Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Flavonoids as G Protein-coupled Receptors Ligands: New Potential Therapeutic Natural Drugs

Author(s): Alae Chda and Rachid Bencheikh*

Volume 24, Issue 17, 2023

Published on: 30 November, 2023

Page: [1346 - 1363] Pages: 18

DOI: 10.2174/0113894501268871231127105219

Price: $65

Abstract

G protein coupled receptors (GPCRs) are among the largest family of cell surface receptors found in the human genome. They govern a wide range of physiological responses in both health and diseases, making them one of the potential targeted surface receptors for pharmaceuticals. Flavonoids can modulate GPCRs activity by acting as allosteric ligands. They can either enhance or reduce the GPCR's effect. Emerging research shows that individual flavonoids or mixtures of flavonoids from plant extracts can have relevant pharmacological effects against a number of diseases, particularly by influencing GPCRs. In the present review, we are considering to give a comprehensive overview of flavonoids and related compounds that exhibit GPCRs activity and to further explore which beneficial structural features. Molecular docking was used to strengthen experimental evidence and describe flavonoid-GPCRs interactions at molecular level.

Graphical Abstract

[1]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[2]
Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33(9): 2221-43.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[3]
Alam F, Mohammadin K, Shafique Z, Amjad ST, Asad MHH. Citrus flavonoids as potential therapeutic agents: A review. Phytother Res 2022; 36(4): 1417-41.
[http://dx.doi.org/10.1002/ptr.7261] [PMID: 34626134]
[4]
Lu K, Yip YM. Therapeutic potential of bioactive flavonoids from citrus fruit peels toward obesity and diabetes mellitus. Fut Pharmacol 2023; 3(1): 14-37.
[http://dx.doi.org/10.3390/futurepharmacol3010002]
[5]
Alzaabi MM, Hamdy R, Ashmawy NS, et al. Flavonoids are promising safe therapy against COVID-19. Phytochem Rev 2022; 21(1): 291-312.
[http://dx.doi.org/10.1007/s11101-021-09759-z] [PMID: 34054380]
[6]
Deng Y, Tu Y, Lao S, et al. The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Crit Rev Food Sci Nutr 2022; 62(27): 7591-614.
[http://dx.doi.org/10.1080/10408398.2021.1915745] [PMID: 33905288]
[7]
Madureira MB, Concato VM, Cruz EMS, et al. Naringenin and hesperidin as promising alternatives for prevention and co-adjuvant therapy for breast cancer. Antioxidants 2023; 12(3): 586.
[http://dx.doi.org/10.3390/antiox12030586] [PMID: 36978836]
[8]
Gonzales GB. In vitro bioavailability and cellular bioactivity studies of flavonoids and flavonoid-rich plant extracts: questions, considerations and future perspectives. Proc Nutr Soc 2017; 76(3): 175-81.
[http://dx.doi.org/10.1017/S0029665116002858] [PMID: 27903318]
[9]
Perez-Vizcaino F, Fraga CG. Research trends in flavonoids and health. Arch Biochem Biophys 2018; 646(March): 107-12.
[http://dx.doi.org/10.1016/j.abb.2018.03.022] [PMID: 29580946]
[10]
Evans JA, Mendonca P, Soliman KFA. Neuroprotective effects and therapeutic potential of the citrus flavonoid hesperetin in neurodegenerative diseases. Nutrients 2022; 14(11): 2228.
[http://dx.doi.org/10.3390/nu14112228] [PMID: 35684025]
[11]
Parmenter BH, Croft KD, Hodgson JM, et al. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct 2020; 11(8): 6777-806.
[http://dx.doi.org/10.1039/D0FO01118E] [PMID: 32725042]
[12]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[13]
Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021; 26(17): 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[14]
Chda A, El Kabbaoui M, Baba BF, et al. Endothelium-indepen-dent vasorelaxant effect of synthestized 2 Hydroxymethylchromone on rat mesenteric arterial bed. Curr Bioact Compd 2018; 14(3): 289-98.
[http://dx.doi.org/10.2174/1573407213666170307092922]
[15]
Sharma SK, Kumar S, Chand K, Kathuria A, Gupta A, Jain R. An update on natural occurrence and biological activity of chromones. Curr Med Chem 2011; 18(25): 3825-52.
[http://dx.doi.org/10.2174/092986711803414359] [PMID: 21824102]
[16]
Arai MA, Sato M, Sawada K, Hosoya T, Ishibashi M. Efficient synthesis of chromone and flavonoid derivatives with diverse heterocyclic units. Chem Asian J 2008; 3(12): 2056-64.
[http://dx.doi.org/10.1002/asia.200800166] [PMID: 18830978]
[17]
Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Chromones as a privileged scaffold in drug discovery: A review. Eur J Med Chem 2014; 78: 340-74.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.047] [PMID: 24691058]
[18]
Tuteja N. Signaling through G protein coupled receptors. Plant Signal Behav 2009; 4(10): 942-7.
[http://dx.doi.org/10.4161/psb.4.10.9530] [PMID: 19826234]
[19]
Kaur G, Verma SK, Singh D, Singh NK. Role of G-proteins and GPCRs in cardiovascular pathologies. Bioengineering 2023; 10(1): 76.
[http://dx.doi.org/10.3390/bioengineering10010076] [PMID: 36671648]
[20]
Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharm J 2021; 29(6): 539-51.
[http://dx.doi.org/10.1016/j.jsps.2021.04.015] [PMID: 34194261]
[21]
Liu N, Wang Y, Li T, Feng X. G-protein coupled receptors (Gpcrs): Signaling pathways, characterization, and functions in insect physiology and toxicology. Int J Mol Sci 2021; 22(10): 5260.
[http://dx.doi.org/10.3390/ijms22105260] [PMID: 34067660]
[22]
Barella LF, Jain S, Pydi SP. G protein-coupled receptors: Role in metabolic disorders. Front Endocrinol 2022; 13(August): 984253.
[http://dx.doi.org/10.3389/fendo.2022.984253] [PMID: 35992121]
[23]
Wang X, Iyer A, Lyons AB, Körner H, Wei W. Emerging roles for G-protein coupled receptors in development and activation of macrophages. Front Immunol 2019; 10(AUG): 2031.
[http://dx.doi.org/10.3389/fimmu.2019.02031] [PMID: 31507616]
[24]
Azam S, Haque ME, Jakaria M, et al. G-protein-coupled receptors in CNS: A potential neurodegenerative disorders and associated. Cells 2020; 9: 506.
[http://dx.doi.org/10.3390/cells9020506] [PMID: 32102186]
[25]
Mazzadi AN, Pineau J, Costes N, et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ Cardiovasc Imaging 2009; 2(5): 365-72.
[http://dx.doi.org/10.1161/CIRCIMAGING.108.822106] [PMID: 19808624]
[26]
Cardillo C, Kilcoyne CM, Waclawiw M, Cannon RO III, Panza JA. Role of endothelin in the increased vascular tone of patients with essential hypertension. Hypertension 1999; 33(2): 753-8.
[http://dx.doi.org/10.1161/01.HYP.33.2.753] [PMID: 10024340]
[27]
Yazawa T, Kaira K, Shimizu K, et al. Prognostic significance of β2-adrenergic receptor expression in non-small cell lung cancer. Am J Transl Res 2016; 8(11): 5059-70.
[PMID: 27904707]
[28]
Kurozumi S, Kaira K, Matsumoto H, et al. β2-Adrenergic receptor expression is associated with biomarkers of tumor immunity and predicts poor prognosis in estrogen receptor-negative breast cancer. Breast Cancer Res Treat 2019; 177(3): 603-10.
[http://dx.doi.org/10.1007/s10549-019-05341-6] [PMID: 31290053]
[29]
Rudolph A, Toth C, Hoffmeister M, et al. Expression of oestrogen receptor β and prognosis of colorectal cancer. Br J Cancer 2012; 107(5): 831-9.
[http://dx.doi.org/10.1038/bjc.2012.323] [PMID: 22828608]
[30]
Albert PR, Benkelfat C. The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos Trans R Soc Lond B Biol Sci 2013; 368(1615): 20120535.
[http://dx.doi.org/10.1098/rstb.2012.0535] [PMID: 23440469]
[31]
Yi JH, Whitcomb DJ, Park SJ, et al. M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer’s disease pathology. Brain Commun 2020; 2(2): fcaa058.
[http://dx.doi.org/10.1093/braincomms/fcaa058] [PMID: 32766549]
[32]
Tenfen A, Mariano LNB, Boeing T, et al. Effects of myricetin-3- O -α-rhamnoside (myricitrin) treatment on urinary parameters of Wistar rats. J Pharm Pharmacol 2019; 71(12): 1832-8.
[http://dx.doi.org/10.1111/jphp.13172] [PMID: 31588559]
[33]
Matsumoto H, Kamm KE, Stull JT, Azuma H. Delphinidin-3-rutinoside relaxes the bovine ciliary smooth muscle through activation of ETB receptor and NO/cGMP pathway. Exp Eye Res 2005; 80(3): 313-22.
[http://dx.doi.org/10.1016/j.exer.2004.10.002] [PMID: 15721614]
[34]
Calfío C, Donoso F, Huidobro-Toro JP. Anthocyanins activate membrane estrogen receptors with nanomolar potencies to elicit a nongenomic vascular response via no production. J Am Heart Assoc 2021; 10(16): e020498.
[http://dx.doi.org/10.1161/JAHA.119.020498] [PMID: 34350775]
[35]
Jang Y, Kim SW, Oh J, et al. Ghrelin receptor is activated by naringin and naringenin, constituents of a prokinetic agent Poncirus fructus. J Ethnopharmacol 2013; 148(2): 459-65.
[http://dx.doi.org/10.1016/j.jep.2013.04.039] [PMID: 23639361]
[36]
Jang Y, Kim TK, Shim WS. Naringin exhibits in vivo prokinetic activity via activation of ghrelin receptor in gastrointestinal motility dysfunction rats. Pharmacology 2013; 92(3-4): 191-7.
[http://dx.doi.org/10.1159/000354579] [PMID: 24080610]
[37]
Cavalcante Morais T, Cavalcante Lopes S, Bezerra Carvalho KM, et al. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism. World J Gastroenterol 2012; 18(25): 3207-14.
[PMID: 22783044]
[38]
Kakino M, Izuta H, Ito T, et al. Agarwood induced laxative effects via acetylcholine receptors on loperamide-induced constipation in mice. Biosci Biotechnol Biochem 2010; 74(8): 1550-5.
[http://dx.doi.org/10.1271/bbb.100122] [PMID: 20699592]
[39]
Jung IH, Lee HE, Park SJ, et al. Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol Biochem Behav 2014; 120: 88-94.
[40]
Ali M, Rauf A, Hadda T, et al. Mechanisms Underlying Anti-hyperalgesic Properties of Kaempferol-3,7- di-O-α-L-rhamno-pyranoside Isolated from Dryopteris cycadina. Curr Top Med Chem 2016; 17(4): 383-90.
[http://dx.doi.org/10.2174/1568026616666160824101429] [PMID: 27558683]
[41]
Carballo-Villalobos AI, González-Trujano ME, Pellicer F, et al. Antihyperalgesic effect of hesperidin improves with diosmin in experimental neuropathic pain. BioMed Res Int 2016; 2016: 8263463.
[http://dx.doi.org/10.1155/2016/8263463]
[42]
Souza LC, Gomes MG, de Goes ATR, et al. Evidence for the involvement of the serotonergic 5-HT1A receptors in the antidepressant-like effect caused by hesperidin in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40(1): 103-9.
[43]
Shang D, Li Z, Zhu Z, et al. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway. Oncol Rep 2015; 33(4): 2077-85.
[http://dx.doi.org/10.3892/or.2015.3786] [PMID: 25672442]
[44]
Yamazaki S, Miyoshi N, Kawabata K, Yasuda M, Shimoi K. Quercetin-3-O-glucuronide inhibits noradrenaline-promoted invasion of MDA-MB-231 human breast cancer cells by blocking β2-adrenergic signaling. Arch Biochem Biophys 2014; 557: 18-27.
[http://dx.doi.org/10.1016/j.abb.2014.05.030] [PMID: 24929186]
[45]
Yamazaki S, Sakakibara H, Takemura H, Yasuda M, Shimoi K. Quercetin-3-O-glucronide inhibits noradrenaline binding to α2-adrenergic receptor, thus suppressing DNA damage induced by treatment with 4-hydroxyestradiol and noradrenaline in MCF-10A cells. J Steroid Biochem Mol Biol 2014; 143: 122-9.
[http://dx.doi.org/10.1016/j.jsbmb.2014.02.014] [PMID: 24607809]
[46]
Han YS, Lan L, Chu J, Kang WQ, Ge ZM. Epigallocatechin gallate attenuated the activation of rat cardiac fibroblasts induced by angiotensin II via regulating β-arrestin1. Cell Physiol Biochem 2013; 31(2-3): 338-46.
[http://dx.doi.org/10.1159/000343371] [PMID: 23485661]
[47]
Liu J, Bodnar BH, Meng F, et al. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci 2021; 11(1): 168.
[http://dx.doi.org/10.1186/s13578-021-00680-8] [PMID: 34461999]
[48]
Portilla-Martínez A, Ortiz-Flores MÁ, Meaney E, Villarreal F, Nájera N, Ceballos G. (-)-Epicatechin is a biased ligand of apelin receptor. Int J Mol Sci 2022; 23(16): 8962.
[http://dx.doi.org/10.3390/ijms23168962] [PMID: 36012227]
[49]
Liu EYL, Xu ML, Xia Y, et al. Activation of G protein-coupled receptor 30 by flavonoids leads to expression of acetylcholinesterase in cultured PC12 cells. Chem Biol Interact 2019; 306(April): 147-51.
[http://dx.doi.org/10.1016/j.cbi.2019.04.031] [PMID: 31034797]
[50]
Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin Modulates Neuropathic Pain through the Possible Involvement of Serotonergic 5-HT1A Receptor Pathway in CCI-Induced Neuropathic Pain Mice Model. Molecules 2021; 26(12): 3677.
[http://dx.doi.org/10.3390/molecules26123677] [PMID: 34208700]
[51]
Alqudah A, Qnais EY, Wedyan MA, et al. Lysionotin exerts antinociceptive effects in various models of nociception induction. Heliyon 2023; 9(4): e15619.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15619] [PMID: 37151635]
[52]
Jana S, Patel D, Patel S, et al. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. PLoS One 2017; 12(8): e0182137.
[http://dx.doi.org/10.1371/journal.pone.0182137] [PMID: 28763488]
[53]
Gao G, Nakamura S, Asaba S, Miyata Y, Nakayama H, Matsui T. Hesperidin preferentially stimulates transient receptor potential vanilloid 1, leading to no production and mas receptor expression in human umbilical vein endothelial cells. J Agric Food Chem 2022; 70(36): 11290-300.
[http://dx.doi.org/10.1021/acs.jafc.2c04045] [PMID: 36039965]
[54]
Gao G, Abe C, Nectoux AM, et al. Anti-hypertensive effect of hesperidin and hesperidin-containing fermented Mikan tea in spontaneously hypertensive rats. Food Sci Technol Res 2020; 26(6): 779-87.
[http://dx.doi.org/10.3136/fstr.26.779]
[55]
Mahou Y, Chda A, Es-saf NE, et al. Vasorelaxant effect of moroccan cannabis sativa threshing residues on rat mesenteric arterial bed is endothelium and muscarinic receptors dependent. Evidence Based Complement Alternat Med 2023; 2023: 1265103.
[http://dx.doi.org/10.1155/2023/1265103]
[56]
Chda A, El Kabbaoui M, Fresco P, et al. Centaurium erythraea extracts exert vascular effects through endothelium- and fibroblast-dependent pathways. Planta Med 2020; 86(2): 121-31.
[http://dx.doi.org/10.1055/a-1023-8918] [PMID: 31645066]
[57]
Wang J, Chen L, Qu L, et al. Isolation and bioactive evaluation of flavonoid glycosides from Lobelia chinensis Lour using two-dimensional liquid chromatography combined with label-free cell phenotypic assays. J Chromatogr A 2019; 1601: 224-31.
[58]
Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol 2021; 82(3-4): 193-7.
[http://dx.doi.org/10.1016/j.ando.2020.03.012] [PMID: 32473788]
[59]
Harvey RD. Muscarinic receptor agonists and antagonists: Effects on cardiovascular function. Handb Exp Pharmacol 2012; 208(208): 299-316.
[http://dx.doi.org/10.1007/978-3-642-23274-9_13] [PMID: 22222704]
[60]
Bouzegrhane F, Thibault G. Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 2002; 53(2): 304-12.
[http://dx.doi.org/10.1016/S0008-6363(01)00448-5] [PMID: 11827680]
[61]
Rodrigues-Ferreira S, Nahmias C. G-protein coupled receptors of the renin-angiotensin system: New targets against breast cancer? Front Pharmacol 2015; 6(FEB): 24.
[http://dx.doi.org/10.3389/fphar.2015.00024] [PMID: 25741281]
[62]
Capote LA, Mendez Perez R, Lymperopoulos A. GPCR signaling and cardiac function. Eur J Pharmacol 2015; 763(Pt B): 143-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.019] [PMID: 25981298]
[63]
Foster SR, Roura E, Molenaar P, Thomas WG. G protein-coupled receptors in cardiac biology: Old and new receptors. Biophys Rev 2015; 7(1): 77-89.
[http://dx.doi.org/10.1007/s12551-014-0154-2] [PMID: 28509979]
[64]
Meyer MR, Prossnitz ER, Barton M. The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vascul Pharmacol 2011; 55(1-3): 17-25.
[http://dx.doi.org/10.1016/j.vph.2011.06.003] [PMID: 21742056]
[65]
Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000; 52(1): 11-34.
[PMID: 10699153]
[66]
Porter KE, Turner NA. Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacol Ther 2009; 123(2): 255-78.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.002] [PMID: 19460403]
[67]
Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: An In vivo PET study. Circulation 1997; 96(10): 3416-22.
[http://dx.doi.org/10.1161/01.CIR.96.10.3416] [PMID: 9396436]
[68]
Wang Z, Shi H, Wang H. Functional M 3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 2004; 142(3): 395-408.
[http://dx.doi.org/10.1038/sj.bjp.0705787] [PMID: 15148264]
[69]
Liu Y, Wang S, Wang C, et al. Upregulation of M3 muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II. J Transl Med 2013; 11(1): 209.
[http://dx.doi.org/10.1186/1479-5876-11-209] [PMID: 24028210]
[70]
Povlsen A, Grimm D, Wehland M, Infanger M, Krüger M. The vasoactive MAS receptor in essential hypertension. J Clin Med 2020; 9(1): 267.
[http://dx.doi.org/10.3390/jcm9010267] [PMID: 31963731]
[71]
Mazzuca MQ, Khalil RA. Vascular endothelin receptor type B: Structure, function and dysregulation in vascular disease. Biochem Pharmacol 2012; 84(2): 147-62.
[http://dx.doi.org/10.1016/j.bcp.2012.03.020] [PMID: 22484314]
[72]
Yu X, Ma H, Barman SA, et al. Activation of G protein-coupled estrogen receptor induces endothelium-independent relaxation of coronary artery smooth muscle. Am J Physiol Endocrinol Metab 2011; 301(5): E882-8.
[http://dx.doi.org/10.1152/ajpendo.00037.2011] [PMID: 21791623]
[73]
Wang H, Sun X, Lin MS, Ferrario CM, Van Remmen H, Groban L. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 2018; 199: 39-51.
[http://dx.doi.org/10.1016/j.trsl.2018.04.005] [PMID: 29758174]
[74]
Nishida S, Satoh H. Possible involvement of Ca2+ activated K+ channels, SK channel, in the quercetin-induced vasodilatation. Korean J Physiol Pharmacol 2009; 13(5): 361-5.
[http://dx.doi.org/10.4196/kjpp.2009.13.5.361] [PMID: 19915698]
[75]
Ajay M, Achike FI, Mustafa AM, Mustafa MR. Effect of quercetin on altered vascular reactivity in aortas isolated from streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2006; 73(1): 1-7.
[http://dx.doi.org/10.1016/j.diabres.2005.11.004] [PMID: 16378655]
[76]
Ibarra M, Moreno L, Vera R, et al. Effects of the flavonoid quercetin and its methylated metabolite isorhamnetin in isolated arteries from spontaneously hypertensive rats. Planta Med 2003; 69(11): 995-1000.
[http://dx.doi.org/10.1055/s-2003-45144] [PMID: 14735435]
[77]
Swaminathan M, Chee C, Chin S, et al. Flavonoids with M1 muscarinic acetylcholine receptor binding activity. Molecules 2014; 19(7): 8933-48.
[http://dx.doi.org/10.3390/molecules19078933] [PMID: 24979399]
[78]
Fernández SP, Wasowski C, Loscalzo LM, et al. Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 2006; 539(3): 168-76.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.004] [PMID: 16698011]
[79]
Lutz PE, Ayranci G, Chu-Sin-Chung P, et al. Distinct mu, delta, and kappa opioid receptor mechanisms underlie low sociability and depressive-like behaviors during heroin abstinence. Neuropsychopharmacology 2014; 39(11): 2694-705.
[http://dx.doi.org/10.1038/npp.2014.126] [PMID: 24874714]
[80]
Loscalzo LM, Wasowski C, Paladini AC, Marder M. Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines. Eur J Pharmacol 2008; 580(3): 306-13.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.011] [PMID: 18048026]
[81]
Chalmers DT, Watson SJ. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain - a combined in situ hybridisation/In vitro receptor autoradiographic study. Brain Res 1991; 561(1): 51-60.
[http://dx.doi.org/10.1016/0006-8993(91)90748-K] [PMID: 1797349]
[82]
Wȩdzony K, Maćkowiak M, Fijal WZK, et al. WAY 100135, an Antagonist of 5-HT1A Serotonin Receptors, Attenuates Psychotomimetic Effects of MK-801. Neuropsychopharmacology 2000. 23: 547-9
[83]
Misane I, Ögren SO. Selective 5-HT1A antagonists WAY 100635 and NAD-299 attenuate the impairment of passive avoidance caused by scopolamine in the rat. Neuropsychopharmacology 2003; 28(2): 253-64.
[http://dx.doi.org/10.1038/sj.npp.1300024] [PMID: 12589378]
[84]
Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin 1A receptor. Proc Natl Acad Sci 1998; 95(18): 10734-9.
[http://dx.doi.org/10.1073/pnas.95.18.10734] [PMID: 9724773]
[85]
Klemenhagen KC, Gordon JA, David DJ, Hen R, Gross CT. Increased fear response to contextual cues in mice lacking the 5-HT1A receptor. Neuropsychopharmacology 2006; 31(1): 101-11.
[http://dx.doi.org/10.1038/sj.npp.1300774] [PMID: 15920501]
[86]
Kusserow H, Davies B, Hörtnagl H, et al. Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin1A receptors. Brain Res Mol Brain Res 2004; 129(1-2): 104-16.
[http://dx.doi.org/10.1016/j.molbrainres.2004.06.028] [PMID: 15469887]
[87]
Zhao J, Deng Y, Jiang Z, Qing H. G protein-coupled receptors (GPCRs) in Alzheimer’s disease: A focus on BACE1 related GPCRs. Front Aging Neurosci 2016; 8(MAR): 58.
[http://dx.doi.org/10.3389/fnagi.2016.00058] [PMID: 27047374]
[88]
Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003; 306(3): 821-7.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[89]
Forlenza OV, Spink JM, Dayanandan R, Anderton BH, Olesen OF, Lovestone S. Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3β inhibition and in neurons. J Neural Transm 2000; 107(10): 1201-12.
[http://dx.doi.org/10.1007/s007020070034] [PMID: 11129110]
[90]
Lahmy V, Meunier J, Malmström S, et al. Blockade of Tau hyperphosphorylation and Aβ₁₋₄₂ generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ₁ receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 2013; 38(9): 1706-23.
[http://dx.doi.org/10.1038/npp.2013.70] [PMID: 23493042]
[91]
Sawmiller D, Habib A, Li S, et al. Diosmin reduces cerebral A β levels, tau hyperphosphorylation, neuroin fl ammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol 2016; 299: 98-106.
[92]
Lee D, Kim N, Jeon SH, et al. Hesperidin improves memory function by enhancing neurogenesis in a mouse model of alzheimer’s disease. Nutrients 2022; 14(15): 3125.
[http://dx.doi.org/10.3390/nu14153125] [PMID: 35956303]
[93]
Kuşi M, Becer E, Vatansever HS, Yücecan S. Neuroprotective effects of hesperidin and naringin in SK-N-AS Cell as an in vitro model for alzheimer’s disease. J Am Nutr Associ 2023; 42(4): 418-26.
[http://dx.doi.org/10.1080/07315724.2022.2062488] [PMID: 35776430]
[94]
Fernandes L, Cardim-pires TR, Foguel D, et al. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Front Neurosci 2021; 15: 718.
[http://dx.doi.org/10.3389/fnins.2021.718188]
[95]
Youn K, Ho C, Jun M. Food Science and Human Wellness Multifaceted neuroprotective effects of () -epigallocatechin-3-gallate (EGCG) in Alzheimer ’ s disease  An overview of pre-clinical studies focused on ȕ -amyloid peptide. Food Sci Hum Wellness 2022; 11(3): 483-93.
[96]
Grossberg GT, Desai AK. Management of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 2003; 58(4): M331-53.
[http://dx.doi.org/10.1093/gerona/58.4.M331] [PMID: 12663697]
[97]
Yow TT, Pera E, Absalom N, et al. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin‐Q. Br J Pharmacol 2011; 163(5): 1017-33.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01315.x] [PMID: 21391982]
[98]
Silva D, Quintas C, Gonçalves J, Fresco P. Contribution of adrenergic mechanisms for the stress‐induced breast cancer carcinogenesis. J Cell Physiol 2022; 237(4): 2107-27.
[http://dx.doi.org/10.1002/jcp.30707] [PMID: 35243626]
[99]
Zhang B, Wu C, Chen W, et al. The stress hormone norepinephrine promotes tumor progression through β2-adrenoreceptors in oral cancer. Arch Oral Biol 2020; 113(March): 104712.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104712] [PMID: 32234582]
[100]
Sood AK, Bhatty R, Kamat AA, et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006; 12(2): 369-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1698] [PMID: 16428474]
[101]
Lutgendorf SK, Lamkin DM, Jennings NB, et al. Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clin Cancer Res 2008; 14(21): 6839-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0230] [PMID: 18980978]
[102]
Yang EV, Bane CM, MacCallum RC, Kiecolt-Glaser JK, Malarkey WB, Glaser R. Stress-related modulation of matrix metalloproteinase expression. J Neuroimmunol 2002; 133(1-2): 144-50.
[http://dx.doi.org/10.1016/S0165-5728(02)00270-9] [PMID: 12446017]
[103]
Lutgendorf SK, Cole S, Costanzo E, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 2003; 9(12): 4514-21.
[PMID: 14555525]
[104]
Arias-Pulido H, Royce M, Gong Y, et al. GPR30 and estrogen receptor expression: New insights into hormone dependence of inflammatory breast cancer. Breast Cancer Res Treat 2010; 123(1): 51-8.
[http://dx.doi.org/10.1007/s10549-009-0631-7] [PMID: 19902352]
[105]
Puranik NV, Srivastava P, Bhatt G, John Mary DJS, Limaye AM, Sivaraman J. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. Sci Rep 2019; 9(1): 7450.
[http://dx.doi.org/10.1038/s41598-019-43768-5]
[106]
Tovilovic-Kovacevic G, Zogovic N, Krstic-Milosevic D. Secondary metabolites from endangered Gentiana, Gentianella, Centaurium, and Swertia species (Gentianaceae): Promising natural biotherapeutics, Biodiversity and Biomedicine 2020 In: Biodiversity and Biomedicine INC. 2020.
[107]
Bennett GJ, Lee HH. The biosynthesis of mangostin: The origin of the xanthone skeleton. J Chem Soc Chem Commun 1988; (9): 619-20.
[http://dx.doi.org/10.1039/c39880000619]
[108]
Wu L, Jin X, Zheng C, et al. Bidirectional effects of mao jian green tea and its flavonoid glycosides on gastrointestinal motility. Foods 2023; 12(4): 854.
[http://dx.doi.org/10.3390/foods12040854] [PMID: 36832929]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy