Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Exploring Potential Biomarkers of Early Thymoma based on Serum Proteomics

Author(s): Min Jin, Peng Liu and Guoyan Qi*

Volume 31, Issue 1, 2024

Published on: 04 December, 2023

Page: [74 - 83] Pages: 10

DOI: 10.2174/0109298665275655231103105924

Price: $65

Abstract

Background: Early diagnosis remains difficult because the early symptoms of thymoma are atypical.

Objectives: This study aimed to analyze the changes of serum proteins in the early stage of thymoma (stage I/II) by proteomics method and to screen and validate candidate biomarkers.

Methods: Proteins were extracted from 8 sera patients with stage I/II thymoma and 9 healthy controls. The levels of serum proteins were detected by data-independent acquisition (DIA) quantitative proteomics techniques, and the differential proteins were identified. The proteomic results were verified by enzyme-linked immunosorbent assay. Additionally, differentially expressed proteins were analyzed using receiver operating characteristic curves (ROC).

Results: There were 80 differentially expressed proteins between the patients with thymoma and the healthy control group, among which 39 were up-regulated and 41 were down-regulated. Differential protein enrichment is involved in environmental information processing, signaling molecules and interactions, and in the body system and the immune system. The analysis of receptor working characteristic curves showed that the areas under the curve of CORO1A, SAA1 and LTA4H were all larger than 0.8, indicating that these proteins had good diagnostic value.

Conclusion: CORO1A, SAA1 and LTA4H may be new biomarkers for early screening of thymoma.

« Previous
Graphical Abstract

[1]
Oramas, D.M.; Moran, C.A. Thymoma: Histologically a heterogenous group of tumors. Semin. Diagn. Pathol., 2022, 39(2), 99-104.
[http://dx.doi.org/10.1053/j.semdp.2021.06.002] [PMID: 34147302]
[2]
Ma, Y.; Li, Q.; Cui, W.; Miao, N.; Liu, X.; Zhang, W.; Zhang, C.; Wang, J. Expression of c-Jun, p73, Casp9, and N-ras in thymic epithelial tumors: Relationship with the current WHO classification systems. Diagn. Pathol., 2012, 7(1), 120.
[http://dx.doi.org/10.1186/1746-1596-7-120] [PMID: 22974165]
[3]
Kaira, K.; Murakami, H.; Serizawa, M. MUC1 expression in thymic epithelial tumors: MUC1 may be useful marker as differential diagnosis between type B3 thymoma and thymic carcinoma J. Virchows. Archiv., 2011, 458(5), 615-20.
[4]
Ford, M.L. Coronin-1, king of alloimmunity. Immunity, 2019, 50(1), 3-5.
[http://dx.doi.org/10.1016/j.immuni.2018.12.030] [PMID: 30650379]
[5]
Chen, X.; Wang, S.; Wu, N.; Yang, C. Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Curr. Cancer Drug Targets, 2004, 4(3), 267-283.
[http://dx.doi.org/10.2174/1568009043333041] [PMID: 15134534]
[6]
Vo, T.T.L.; Jang, W.J.; Jeong, C.H. Leukotriene A4 hydrolase: An emerging target of natural products for cancer chemoprevention and chemotherapy. Ann. N. Y. Acad. Sci., 2018, 1431(1), 3-13.
[http://dx.doi.org/10.1111/nyas.13929] [PMID: 30058075]
[7]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene Ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[8]
Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; Yamanishi, Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res., 2008, 36(Database issue), D480-D484.
[PMID: 18077471]
[9]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[10]
Li, J.; Qi, G.; Liu, Y. Proteomics analysis of serum from thymoma patients. Sci. Rep., 2023, 13(1), 5117.
[http://dx.doi.org/10.1038/s41598-023-32339-4] [PMID: 36991043]
[11]
Liu, X.; Gao, Y.; Lin, X.; Li, L.; Han, X.; Liu, J. The coronin family and human disease. Curr. Protein Pept. Sci., 2016, 17(6), 603-611.
[http://dx.doi.org/10.2174/1389203717666151201192011] [PMID: 26916159]
[12]
Kim, D.H.; Bae, J.; Lee, J.W.; Kim, S.Y.; Kim, Y.H.; Bae, J.Y.; Yi, J.K.; Yu, M.H.; Noh, D.Y.; Lee, C. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness. Proteomics Clin. Appl., 2009, 3(1), 30-40.
[http://dx.doi.org/10.1002/prca.200800167] [PMID: 21136934]
[13]
Kumar, P.; Nandi, S.; Tan, T.Z.; Ler, S.G.; Chia, K.S.; Lim, W.Y.; Bütow, Z.; Vordos, D.; De laTaille, A.; Al-Haddawi, M.; Raida, M.; Beyer, B.; Ricci, E.; Colombel, M.; Chong, T.W.; Chiong, E.; Soo, R.; Park, M.K.; Ha, H.K.; Gunaratne, J.; Thiery, J.P. Highly sensitive and specific novel biomarkers for the diagnosis of transitional bladder carcinoma. Oncotarget, 2015, 6(15), 13539-13549.
[http://dx.doi.org/10.18632/oncotarget.3841] [PMID: 25915536]
[14]
Xu, X.J.; Tang, Y.M.; Zhao, H.Z.; Guo, L.; Wang, Z.J. ZCH-2B8a, an antibody targeting actin-binding protein coronin-1a, is a potential therapeutic agent for B-lineage malignancies. J. Drug Target., 2014, 22(6), 488-497.
[http://dx.doi.org/10.3109/1061186X.2014.888072] [PMID: 24547769]
[15]
Rumi Higuchi, T.G.Y.H. Primary driver mutations in GTF2I specific to the development of thymomas. Cancers, 2020, 12(8), 2032.
[16]
Schmidt, K.; Noureen, A.; Kronenberg, F.; Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res., 2016, 57(8), 1339-1359.
[http://dx.doi.org/10.1194/jlr.R067314] [PMID: 27074913]
[17]
Gabay, C. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med., 1999, 340(6), 448-458.
[18]
Xu, L.; Badolato, R.; Murphy, W.J. A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J. immun., 1995, 155(3), 1184-1190.
[19]
Gouwy, M.; De Buck, M.; Pörtner, N.; Opdenakker, G.; Proost, P.; Struyf, S.; Van Damme, J. Serum amyloid A chemoattracts immature dendritic cells and indirectly provokes monocyte chemotaxis by induction of cooperating CC and CXC chemokines. Eur. J. Immunol., 2015, 45(1), 101-112.
[http://dx.doi.org/10.1002/eji.201444818] [PMID: 25345597]
[20]
Li, S.; Cheng, Y.; Cheng, G.; Xu, T.; Ye, Y.; Miu, Q.; Cao, Q.; Yang, X.; Ruan, H.; Zhang, X. High SAA1 expression predicts advanced tumors in renal cancer. Front. Oncol., 2021, 11, 649761.
[http://dx.doi.org/10.3389/fonc.2021.649761] [PMID: 34084746]
[21]
Ren, H.; He, G.; Lu, Z.; He, Q.; Li, S.; Huang, Z.; Chen, Z.; Cao, C.; Wang, A. Retracted: arecoline induces epithelial- mesenchymal transformation and promotes metastasis of oral cancer by SAA1 expression. Cancer Sci., 2021, 112(6), 2173-2184.
[http://dx.doi.org/10.1111/cas.14866] [PMID: 33626219]
[22]
Zhang, H.; Xu, Y.; Deng, G.; Yuan, F.; Tan, Y.; Gao, L.; Sun, Q.; Qi, Y.; Yang, K.; Geng, R.; Jiang, H.; Liu, B.; Chen, Q. SAA1 knockdown promotes the apoptosis of glioblastoma cells via downregulation of AKT signaling. J. Cancer, 2021, 12(9), 2756-2767.
[http://dx.doi.org/10.7150/jca.48419] [PMID: 33854635]
[23]
Shu, Z.; Guo, J.; Xue, Q.; Tang, Q.; Zhang, B. Single-cell profiling reveals that SAA1+ epithelial cells promote distant metastasis of esophageal squamous cell carcinoma. Front. Oncol., 2022, 12, 1099271.
[http://dx.doi.org/10.3389/fonc.2022.1099271] [PMID: 36605443]
[24]
Moshkovskii, S.A.; Serebryakova, M.V.; Kuteykin-Teplyakov, K.B.; Tikhonova, O.V.; Goufman, E.I.; Zgoda, V.G.; Taranets, I.N.; Makarov, O.V.; Archakov, A.I. Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1. Proteomics, 2005, 5(14), 3790-3797.
[http://dx.doi.org/10.1002/pmic.200401205] [PMID: 16121334]
[25]
Mieke De Buck, N.B.N.P. Serum amyloid A1a induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J. Leukoc. Biol., 2015, 98(6), 1049-1060.
[26]
Gao, S.; Jiang, J.; Jin, C.; Gao, J.; Xiong, D.; Yang, P.; Cui, S.; Yang, W.; Leng, Q.; Dong, J.; Chen, G.; Liu, J.; Wang, L.; Ke, A.; Wang, H.; Ding, J. Interleukin-8 as a candidate for thymoma identification and recurrence surveillance. Nat. Commun., 2020, 11(1), 4881.
[http://dx.doi.org/10.1038/s41467-020-18697-x] [PMID: 32985506]
[27]
Ren, T.; Wang, S.; Zhang, B.; Zhou, W.; Wang, C.; Zhao, X.; Feng, J. LTA4H extensively associates with mRNAs and lncRNAs indicative of its novel regulatory targets. PeerJ, 2023, 11, e14875.
[http://dx.doi.org/10.7717/peerj.14875] [PMID: 36923505]
[28]
Zhao, S.; Yao, K.; Liu, K.; Huang, L.; Jiang, Y.; Li, J.; Dong, Z.; Dong, Z. Bestatin cream impairs solar simulated light‒driven skin inflammation and skin carcinogenesis in mice. J. Invest. Dermatol., 2021, 141(11), 2699-2709.e2.
[http://dx.doi.org/10.1016/j.jid.2021.03.032] [PMID: 34051272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy