Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Novel Circular RNA CircUBAP2 Drives Tumor Progression by Regulating the miR-143/TFAP2B Axis in Prostate Cancer

Author(s): Zhong Lv*, Yunfeng Shi, Haoran Wu, Kai Cao, Xiaowu Liu and Chengyue Wang

Volume 31, Issue 1, 2024

Published on: 13 November, 2023

Page: [61 - 73] Pages: 13

DOI: 10.2174/0109298665268943231103114654

Price: $65

Abstract

Background: More and more investigations reveal that circular RNAs (circRNAs) are involved in cancer progression. CircRNA UBAP2 was closely related to prostate cancer. However, the biological function and specifical mechanism of circUBAP2 are still poorly discovered in prostate cancer (PCa).

Objectives: This study aims to explore the biological function and mechanism of circUBAP2 in PCa.

Methods: The levels of mRNA and proteins were assessed by qRT-PCR assay and Western blot, respectively. Cell growth, migration, and invasion ability were measured using CCK-8 assay and Transwell assay. Apoptosis was assessed using flow cytometry. The interactions between circUBAP2, miR-143, and TFAP2B were determined by luciferase report assay. The tumor growth was determined by in vivo tumor formation assay. The tumor morphology was assessed using H&E staining assay, and immunohistochemistry assay was conducted to assess the level of KI67.

Results: We found circUBAP2 and TFAP2B were notably elevated, while miR-143 was largely attenuated in prostate cancer cells and tissues. CircUBAP2 was found to affect cell viability, metastasis and EMT, while attenuating the apoptosis rate of prostate cancer cells. CircUBAP2 directly targeted miR-143, and miR-143 inhibitor could reverse the effects that circUBAP2 interference-induced in prostate cancer cells. TFAP2B is directly bound to miR-143, and overexpression of TFAP2B could attenuate the influences that miR-143-induced in prostate cancer cells.

Conclusion: CircUBAP2 promoted prostate cancer progression via miR-143/TFAP2B axis.

Graphical Abstract

[1]
De Bono, J.S.; Guo, C.; Gurel, B.; De Marzo, A.M.; Sfanos, K.S.; Mani, R.S.; Gil, J.; Drake, C.G.; Alimonti, A. Prostate carcinogenesis: Inflammatory storms. Nat. Rev. Cancer, 2020, 20(8), 455-469.
[http://dx.doi.org/10.1038/s41568-020-0267-9] [PMID: 32546840]
[2]
Komura, K.; Sweeney, C.J.; Inamoto, T.; Ibuki, N.; Azuma, H.; Kantoff, P.W. Current treatment strategies for advanced prostate cancer. Int. J. Urol., 2018, 25(3), 220-231.
[http://dx.doi.org/10.1111/iju.13512] [PMID: 29266472]
[3]
Fenner, A. ERSPC calculator recalibrated for China. Nat. Rev. Urol., 2017, 14(2), 66.
[http://dx.doi.org/10.1038/nrurol.2016.259] [PMID: 27958392]
[4]
Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and biology of prostate cancer. Genes Dev., 2018, 32(17-18), 1105-1140.
[http://dx.doi.org/10.1101/gad.315739.118] [PMID: 30181359]
[5]
Feng, Y.; Yang, Y.; Zhao, X.; Fan, Y.; Zhou, L.; Rong, J.; Yu, Y. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis., 2019, 10(11), 792.
[http://dx.doi.org/10.1038/s41419-019-2028-9] [PMID: 31624242]
[6]
Shi, J.; Liu, C.; Chen, C.; Guo, K.; Tang, Z.; Luo, Y.; Chen, L.; Su, Y.; Xu, K. Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging, 2020, 12(13), 13255-13280.
[http://dx.doi.org/10.18632/aging.103432] [PMID: 32645691]
[7]
Petkovic, S.; Müller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res., 2015, 43(4), 2454-2465.
[http://dx.doi.org/10.1093/nar/gkv045] [PMID: 25662225]
[8]
Kulcheski, F.R.; Christoff, A.P.; Margis, R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol., 2016, 238, 42-51.
[http://dx.doi.org/10.1016/j.jbiotec.2016.09.011] [PMID: 27671698]
[9]
Weng, X.D.; Yan, T.; Liu, C.L. Circular RNA_LARP4 inhibits cell migration and invasion of prostate cancer by targeting FOXO3A. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(10), 5303-5309.
[PMID: 32495863]
[10]
Shan, G.; Shao, B.; Liu, Q.; Zeng, Y.; Fu, C.; Chen, A.; Chen, Q. circFMN2 Sponges miR-1238 to promote the expression of LIM-Homeobox Gene 2 in prostate cancer cells. Mol. Ther. Nucleic Acids, 2020, 21, 133-146.
[http://dx.doi.org/10.1016/j.omtn.2020.05.008] [PMID: 32526477]
[11]
Hill, M.; Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model. Mech., 2021, 14(4), dmm047662.
[http://dx.doi.org/10.1242/dmm.047662] [PMID: 33973623]
[12]
Zhang, X.; Xu, Y.; Yamaguchi, K.; Hu, J.; Zhang, L.; Wang, J.; Tian, J.; Chen, W. Circular RNA circVAPA knockdown suppresses colorectal cancer cell growth process by regulating miR-125a/CREB5 axis. Cancer Cell Int., 2020, 20(1), 103.
[http://dx.doi.org/10.1186/s12935-020-01178-y] [PMID: 32256212]
[13]
Zhou, G.; Shen, M.; Zhang, Z. ZW10 Binding Factor (ZWINT), a Direct Target of Mir-204, predicts poor survival and promotes proliferation in breast cancer. Med. Sci. Monit., 2020, 26, e921659.
[http://dx.doi.org/10.12659/MSM.921659] [PMID: 32248204]
[14]
Wach, S.; Brandl, M.; Borchardt, H.; Weigelt, K.; Lukat, S.; Nolte, E.; Al-Janabi, O.; Hart, M.; Grässer, F.; Giedl, J.; Jung, R.; Stöhr, R.; Hartmann, A.; Lieb, V.; Höbel, S.; Peters, A.; Stäubert, C.; Wullich, B.; Taubert, H.; Aigner, A. Exploring the MIR143-UPAR axis for the inhibition of human prostate cancer cells in vitro and in vivo. Mol. Ther. Nucleic Acids, 2019, 16, 272-283.
[http://dx.doi.org/10.1016/j.omtn.2019.02.020] [PMID: 30933831]
[15]
Ng, E.K.O.; Li, R.; Shin, V.Y.; Siu, J.M.; Ma, E.S.K.; Kwong, A. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumour Biol., 2014, 35(3), 2591-2598.
[http://dx.doi.org/10.1007/s13277-013-1341-7] [PMID: 24218337]
[16]
Takagi, T.; Iio, A.; Nakagawa, Y.; Naoe, T.; Tanigawa, N.; Akao, Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology, 2009, 77(1), 12-21.
[http://dx.doi.org/10.1159/000218166] [PMID: 19439999]
[17]
Eckert, D.; Buhl, S.; Weber, S.; Jäger, R.; Schorle, H. The AP-2 family of transcription factors. Genome Biol., 2005, 6(13), 246.
[http://dx.doi.org/10.1186/gb-2005-6-13-246] [PMID: 16420676]
[18]
Zeng, Y.X.; Somasundaram, K.; El-Deiry, W.S. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat. Genet., 1997, 15(1), 78-82.
[http://dx.doi.org/10.1038/ng0197-78] [PMID: 8988173]
[19]
Pellikainen, J.M.; Kosma, V.M. Activator protein‐2 in carcinogenesis with a special reference to breast cancer-A mini review. Int. J. Cancer, 2007, 120(10), 2061-2067.
[http://dx.doi.org/10.1002/ijc.22648] [PMID: 17330235]
[20]
Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[21]
Eger, N.; Schoppe, L.; Schuster, S.; Laufs, U.; Boeckel, J.N. Circular RNA Splicing. Adv. Exp. Med. Biol., 2018, 1087, 41-52.
[http://dx.doi.org/10.1007/978-981-13-1426-1_4] [PMID: 30259356]
[22]
Tang, Q.; Hann, S.S. Biological roles and mechanisms of circular RNA in human cancers. OncoTargets Ther., 2020, 13, 2067-2092.
[http://dx.doi.org/10.2147/OTT.S233672] [PMID: 32210574]
[23]
Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer, 2020, 6(4), 319-336.
[http://dx.doi.org/10.1016/j.trecan.2020.01.012] [PMID: 32209446]
[24]
Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101.
[http://dx.doi.org/10.1016/j.canlet.2019.10.006] [PMID: 31593800]
[25]
Rong, D.; Sun, H.; Li, Z.; Liu, S.; Dong, C.; Fu, K.; Tang, W.; Cao, H. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget, 2017, 8(42), 73271-73281.
[http://dx.doi.org/10.18632/oncotarget.19154] [PMID: 29069868]
[26]
Li, P.; Wang, Z.; Li, S.; Wang, L. Circ_0006404 accelerates prostate cancer progression through regulating miR-1299/CFL2 signaling. OncoTargets Ther., 2021, 14, 83-95.
[http://dx.doi.org/10.2147/OTT.S277831] [PMID: 33442268]
[27]
Luo, G.C.; Chen, L.; Fang, J.; Yan, Z.J. Hsa_circ_0030586 promotes epithelial–mesenchymal transition in prostate cancer via PI3K-AKT signaling. Bioengineered, 2021, 12(2), 11089-11107.
[http://dx.doi.org/10.1080/21655979.2021.2008217] [PMID: 34852706]
[28]
Li, X.; Azhati, B.; Wang, W.; Rexiati, M.; Xing, C.; Wang, Y. Circular RNA UBAP2 promotes the proliferation of prostate cancer cells via the miR 1244/MAP3K2 axis. Oncol. Lett., 2021, 21(6), 486.
[http://dx.doi.org/10.3892/ol.2021.12747] [PMID: 33968202]
[29]
Villadsen, S.B.; Bramsen, J.B.; Ostenfeld, M.S.; Wiklund, E.D.; Fristrup, N.; Gao, S.; Hansen, T.B.; Jensen, T.I.; Borre, M.; Ørntoft, T.F.; Dyrskjøt, L.; Kjems, J. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br. J. Cancer, 2012, 106(2), 366-374.
[http://dx.doi.org/10.1038/bjc.2011.520] [PMID: 22108519]
[30]
Pagliuca, A.; Valvo, C.; Fabrizi, E.; di Martino, S.; Biffoni, M.; Runci, D.; Forte, S.; De Maria, R.; Ricci-Vitiani, L. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene, 2013, 32(40), 4806-4813.
[http://dx.doi.org/10.1038/onc.2012.495] [PMID: 23128394]
[31]
Yan, X.; Chen, X.; Liang, H.; Deng, T.; Chen, W.; Zhang, S.; Liu, M.; Gao, X.; Liu, Y.; Zhao, C.; Wang, X.; Wang, N.; Li, J.; Liu, R.; Zen, K.; Zhang, C.Y.; Liu, B.; Ba, Y. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol. Cancer, 2014, 13(1), 220.
[http://dx.doi.org/10.1186/1476-4598-13-220] [PMID: 25248370]
[32]
Dimitrova, N.; Gocheva, V.; Bhutkar, A.; Resnick, R.; Jong, R.M.; Miller, K.M.; Bendor, J.; Jacks, T. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov., 2016, 6(2), 188-201.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0854] [PMID: 26586766]
[33]
Skjefstad, K.; Johannessen, C.; Grindstad, T.; Kilvaer, T.; Paulsen, E.E.; Pedersen, M.; Donnem, T.; Andersen, S.; Bremnes, R.; Richardsen, E.; Al-Saad, S.; Busund, L.T. A gender specific improved survival related to stromal miR-143 and miR-145 expression in non-small cell lung cancer. Sci. Rep., 2018, 8(1), 8549.
[http://dx.doi.org/10.1038/s41598-018-26864-w] [PMID: 29867125]
[34]
Lozada-Delgado, E.; Grafals-Ruiz, N.; Miranda-Román, M.; Santana-Rivera, Y.; Valiyeva, F.; Rivera-Díaz, M.; Marcos-Martínez, M.; Vivas-Mejía, P. Targeting MicroRNA-143 leads to inhibition of glioblastoma tumor progression. Cancers, 2018, 10(10), 382.
[http://dx.doi.org/10.3390/cancers10100382] [PMID: 30322013]
[35]
Kent, O.A.; McCall, M.N.; Cornish, T.C.; Halushka, M.K. Lessons from miR-143/145: The importance of cell-type localization of miRNAs. Nucleic Acids Res., 2014, 42(12), 7528-7538.
[http://dx.doi.org/10.1093/nar/gku461] [PMID: 24875473]
[36]
Fu, X.; Zhang, H.; Chen, Z.; Yang, Z.; Shi, D.; Liu, T.; Chen, W.; Yao, F.; Su, X.; Deng, W.; Chen, M.; Yang, A. TFAP2B overexpression contributes to tumor growth and progression of thyroid cancer through the COX-2 signaling pathway. Cell Death Dis., 2019, 10(6), 397.
[http://dx.doi.org/10.1038/s41419-019-1600-7] [PMID: 31113934]
[37]
Fu, L.; Shi, K.; Wang, J.; Chen, W.; Shi, D.; Tian, Y.; Guo, W.; Yu, W.; Xiao, X.; Kang, T.; Wang, S.; Huang, W.; Deng, W. TFAP2B overexpression contributes to tumor growth and a poor prognosis of human lung adenocarcinoma through modulation of ERK and VEGF/PEDF signaling. Mol. Cancer, 2014, 13(1), 89.
[http://dx.doi.org/10.1186/1476-4598-13-89] [PMID: 24766673]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy