, Kurata T, et al. Four-year survival with durvalumab after chemoradiotherapy in stage III NSCLC—an update from the PACIFIC trial. J Thorac Oncol 2021; 16(5): 860-7.
[http://dx.doi.org/10.1016/j.jtho.2020.12.015] [PMID: 33476803]
[138]
Yang H, Shen K, Zhu C, Li Q, Zhao Y, Ma X. Safety and efficacy of durvalumab (MEDI4736) in various solid tumors. Drug Des Devel Ther 2018; 12: 2085-96.
[http://dx.doi.org/10.2147/DDDT.S162214] [PMID: 30013326]
[139]
Antill Y, Kok PS, Robledo K, et al. Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J Immunother Cancer 2021; 9(6): e002255.
[http://dx.doi.org/10.1136/jitc-2020-002255] [PMID: 34103352]
[140]
Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 2018; 379(24): 2342-50.
[http://dx.doi.org/10.1056/NEJMoa1809697] [PMID: 30280658]
[141]
Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N Engl J Med 2017; 377(20): 1919-29.
[http://dx.doi.org/10.1056/NEJMoa1709937] [PMID: 28885881]
[142]
Fujiwara Y, Iguchi H, Yamamoto N, et al. Tolerability and efficacy of durvalumab in Japanese patients with advanced solid tumors. Cancer Sci 2019; 110(5): 1715-23.
[http://dx.doi.org/10.1111/cas.14003] [PMID: 30891877]
[143]
Zandberg DP, Algazi AP, Jimeno A, et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur J Cancer 2019; 107: 142-52.
[http://dx.doi.org/10.1016/j.ejca.2018.11.015] [PMID: 30576970]
[144]
Li J, Deng Y, Zhang W, et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. J Hematol Oncol 2021; 14(1): 95.
[http://dx.doi.org/10.1186/s13045-021-01095-1] [PMID: 34154614]
[145]
Papadopoulos KP, Harb W, Peer CJ, et al. First-in-Human Phase I Study of Envafolimab, a novel subcutaneous single-domain Anti-PD-L1 antibody, in patients with advanced solid tumors. Oncologist 2021; 26(9): e1514-25.
[http://dx.doi.org/10.1002/onco.13817] [PMID: 33973293]
[146]
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168(4): 707-23.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[147]
Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366(26): 2455-65.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[148]
O’Reilly EM, Oh DY, Dhani N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial. JAMA Oncol 2019; 5(10): 1431-8.
[http://dx.doi.org/10.1001/jamaoncol.2019.1588] [PMID: 31318392]
[149]
Renouf DJ, Dhani NC, Kavan P, et al. The Canadian Cancer Trials Group PA 7 trial: Results from the safety run in of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D), and tremelimumab (T) as first-line therapy in metastatic pancrea. J Clin Oncol 2018; 36: 4_suppl, 349.
[150]
Principe DR, Park A, Dorman MJ, et al. TGFβ blockade augments PD-1 inhibition to promote T-cell–mediated regression of pancreatic cancer. Mol Cancer Ther 2019; 18(3): 613-20.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0850] [PMID: 30587556]
[151]
Melisi D, Oh DY, Hollebecque A, et al. Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J Immunother Cancer 2021; 9(3): e002068.
[http://dx.doi.org/10.1136/jitc-2020-002068] [PMID: 33688022]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy